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Quantum computing is becoming a major new field in engineering. Adaptation of 

classical computation concepts to this emerging technological reality is underway. In 

this study, a sampling-based approach is used to adapt state-domain equations to HHL-

based formulation to obtain a homologous quantum algorithm for solving the dynamic 

equations in the state domain. The results obtained by the quantum computing approach 

are very close to the real response of the system and to the power-series-based exact 

solution. This work represents a significant contribution to the advancement of dynamic 

systems modeling and solving in state-domain adapted for use in quantum computers 

in the future.  
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1. INTRODUCTION

1.1 Context 

Differential equations are crucial in modeling and 

explaining a very large collection of phenomena and complex 

problems in science and engineering, especially in automatic 

control. They have been used in order to introduce state 

domain equations models and bring an assortment of advanced 

analysis and control methods to the field. Solving differential 

equations are at the heart of systems analysis and control and 

computers have become full-fledged part of the process. With 

the emergence of quantum computing and the recent advances 

in quantum computers developments and optimization, a deep 

work has to be carried out on the several classic problems and 

concepts in several fields. This is performed in order to benefit 

from the extolled performances of the quantum computers on 

one hand. On the other hand, in order to keep up with the 

advances and to adapt the concepts to the new inevitable 

quantum reality. 

1.2 Problem formulation 

Solving systems of equations is a key tool in applied 

mathematics and appears at the basis of various complex 

problems such as optimization problems, solving partial 

differential equations and eigen problems, among others. The 

classical processes designed for this purpose require an 

execution time proportional to the number of variables and 

constraints. Thus, for real-world situations, often incurring 

large data sets, such a task can be quite hard for classical 

computers and therefore exploiting the advantages offered by 

quantum computing seems to be a promising solution.  

State equations are one of the most powerful modeling tools 

in current use in the field of automation and control 

engineering. They underlie advanced techniques including 

adaptive control, sliding modes, the trust controller, the Lie 

algebra-based controller, and many others, in linear as well as 

non-linear systems, further increasing their versatility (since 

most systems in nature include nonlinearities).  

Quantum versions of differential equations as well as 

methods of solving systems of equations have been covered 

widely in the literature. However, no quantum tool as a 

modeling methodology or for solving state-domain equations 

for control theory purposes is known. In addition, most studies 

on solving linear equations involve converting iterative 

equations into multi-dimensional matrix systems, which 

requires impractical numbers of qubits [1]. In other words, 

executing an algorithm on N sampling time periods implies the 

use of as many qubits, which is usually beyond the limits of 

the resources available, since quantum computers with a few 

dozen qubits are still in development. 

1.3 Related works 

There are several studies that have been carried out in the 

field of differential and partial differential equations in their 

quantum versions [2, 3]. The resolution of sparse 

inhomogeneous linear differential equations and use of high-

order methods to propose an improved time-efficient version 

of quantum simulation algorithm is tackled by Iyer and 

McCune [3]. Compared to classical counterpart, method 

provides an exponential speed-up. On the other side, Berry et 

al. [4] develops a quantum algorithm for systems of linear 

ordinary differential equations with constant coefficients, 

which produces a quantum state proportional to the solution in 

a predefined time. The proposed algorithm is polynomial in 

the logarithm of the inverse error and offers an exponential 

improvement over anterior quantum algorithm. Khater et al. [5] 

studied the method of extended simple equations and an 

expansion method, and applied them on the two-dimensional 

nonlinear Kadomtsev-Petviashvili Burgers equation in 

quantum plasma. The outcome came to be the exact solutions 

of traveling waves. The authors attest that these methods are 
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of high efficiency for solving nonlinear partial differential 

equations. Srivastava and Sundararaghavan proposed an 

algorithm based on the graph-coloring methodology named 

"box algorithm" to solve second-order differential equations 

[6]. Childs et al. [7] proposed a quantum algorithm based on 

the spectral approaches for linear ordinary differential 

equations. The proposed algorithm constitutes an attractive 

substitute to finite difference methods that provides a global 

approximation of the solution. Kyriienko et al. [8] proposed to 

solve differential equations in a high-dimensional feature 

space using a quantum algorithm with spectral method. Zanger 

et al. explored the use of quantum computers to solve 

differential equations by using the basis encoding and fixed-

point arithmetic approach [9]. Moreover, Kumar et al. [10] 

combined advanced cuckoo search (CS) algorithm along with 

adaptive Gaussian quantum behaved particle swarm 

optimization (AGQPSO) as a hybrid algorithm for solving 

second order differential equations. Converting these 

equations into unconstrained/bound constrained optimization 

problems is the main idea of the proposed algorithm. Other 

works studied stochastic differential equations (SDEs) [11-13] 

and Poisson equation [14-16] that constitute other classes of 

differential equations of great interest. The authors described 

a quantum Poisson equation solver based on the Harrow-

Hassidim-Lloyd (HHL) quantum algorithm in reference [16]. 

