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In this work the robustness properties of Integral Sliding Mode Controller (ISMC) are 

studied for the problem structural vibration. Selecting the sliding manifold which takes 

into account the attenuation of the unmatched perturbation is studied as well. This study 

has two scenarios the first is comparing two types of sliding mode controllers which 

designed to control 3-story scaled structure supported by Magneto Rheological Damper 

(MRD). ISMC is compared to classical Sliding Mode Control (SMC) performance, the 

two controllers checked under effect of Mexico city earthquake. The second scenario 

compares the proposed controller with other controllers from literature under effect of 

time scaled El Centro 1940 earthquake. The results show that ISMC performance is 

better than SMC in scenario one and better than other controllers in scenario two. All 

the simulation results are obtained by MATLAB.  
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1. INTRODUCTION

In the long run, buildings have suffered significant damage 

due to earthquakes. There are a lot of statistics on human and 

material damage caused by earthquakes, on average, about 

10,000 people lose their lives due to earthquakes each year [1]. 

So many researchers in this field have sought to reduce the 

vibrations of structures to ensure the safety of humans and 

structures. Several techniques have emerged to reduce 

vibrations of structures, one of these techniques is passive 

control, which dissipates energy caused from seismic effect [2], 

this type of control vibration does not have feedback signal, 

therefore it is not sufficient [3]. New type of controller is active 

control, Active control dissipates energy and have feedback 

signal to correct the structure displacement [4]. Active devices 

have been used in many studies [5-9]. Active control needs a 

high power source [10-12], so this challenge led to a semi-

active control which does not need a high power source 

because it works on the battery power [13-15]. 

 Several control techniques have been applied with the 

semi-active device such as MRD, where MRD contains a 

liquid that quickly changes from liquid to semi solid in parts 

of seconds whether a magnetic field or an electric field is 

applied to it [16]. The control techniques are applied with 

MRD are divided into three sections, classic control, 

intelligent control and robust control. Jagadisha et al. [17] 

designed Proportional Integral Derivative controller (PID) to 

drive MRD to control three-story scaled structure. Zizouni et 

al. [18] proposed Linear Quadratic Regulator (LQR) with 

MRD to reduce the seismic effect for three-story scaled 

structure.  

In terms of intelligent control, Zizouni et al. [19] designed 

neural network controller to minimize earthquake effect on a 

scaled structure with MRD. The design is tested under two 

types of simulated earthquakes, Tōhoku earthquake and 

Boumerdès earthquake. The maximum redaction for the top 

floor displacement under the two types effect is 67.14% and 

57.64% respectively as compared to the uncontrolled 

displacement. 

Finally, we mention some of the studies that designed robust 

control to reduce the seismic effect on structures. Humaidi et 

al. [20] and Fali et al. [21] proposed Adaptive Sliding Mode 

Controller (ASMC) with MRD to control scaled structure, they 

compared ASMC performance with SMC, from the obtained 

results they concluded that ASMC is better than SMC in 

reducing the structure displacement.  

From the observation of previous studies SMC has proven 

its effectiveness in overcoming the seismic effect but there are 

some points that have not been studied before that are covered 

here. Firstly, ISMC is designed for the first time for reducing 

structural vibrations. This controller does not have reaching 

phase that is found in classical SMC [22-25]. Secondly, the 

unmatched disturbance is taken into consideration for the first 

time in the design for this system.  

In this study ISMC is designed to control MRD for the first 

time to reduce seismic structural vibrations. ISMC is 

compared with other controllers from literature to show its 

efficiency [26, 27]. 

This paper is organized as follows: the mathematical model 

of a building with MRD is presented in section 2. Integral 

sliding mode control design is explained in section 3. In 

section 4, the results are presented and discussed. Finally, the 

conclusion is presented in section 5 

2. MATHEMATICAL MODEL OF THE BUILDING

WITH AN MRD

The mathematical model of a building is shown in Eq. (1) 

[21, 27]:
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𝑴�̈�(𝑡) + 𝑪�̇�(𝑡) + 𝑲𝒙(𝑡) = 𝑴𝜦�̈�𝑔(𝑡) − 𝜞 𝐹𝑐(𝑡) (1) 