All the works found in the literature are undoubtedly proven 

contributions to the formulation of differential equations under 

the gaze of quantum computing, however without vision of 

orientation of control theory, nor consideration of state domain 

equations. 

The HHL algorithm solves linear systems with exponential 

speed and outperforms classical methods. This algorithm has 

been exploited in many important quantum computing 

algorithms. According to Harrow et al. [17], a quantum 

computer can estimate the value of a given function of the 

complete solution �⃗�  of size N in a time that scales 

logarithmically in N, and polynomially in the number of 

conditions κ and the anticipated accuracy, in some cases. 

Accordingly, the authors describe the Harrow-Hassidim-

Lloyd (HHL) quantum algorithm for estimating �⃗�𝑡𝑀�⃗� whose 

algorithmic complexity is polynomial in log(N) and κ. 

Moreover, Cai et al. [18] conducted an experimental 

demonstration of the performance of the HHL algorithm by 

attempting to solve various systems of linear equations of size 

2×2. All solutions provided by the HHL algorithm are of high 

accuracy ranging from 0.825 to 0.993. Lee et al. presented and 

described a hybrid quantum algorithm for solving systems of 

linear equations as an improvement of the Harrow-Hassidim-

Lloyd (HHL) algorithm [19]. The results produced by the 

hybrid algorithm are exactly the same as those of the HHL 

algorithm in most cases. In particular, the hybrid algorithm is 

shown to be more accurate than the HHL algorithm for some 

specific systems of linear equations. Sellier and Dimov [20] 

implements a quantum mechanics based solver to solve for 

systems of linear equations and Li et al. [21] used the sparsity-

independent quantum singular value estimation algorithm to 

develop a simplified quantum scheme to solve the linear 

regression equation. The proposed scheme allows reducing the 

time complexity from 𝑜(𝑁𝑛2) to 𝑜(√𝑁 log(𝑛)). 

Although the HHL algorithm is one of the most widely used 

algorithms so far for solving systems of equations, it is not 

suitable as such for a dynamical system. The introduction of 

the time dimension is a challenge for dynamic systems as it is 

in control systems. 

Additionally, Bernstein and Yang [22] designed and 

analyzed a quantum algorithm that combines the concept of 

Extended linearization (XL) with the brute-force search and/or 

Grover’s algorithm to solve systems of m quadratic equations 

in n variables over a finite field. Moreover, Chang et al. [23] 

defines a quantum annealing based method to solve general 

systems of polynomial equations. Its applications for linear 

regression are demonstrated and an iterative annealing process 

is defined and proven to be efficient to solve a linear system 

with a tolerance of 10−8. 

 

1.4 Contribution 

 

This article is the first to focus on quantum state-domain 

equations and tools devised for the development and 

implementation of a quantum HHL algorithm for solving state 

equation systems. Moreover, the proposed method uses less 

qubits as it suggests the use of an optimized iterative algorithm 

rather than a matrix relationship. This work represents a 

significant progress in advanced control theory and should 

lead to new tools for future state-equations-based 

developments for quantum computers. 

The rest of the document is structured as follows: the basics 

of quantum mechanics and quantum computing are presented 

in the second section. The third section recalls the state domain 

equations and the numerical solution. The fourth section deals 

with the results of implementing the HHL solution for the state 

equations along with a discussion of the results. Finally, a 

conclusion summarizes the research and findings as well as 

future work. 
 

 

2. QUANTUM MECHANICS AND COMPUTING 
 

Quantum mechanics is a term widely used but much less 

understood. It is a mathematical formalism used originally to 

describe the behavior of the smallest objects known, and by 

doing so, exposed inadequacies in classical physical theory 

[24-26]. Quantum theory explains this behavior and thereby 

proposes a more comprehensive understanding of the nature 

of the universe. According to quantum mechanics, a 

fundamental relation defined by the Schrödinger equation 

presented in relationship (1) governs the dynamic behavior of 

a particle. 
 

𝑖ℏ
𝜕

𝜕𝑡
|𝜓(𝑡)⟩ = �̂�|𝜓(𝑡)⟩ (1) 

 

The solution of the Schrödinger equation is called the wave 

function [27], designated 𝜓. This wave function is defined as 

being a variable quantity that describes the wave 

characteristics of a quantum particle and defines the space in 

which the particle is likely to be found. In general, a given 

wave function can be expressed as in Eq. (2). 
 

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ (2) 
 

Such as √𝛼2 + 𝛽2 = 1 ,  and  are complex numbers 

representing the amplitudes of the state eigenvectors |0⟩ 
and |1⟩ respectively. Due to the properties of wave quantum 

particles, complex numbers are used instead of real positive 

numbers, whereby a particle can be defined as an electron 

having a specific spin state and spatial orientation, which 

cannot be described adequately using a single real number. 
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Finally, it is worth noting that 𝛼2 is the probability of the state 

|𝜓⟩ collapsing to the |0⟩ state. 

𝛽2 is the probability of the state |𝜓⟩ collapsing to the |1⟩ 
state. 

The Schrödinger equation is a linear differential equation, 

meaning that if two wave functions |𝜓1⟩  and |𝜓2⟩  are 

solutions, the linear combination of both is also a solution, that 

is, |𝜓3⟩ = |𝜓1⟩ + |𝜓2⟩ . This latter property is called 

superposition. The superposition principle is implicit in the 

linearity property, insofar as the linear combination of two or 

more state vectors results in another state vector. When the 

state |𝜓⟩  is in superposition, it simultaneously occupies all 

possible Eigen state positions, leading to the parallel 

processing property that lies at the heart of quantum 

computing power. 

Entanglement is another fundamental property of quantum 

particles. When two particles are entangled, the measurement 

of the state of one is connected to the state of the other. This 

connection is stronger than a classical correlation [26]. In fact, 

the states of the two particles are considered inseparable. 

Entanglement is useful in computing in a variety of ways, 

notably for encoding information simultaneously in two 

different but connected locations. 
 

2.1 Qubit 
 

The transposition of computer bits to their quantum 

equivalent gives what is known as a qubit. Like bits, qubits are 

binary entities that exist in the nominal states 0 or 1; however, 

they can also assume a continuous range of values representing 

a superposition of states. A qubit is fundamentally a two-level 

quantum mechanical system. It can be constructed physically 

in various ways and represented as a two-dimensional 

complex Hilbert space C2. A vector in such a Hilbert space can 

represent the state of the qubit at any given time. 

The Hilbert space is a vector space comprising an inner 

product, an operation that allows lengths and angles to be 

defined, to determine the relative positions of vectors that 

represent qubit states. The inner product of two vectors |𝑥⟩ and 

|𝑦⟩ is denoted by ⟨𝑥|𝑦⟩. 
|𝑥⟩ is known as the ket, which is one of the Dirac notations. 

If two vectors have the same origin, their inner product will be 

equal to 0 if they are also orthogonal, and 1 if |𝑥⟩ = |𝑦⟩. 
To represent two or more qubits, a tensor product can be 

used in Hilbert spaces for combined states of the qubits. 

Methods exist to represent separable states (where qubits are 

independent of each other) and entangled states (where two-

qubit states cannot be separated). 

Whereas ordinary bits are always either 0 or 1 at every step 

during a computation, in quantum computing, this restriction 

needs to be overcome if the power of quantum rules is to be 

utilized fully. To achieve this, state is measured only when the 

output of a quantum computation needs to be extracted. This 

is because when a measurement is performed, qubits must 

commit to option |0⟩ or |1⟩. At any other time, the state will 

remain more complex than can be conveyed by a single binary 

value; it will be a linear combination of states. 

The |0⟩ and |1⟩  states form an orthonormal basis for all 

other possible states of a qubit since they are both pure 

exclusive qubit states that do not overlap. The qubit state can 

be represented using the following 2D vector notation as 

presented in (3) to (5) [28-30]: 
 

|0⟩ = (1   0)𝑇  (3) 

|1⟩ = (0   1)𝑇  (4) 

 
|𝑞⟩ = (𝛼   β)𝑇 (5) 

 
The idea is to represent complex states such as |𝑞⟩ using 

linear combinations of |0⟩ and |1⟩ as in Eq. (6). 