 

where, 𝒙, �̇� 𝑎𝑛𝑑 �̈� are displacement, velocity and acceleration 

vectors of the structure respectively. 𝒙 = [𝑥1, 𝑥2, 𝑥3, … . , 𝑥𝑛]𝑇, 

n is the number of floors and in this work 𝑛 = 3. 𝑪, 𝑲 and 

𝑴 𝜖 𝑅𝑛∗𝑛 are damping, stiffness and mass matrices. �̈�𝑔 is the 

unknown earthquake acceleration. 𝜦 𝜖 𝑅𝑛∗1 is unity vector, 𝐹𝑐 

is the force produced by the dampers, 𝜞 𝜖 𝑅𝑛∗1 represent the 

location of each damper. In this work one damper will be 

considered, hence: 

 

𝜞 = [0, 0, 0, 0,0, 1]𝑇 (2) 

 

State space representation for (1) is as follows: 

 

�̇� = 𝑨𝒙 + 𝑩𝑢 + 𝑫 �̈�𝑔 (3) 

 

where, 𝑩 𝑎𝑛𝑑 𝑫  are 𝜖 𝑅2𝑛∗1 , 𝑨 𝜖 𝑅2𝑛∗2𝑛  , 𝑢 = 𝐹𝑐 . These 

matrices are as flows: 

 

𝑨 = [
𝟎 𝑰

−𝑴−𝟏𝑲 −𝑴−𝟏𝑪
] ,𝑩 = [

𝟎
−𝑴−𝟏𝜞

], 𝑫 = − [
𝟎
𝜦

]. 

 

For the system in Eq. (3) the vector 𝐷 contains two parts the 

first on is 𝐷1  which is represent the vector of match 

disturbance, while the second part represented by 𝐷2  which is 

the vector of unmatched disturbance as the following: 

 

𝐷 = 𝐷1 + 𝐷2 

 

Rewrite the system formulation as follows: 

 

�̇� = 𝑨𝒙 + 𝑩𝑢 + 𝑩 𝐷0 �̈�𝑔 + 𝑓𝑢 (4) 

 

where, 𝐷1 = 𝑩𝐷0 and 𝑓𝑢 =  𝐷2 �̈�𝑔. 

 

𝑓𝑢 =  𝐷2 �̈�𝑔 (5) 

 

The nonlinear model of MRD which described by the 

modified Bouc–Wen model, this model was proposed by 

Zizouni et al. [18, 26]. The applied force suggested by this model 

is governed by the following equations: 

 

𝐹𝑐 =  𝑐1�̇� + 𝑘0 (𝑥 − 𝑦) + 𝑘1(𝑥 − 𝑥𝑜) + 𝛼𝑧 (6) 

 

�̇� =
1

𝑐0+𝑐1
(𝑐𝑜�̇� + 𝑘𝑜(𝑥 − 𝑦) + 𝛼𝑧) (7) 

 

�̇� = −𝛶|�̇� − �̇�|𝑧|𝑧|𝑟−1 − 𝛽(�̇� − �̇�)|𝑧|𝑟 + 𝑎(�̇� − �̇�) (8) 

 

where, 𝑥 and �̇�, are displacement and velocity of the damper 

respectively, 𝐹𝑐 , 𝑧, 𝑘𝑜  and 𝑘1 are generated force, hysteretic 

component, accumulator stiffness respectively at low and high 

velocity. 𝛶, 𝛽, 𝑟  and 𝑎  are parameters giving the shape and 

scale of the hysteresis loop. 𝑐𝑜 and 𝑐1 are the viscous damping 

at low and high velocity respectively, which depend on control 

voltage as see in Eqns. (9), (10) (11) and (12) respectively: 

 

𝛼 = 𝛼𝑎 + 𝛼𝑏𝜇 (9) 

 

𝑐1 = 𝑐1𝑎 + 𝑐1𝑏𝜇 (10) 

 

𝑐𝑜 = 𝑐𝑜𝑎 + 𝑐𝑜𝑏𝜇 (11) 

 

�̇� = −𝜂(𝜇 − 𝑣𝑐) (12) 

 

where, 𝜂  is time response factor, 𝜇  is a phenomenological 

variable enveloping the system and 𝑣𝑐 is the command voltage 

applied to the control circuit of the damper.  

The resulting supplied control voltage of MRD is as follows 

[18, 26, 27]: 

 

𝑣𝑐 = 𝑣𝑚𝑎𝑥𝐻[(𝑓𝑠 − 𝐹𝑐). 𝐹𝑐] (13) 

 

where, 𝑣𝑚𝑎𝑥 is maximum applied voltage, 𝑓𝑠 the output force 

of controller (control force) and 𝐹𝑐 force generated by MRD. 

𝐻(. ) is a Heaviside step function. 

 

 

3. CONTROL DESIGN 

 

SMC is a robust control, which reject matched perturbation, 

So it is widely used due to its preferred robust performance 

[28-31]. SMC has two phases, reaching phase and sliding 

phase. During reaching phase the system is affected by the 

perturbation, while during sliding phase the system is not 

affected by it [15, 25]. Therefore, it is desired to reduce or even 

remove the reaching phase. ISMC eliminates the reaching 

phase in it is design [32], in addition ISMC can attenuate the 

unmatched disturbance by suitable selection of sliding 

manifold [23, 33]. 

For the system in Eq. (4) with 𝑨 ∈  𝑅6∗6 , and 

𝑫, 𝑩, 𝑫𝟏, 𝑫𝟐, 𝑴 ∈  𝑅6∗1.  

Assume the upper bound of matched and unmatched 

disturbance is known. 

Classical SMC and ISMC are designed next to compare 

their performances. 

 

3.1 Classical SMC design 

 

In this sub section design of SMC for the system in Eq. (4) 

will be discussed. Firstly the design of sliding surface is 

defined as follows: 

 

𝜎 = 𝐺 𝒙 (14) 

 

where, 𝐺 vector is designed as 𝐺 = [𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6], and 

𝐺𝑩  is nonsingular square matrix. In order to analyze the 

sliding motion associated with the sliding manifold, The 

derivative of sliding manifold is given in Eq. (15): 

 

�̇� = 𝐺 �̇� = 𝐺(𝐴 𝒙 + 𝑩 𝑢 + 𝑩𝐷0 �̈�𝑔 + 𝑓𝑢) (15) 

 

To ensure the sliding manifold attractiveness the following 

condition must be satisfied [23, 34];  

 

�̇� = 𝐺 �̇� = 𝐺(𝐴 𝒙 + 𝑩 𝑢 + 𝑩𝐷0 �̈�𝑔 + 𝑓𝑢) (16) 

 

Select control low as  

 

𝑢 = (𝐺𝐵)−1(𝑢𝑛 + 𝑢𝑑) (17) 
 

where, 𝑢𝑛 𝑎𝑛𝑑 𝑢𝑑  are the nominal controller and 

discontinuous controller respectively which are designed as 

follows; 
 

𝑢𝑛 = −𝐺𝐴𝒙, 𝑢𝑑 =  −𝐾0 𝑠𝑖𝑔𝑛(𝜎) (18) 
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𝐾0  is positive switching gain, will be designed next, after 

substuating Eq. (18) in Eq. (17) than in Eq. (15), the result is 

Eq. (19); 

 

𝜎 �̇�  ≤  −‖𝜎‖[𝐾0 − 𝐺𝑩𝐷0�̈�𝑔 − 𝐺𝑓𝑢] (19) 

 

Switching gain must satisfy the following condition in order 

to ensure the sliding manifold attractiveness: 

 

𝐾0 > 𝐺𝑩𝐷0�̈�𝑔 + 𝐺𝑓𝑢 + 𝜂 (20) 

 

where, 𝜂 is very small positive constant. During sliding 𝑢 =
𝑢𝑒𝑞  as the follows: 

 

𝑢𝑒𝑞 = (𝐺𝐵)−1[−𝐺𝐴𝒙 − 𝐺𝐵𝐷0�̈�𝑔 − 𝐺𝑓𝑢] (21) 

 

The system dynamics during sliding is obtained by 

substituting Eq. (21) in Eq. (4) the result is as follows: 

 

�̇� = [𝐼 − 𝐵(𝐺𝐵)−1𝐺]𝐴𝒙 + [𝐼 − 𝐵(𝐺𝐵)−1𝐺] 𝐵𝐷0�̈�𝑔

+ [𝐼 − 𝐵(𝐺𝐵)−1𝐺] 𝑓𝑢 
(22) 

 

Define 𝛤 = [𝐼 − 𝐵(𝐺𝐵)−1𝐺], then Eq. (22) will become: 