 

|𝑞⟩ = 𝛼(1   0 )𝑇 + β(0   1 )𝑇 = 𝛼|0⟩ + β|1⟩ (6) 

 
The state vector |𝑞⟩ embeds all the information that could 

possibly need to be known about the qubit. It is neither entirely 

|0⟩  nor entirely |1⟩  but rather is described as a linear 

combination of the two basic states. In quantum mechanics, 

linear combinations such as this are usually described as 

superposed. A more comprehensive definition of this state 

vector representation can be obtained in terms of probabilities. 

A qubit state can be represented in the 3D space using the 

Bloch sphere. With a unit radius, it provides a geometrical 

representation of a qubit. The north and south poles of the 

sphere define the orthonormal basis states |0⟩  and |1⟩ 
respectively, while the surface defines the set of all possible 

qubit values. In spherical coordinates, this is written as follows: 

 

|𝑞⟩ = 𝑐𝑜𝑠
𝜃

2
|0⟩ + 𝑠𝑖𝑛

𝜃

2
𝑒𝑖𝜑|1⟩ (7) 

 
For various values of the angles 𝜃 and 𝜑 in expression (7) 

will result graphically in the Bloch sphere illustrated in Figure 

1. 

 

 
 

Figure 1. The Bloch sphere representation of the qubit |𝑞⟩ 
[29] 

 

2.2 Measurement 
 

The concept of measurement needs clarification in 

probability-based computations. Whereas measurement is 

straightforward in classical physics, since it presumably does 

not alter the state of the system, in quantum mechanics, the act 

of measurement itself has a profound effect on what is 

observed. To find the probability resulting from measuring a 

state of the qubit |𝑞⟩ in state |𝑥⟩, the simple rule defined in Eq. 

(8) is applied: 

 

𝑝(|𝑥⟩) = |⟨𝑥|𝑞⟩|2 (8) 

 

⟨𝑥| is called the bra notation, which together with the ket 

notation, forms the Dirac bra-ket. The bra notation is used to 

represent a row vector, whereas the ket notation is used to 

represent column vectors. Every ket |𝑎⟩  vector has its 

corresponding bra ⟨𝑎| vector. The conjugate transpose is the 

transform that links the two vectors. Since ⟨𝑥| can represent a 

possible qubit state, the probability of the qubit whose state 

vector is |𝑞⟩  having |0⟩  as an output therefore can be 

calculated as follows: 
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|⟨0|𝑞⟩|2 = |𝛼|2 (9) 

 

Equation or rule (9) says that information is extracted from 

qubits by calculating probabilities, thus bridging the quantum 

world and the classical physical world. It is important to note 

some implications of this rule to develop some intuitive 

operations in quantum computing. One of these is 

normalization. A state vector is composed of elements that 

correspond to probabilities. These elements are called 

amplitudes. One obvious implication of rule (9) is that the 

probability of measuring either state |0⟩ or |1⟩ is its amplitude 

squared. Moreover, the probabilities of all possible output 

values should add up to 1. Therefore, the magnitude of the 

state vector needs to be normalized to 1. 

 

2.3 Quantum gates 

 

Qubit unit data need to be processed to convert inputs to 

outputs for specific tasks. For this purpose, inputs are put 

through a series of operations called gates, which represent 

quantum operators that address one or more qubits. By design, 

the gates are reversible and represented by unitary complex 

matrices. Pauli gates are three of the best-known operators and 

have very specific structures. Along with the identity matrix, 

they form the Pauli Group. Any quantum operator can be 

expressed using the Pauli gates. The X gate is applied using 

the following Pauli matrix 𝜎𝑥 as defined in Eq. (10). 

 

𝜎𝑥 = [
0 1

1 0
] = |0⟩⟨1| + |1⟩⟨0| (10) 

 

Applied to a qubit state, the X gate flips its state. It is 

equivalent to the classical NOT gate. 

The Y gate is is applied using the Pauli matrix 𝜎𝑦 as defined 

in relationship (11). 

 

𝜎𝑦 = [
0 −𝑖

𝑖 0
] = −𝑖|0⟩⟨1| + 𝑖|1⟩⟨0| (11) 

 

The Z gate is applied using the Pauli matrix 𝜎𝑧 defined in 

(12). 

 

𝜎𝑧 = [
1 0

0 −1
] = |0⟩⟨0| + |1⟩⟨1| (12) 

 

The Hadamard or H gate allows shifting from defined qubit 

states |0⟩ or |1⟩  to a superposition of the two. The 

corresponding operator is defined by the matrix given in Eq. 

(13). 

 

𝜎𝑧 = [
1 0

0 −1
] = |0⟩⟨0| + |1⟩⟨1| (13) 

 

Other gates exist, all based on the basic X, Y and Z gates, 

computed as linear combination of them, such as the 

Hadamard gate, S, T and P and U gates, in addition to multiple 

gate operators, such as the controlled NOT, SWAP, Toffoli 

and controlled SWAP gates. 

 

2.4 Linear systems in quantum computing 

 

Linear systems are widespread throughout the discipline of 

engineering, where they help the formulation of specific 

problems by describing the relationships between unknown 

physical parameters. This formulation can be expressed 

mathematically as in Eq. (14). 

 

𝐴. �⃗� = �⃗⃗� (14) 

 
In which 𝐴 ∈ 𝐶𝑁×𝑁 is a matrix that defines the system, �⃗� ∈

𝐶𝑁 is the unknown parameter vector, and �⃗⃗� ∈ 𝐶𝑁 is a known 

vector. In automation and control, linear systems are used 

extensively, for example in linear quadratic regulator (LQR) 

controllers, which require rapid and precise procedures for 

optimizing performance, or in process result determination by 

the least-squares method, in which large amounts of 

input/output data are reduced to a multidimensional A matrix. 

More reliable optimizations are made possible by designing 

quantum algorithms to solve linear systems with a time 

complexity equal to 𝑂 (
𝑙𝑜𝑔𝑙𝑜𝑔 (𝑁) 𝑘2𝑠

𝜖
), 

 

where 

k is the condition number of the system. 

ε is the desired accuracy at the end of the run. 

N is the input size. 

S is the number of non-zero elements in a column or a row 

of matrix A. 

It is assumed that s is small. On the other hand, the 

conventional algorithm equivalent to the HHL algorithm has a 

time complexity equal to 𝑂(𝑁3). Using quantum algorithms, 

exponential increases in the speed of problem solving can be 

attained. 

It should be kept in mind that a conventional algorithm 

provides an unambiguous solution, whereas a quantum 

algorithm provides the expected value of the solution, 

represented by ⟨�⃗�⟩, in the form of a Hamiltonian matrix M. 

 
2.5 Mathematical formulation of the HHL algorithm 

 

The first step towards solving a linear system using a 

quantum approach is to encode the problem in quantum 

language. Vectors �⃗�  and �⃗⃗�  need to be rescaled to quantum 

format denoted by |𝑥⟩ and |𝑏⟩ respectively, where amplitude 

𝑏𝑗 represents the value of the jth element of vector �⃗⃗� and the 

same applies to the vector �⃗� . After this reshaping of the 

problem, the focus will be on finding the quantum mechanical 

solution to an equivalent problem defined by the mathematical 

formulation (15). 

 
𝐴|𝑥⟩ = |𝑏⟩ (15) 

 

Matrix A is Hamiltonian and reducible to a sum of 

eigenvectors scaled by their respective eigenvalues as in Eq. 

(16). 

 

𝐴 = ∑ 𝜆𝑗|𝑢𝑗⟩⟨𝑢𝑗|

𝑁−1

𝑗=0

                     𝜆𝑗 ∈ 𝑅 (16) 

 
𝜆𝑗  is the eigenvalue corresponding to eigenvector 𝑢𝑗 . 

Inverted matrix 𝐴−1 can be defined as in expression (17). 

 

𝐴−1 = ∑𝜆𝑗
−1|𝑢𝑗⟩⟨𝑢𝑗|

𝑁−1

𝑗=0

 (17) 
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Similarly, the right-hand term can be written in the A 

eigenbasis as in Eq. (18). 

 

|𝑏⟩ = ∑ 𝑏𝑗|𝑢𝑗⟩

𝑁−1

𝑗=0

, 𝑏𝑗 ∈ 𝐶 (18) 

 

Relationship (19) defines the readout register state upon exit 

from the algorithm: 

 

|𝑥⟩ = 𝐴−1|𝑏⟩ = ∑ 𝜆𝑗
−1𝑏𝑗|𝑢𝑗⟩

𝑁−1

𝑗=0

 (19) 

 

Three registers initially set to |0⟩  are used. A register 

denoted 𝑛𝑙  is used to store the binary representation of the 

matrix A eigenvalues. A register denoted 𝑛𝑏 is used to store 

the vector solution. 