 

�̇� = 𝛤𝐴𝒙 + 𝛤 𝐵𝐷0�̈�𝑔 + 𝛤 𝑓𝑢 (23) 

 

Note that when the sliding manifold is reached 𝛤𝐵 = 0 for 

𝑡 ≥ 𝑡𝑠 , (where 𝑡𝑠  is represent reaching time to the sliding 

manifoled) then Eq. (23) becomes: 

 

�̇� = 𝛤𝐴𝒙 + 𝛤 𝑓𝑢 (24) 

 

From the above analysis note that the matched disturbance 

is completely rejected while the unmutched disturbance 

depends on selection of sliding manifold. 

 

3.2 ISMC design 

 

To design ISMC, the sliding manifold is designed first as 

follows:  The basic idea of ISMC design is to enforce a sliding 

mode from the first instant, as well as therefore ISMC 

eliminate reaching phase [22]. The first step in the design 

procedure is to design the sliding surface: 

 

𝜎 = 𝐺 𝒙 + 𝑍 (25) 

 

where, 𝜎 is the sliding manifold, 𝑍 is the integral term, 𝐺 ∈
𝑅1∗6 is to be designed. The derivative of sliding manifold and 

the integral term which will be used to prove attractiveness of 

sliding manifold is: 

 

�̇� = 𝐺�̇� + �̇� (26) 

 

�̇� =  −𝐺𝐴 𝑥 − (𝐺𝐵)𝑢𝑛 (27) 

 

Finally, ISMC control action produced in Eq. (28);  

 

𝑢 = 𝑢𝑛 + 𝑢𝑑 (28) 

 

where, 𝑢𝑛 and 𝑢𝑑 defined as  

 

𝑢𝑛 = 𝐵−1[−𝑨𝒙 − 𝐾𝒙], 𝑢𝑑 =  −𝐾0 𝑠𝑖𝑔𝑛(𝜎) (29) 

 

where, 𝐾 is gain vector which can calculated by Ackermann’s 

formula. The choice of nominal controller (𝑢𝑛) depend on 

some desired performance during sliding.  

To ensure attractiveness of sliding surface 𝜎 the condition 

Eq. (19) must be satisfied [23, 34]; 

 

𝜎 �̇�  ≤  −‖𝜎‖[𝐾0 − 𝐷0�̈�𝑔 − 𝐺𝑓𝑢] (30) 

 

Switching gain must satisfy the following condition in order 

to ensure the sliding manifold attractiveness: 

 

𝐾0 > 𝐷0�̈�𝑔 + 𝐺𝑓𝑢 + 𝜂 (31) 

 

During sliding, the equivalent control of 𝑢𝑑 is yielded: 

 

[𝑢𝑒𝑞]𝑑 = (𝐺𝐵)−1[−𝐺𝐵𝐷0�̈�𝑔 − 𝐺𝑓𝑢] (32) 

 

Then the system dynamics during sliding is obtained by 

substituting Eq. (32) in Eq. (4): 

 

�̇� = (𝐴 − 𝐵𝐾)𝒙 + 𝛤 𝑓𝑢 (33) 

 

For matched disturbance need only (𝐺𝐵)nonsigular, but for 

unmatched disturbance need specific selection of sliding 

surface. From Eq. (33) note that: 

1- The effect of matched disturbance is completely 

rejected. 

2- 𝛤 can amplify the unmatched disturbance, therefore 

to avoid the amplification of the latter, use the 

following sliding manifold 

 

𝐺 = (𝑩𝑻𝑩)−𝟏𝑩𝑻 (34) 

 

This choice of 𝐺 not only avoid amplification of unmatched 

disturbance but also has the simplifying property as follows 

[23]:  

 

𝐺𝑩 = (𝑩𝑻𝑩)−𝟏𝑩𝑻𝑩 = 𝑰𝒎 (35) 

 

To ensures that the square matrix 𝐺𝐵 is nonsingular. With 

the choice of 𝐺 in Eq. (34) the projection operator 𝛤 becomes: 

 

𝛤 = [𝐼 − 𝐵(𝐵𝑇𝐵)−1𝐵𝑇] (36) 

 

Note that 𝛤  symmetric and idempotent, 𝛤 = 𝛤2 . The 

properties of symmetry and idempotency imply that ‖𝛤‖ = 1 

which means that the effect of 𝑓𝑢 is not amplified since 

‖𝛤𝑓𝑢‖  ≤ ‖𝑓𝑢‖. 

In fact the choice of 𝐺 in Eq. (34) represent the optimal 

choice of sliding manifold [23, 33]. This choice of 𝐺  is 

compared to a classical choice that is used in the literature. 

 

 

4. RESULT AND DISCUSSION  
 

In this section a three-story scaled structure is given as a 

case study with MRD as actuator whose parameters are given 

in Table 1 and Table 2 respectively. All the results are obtained 

by MATLAB/ SIMULINK. All the initial conditions are set to 

zero, which means that system starts from rest. The results are 

categorized into three scenarios. Firstly, ISMC performance is 

compared to SMC. In the second scenario ISMC with MRD is 

compared to other control algorithms from literature [26, 27].  
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To avoid chattering phenomena which caused by 

discontinuous part of controller ( 𝑢𝑑 ) [35], the following 

approximation will be used: 
 

𝑠𝑖𝑔𝑛(𝜎) ≈  
𝜎

|𝜎| + 𝜀
 (37) 

 

where, 𝜀  is a very small positive constant. The three-story 

scaled structure parameter and MRD parameters are given in 

Table 1 and Table 2 respectively [26]. 
 

Table 1. System parameters 
 

Parameter name Parameter value 

Mass matrix (𝑀) 𝐾𝑔 
[
98.3 0 0

0 98.8 0
0 0 98.3

] 

 

Damping matrix (𝐶) 𝑁. 𝑠/𝑚 
[

175 −50 0
−50 100 −50

0 −50 50
] 

 

Stiffness matrix (𝐾) 𝑁/𝑚 105 × [
12 −6.84 0

−6.84 13.7 −6.84
0 −6.84 6.84

] 

 

Table 2. MRD parameters 

 
Parameter name Parameter value 

𝑐0𝑎 , 𝑐0𝑏  𝑁. 𝑠
𝑐𝑚⁄  21 𝑁. 𝑠

𝑐𝑚⁄  3.5 

𝑘0, 𝑎 46.9 N/cm, 301 

𝑐1𝑎 , 𝑐1𝑏  283 𝑁. 𝑠
𝑐𝑚⁄ 2.95 𝑁. 𝑠

𝑐𝑚⁄  

𝑟 2 

𝛼𝑎 , 𝛼𝑏 140
𝑁

𝑐𝑚
, 695 𝑁/𝑐𝑚 

𝛶, 𝛽 363 𝑐𝑚−2, 363 𝑐𝑚−2 

𝜂, 𝑥0 190𝑠−1, 14.3 𝑐𝑚 

𝑣𝑚𝑎𝑥 2.25𝑣 

 

First Scenario: The uncontrolled displacement of three-

story scaled structure under effect of time scaled Mexico City 

earthquake which shown in Figure 1 are shown in Figure 2.  

 

 
 

Figure 1. Time scaled Mexico City earthquake 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 2. Uncontrolled system displacement under effect of 

Mexico City earthquake 
 

 
(a) 

 
(b) 

 
(c) 

 

Figure 3. Displacement of three-story scaled structure 

controlled by SMS and ISMC 
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The controlled displacement with SMS and ISMC is shown 

in Figure 3. 

The control force which is applied on the structure is shown 

in Figure 4. 

 

 
 

Figure 4. The control force with SMC and ISMC 

 

The statistical results of the tow controllers results are given 

in Table 3. 

 

Table 3. Maximum structural responses when structure is 

subjected to Mexico City earthquake 
 

 Uncontrolled SMC ISMS 

𝒙𝟏(𝒎) 0.002 0.0003 0.0003 

𝒙𝟐(𝒎) 0.003 0.00048 0.00048 

𝒙𝟑(𝒎) 0.0034 0.00058 0.00058 

Control force(N) / 425 314 

 

From the previous result it is clear that the two controllers 

succeeded in reducing the structural displacement at the same 

rate, but ISMC can reduce the displacement with less control 

effort by about 33% compared to the maximum force by SMC 

as shown in Table 3. 

Second scenario: To show the efficiency of ISMC control 

algorithm with the MRD, it will be compared to other 

controllers from the literature [23, 24] which used the same 

MRD and same structure which shown in Table 1 and Table 2 

respectively under effect of Time scaled El Centro 1940 

earthquake which shown in Figure 5.  

 

 
 

Figure 5. Time scaled El Centro 1940 earthquake 

acceleration 

 

 

(a) 

 
(b) 

 
(c) 

 

Figure 6. Uncontrolled displacement of three-story structure 

under effect of time scaled El Centro 1940 earthquake 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 7. Displacement of three-story scaled structure under 

effect of El Centro 1940 earthquake controlled by ISMC 

 

The uncontrolled displacement of three-story scaled 

structure under effect of time scaled El Centro 1940 

earthquake are shown in Figure 6. 
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The displacement of three-story scaled structure under 

effect of time scaled El Centro 1940 earthquake controlled by 

ISMC shown in Figure 7. 

The statistical results of the proposed controller under effect 

of El Centro 1940 earthquake are given in Table 4. 

 

Table 4. Comparison of maximum structural responses 

between ISMC performance and the proposed controllers in 

[24, 25] 

 
 Control strategy 𝒙𝟑 (m) 𝑭𝒄(N) 

1 Uncontrolled 

0.0055 

0.0083 

0.0097 

/ 

2 Passive off 

0.0021 

0.0036 

0.0045 

259.2 

3 Passive on 

0.0008 

0.002 

0.0031 

992.8 

4 Lyapunov controller (A) 

0.0009 

0.0021 

0.0031 

1023 

5 Lyapunov controller (B) 

0.0013 

0.0018 

0.0023 

993.3 

6 Quasi-bang-bang controller 

0.0013 

0.0016 

0.0023 

1002 

7 Decentralized bang-bang controller 

0.0015 

0.0025 

0.0032 

923 

8 
Modulated homogenous friction 

controller 

0.0019 

0.0029 

0.0038 

503 

9 
Maximum energy dissipation 

controller 

0.0008 

0.0020 

0.0031 

993 

10 Clipped-optimal controller 

0.0014 

0.0021 

0.0026 

918 

11 Modified Quasi-bang-bang controller 

0.0012 

0.0019 

0.0027 

848.9 

12 ISMC 

0.000787 

0.00126 

0.00136 

682.2 

 

From the comparison with the results that were obtained by 

[24, 25], notice that the proposed control technique is better in 

terms of control force than all control techniques except those 

proposed control algorithms No.2 and 8 respectively, but by 

observing the displacement which obtained by ISMC, ISMC 

result is better than the above two algorithms as well as from 

all control algorithms which proposed in [24, 25].  

 

 

5. CONCLUSION 

 

In this study ISMC is designed to drive MRD to reduce 

structure vibration for the first time. The main advantage 

which distinguishes ISMC from SMC is that ISMC does not 

have a reaching phase which means the system is in sliding 

from the first instant. ISMC can also attenuate the effect of 

unmatched disturbance by suitable choice of the sliding 

manifold. In addition, ISMC has better performance as 

compared to other control algorithms from the literature under 

the same simulation conditions.  

As a future work, ISMC will be designed based on the 

barrier function to ensure a better robust behavior and simpler 

design requirement. 
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NOMENCLATURE 

 

To show the efficiency of ISMC control algorithm with 

optimal design of sliding manifold, ISMC with classical and 

optimal design of sliding manifold are compared under effect 

of El Centro 1940 earthquake. The controlled displacement of 

three-story scaled structure which is parameter shown in Table 

1, supported by MRD driven by ISMC are shown in Figure 8. 

The statistical results of the ISMC with optimal and 

classical choice of sliding manifold under effect of El Centro 

1940 earthquake are given in Table 5. 
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From the previous result show that performance of ISMC 

with optimal design of sliding manifold is relatively better than 

performance of ISMC with classical design of sliding 

manifold. 

 

   
(a)                                                                (b)                                                                  (c) 

 

Figure 8. The control displacement by ISMC with optimal and classical design 𝐺 

 

Table 5. Maximum structural responses with ISMC with classical and optimal design of sliding manifold 

 
 Classical 𝑮 Optimal 𝑮 

𝒙𝟏(𝒎) 0.00086 0.000787 

𝒙𝟐(𝒎) 0.00136 0.00126 

𝒙𝟑(𝒎) 0.00144 0.00136 

Control force(N) 704.4 682.2 
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