The Quantum Phase estimation (QPE) algorithm is 

constructed for the purpose of approximating the eigenvalue 

of a given eigenvector. Given a unitary 𝑈 ∈ 𝐶2
𝑚×2𝑚 with an 

eigenvector and an eigenvalue, the role of QPE is to find an 

approximate value �̃�𝑗  as a proxy for the real value 𝜃𝑗 , 

considering |0⟩|𝜓⟩𝑗 as the input along with the unitary gate U. 

This can be sumarrized as in relationship (20). 

 

𝑄𝑃𝐸(𝑈, |0⟩|𝜓⟩𝑗) = |�̃�𝑗⟩|𝜓⟩𝑗 (20) 

 

To use this algorithm in the HHL algorithm, a unitary 

operator defined as 𝑈 = 𝑒𝑖𝐴𝑡  is introduced. After exiting the 

subroutine, only the eigenvalues of matrix A would remain, 

since 𝑒𝑖𝐴𝑡 = ∑ 𝑒𝑖𝜆𝑗𝑡|𝑢𝑗⟩⟨𝑢𝑗|
𝑁−1
𝑗=0 . 

Therefore, the following Eq. (21) stands as valid. 

 

𝑄𝑃𝐸 (𝑒𝑖𝐴𝑡 , ∑ 𝑏𝑗|0⟩𝑛𝑙|𝑢𝑗⟩𝑛𝑏

𝑁−1

𝑗=0

) = ∑𝑏𝑗|𝜆𝑗⟩𝑛𝑙|𝑢𝑗⟩𝑛𝑏

𝑁−1

𝑗=0

 (21) 

 

 

3. STATE EQUATIONS AND THEIR NUMERICAL 

SOLUTION 
 

State domain equations have been extensively used in the 

literature to solve various engineering control problems [31, 

32]. 

Most dynamic systems can be modeled or approximated 

using the following state-domain equations: 
 

{
�̇� = 𝐻𝑥 + 𝐷𝑢
𝑦 = 𝐶𝑥

 (22) 

 

where 

𝑥 ∈ 𝑅𝑛 is the state vector. 

𝑢 ∈ 𝑅𝑚 is the control vector. 

𝑦 ∈ 𝑅𝑝 is the output vector. 

𝐻 ∈ 𝑅𝑛×𝑛 , 𝐷 ∈ 𝑅𝑛×𝑚 , and 𝐶 ∈ 𝑅𝑝×𝑛  are the state, the 

control, and the output matrices, respectively. 

System (22) is solved by integrating over time to find 𝑥 

given an initial state 𝑥(0) using a method inspired by Berry et 

al. [4]. In classical computing, finding the solution requires 

conversion of time to its discrete form 𝑘 △ 𝑡 . The discrete 

forms of 𝑥(𝑡) and 𝑢(𝑡) would thus be 𝑥(𝑘 △ 𝑡) and 𝑢(𝑘 △ 𝑡), 
which can be denoted by 𝑥(𝑘) and 𝑢(𝑘) , respectively. The 

Euler approximation of the first derivative of the signal 𝑥(𝑡) 
can be formulated as in Eq. (23). This leads to the formula 

given in Eq. (24) for computing 𝑥(𝑘 + 1). 
 

�̇� ≈
1

△ 𝑡
(𝑥(𝑘 + 1) − 𝑥(𝑘)) = 𝐻 𝑥(𝑘) + 𝐷 𝑢(𝑘) (23) 

 

𝑥(𝑘 + 1) = (𝐻 ×△ 𝑡 + 𝐼) 𝑥(𝑘) + 𝐷 ×△ 𝑡 𝑢(𝑘) (24) 

 

If the time goes from 0  to 𝑡 = 𝑘 △ 𝑡 , then successive 

iterations of (24) will result in 𝑥(0) = 𝑥(𝑡 = 0) , 𝑥(1) =
(△ 𝑡𝐻 + 𝐼)𝑥(0) +△ 𝑡𝐷𝑢(0) , 𝑥(2) = (△ 𝑡𝐻 + 𝐼)𝑥(1) +△
𝑡𝐷𝑢(1) …, 𝑥(𝑁) = (△ 𝑡𝐻 + 𝐼)𝑥(𝑁 − 1) +△ 𝑡𝐷𝑢(𝑁 − 1) . 

This can also be expressed in matrix form, inspired from [3], 

as follows: 

 

(

 
 
 
 

−(𝐼 + 𝐻 △ 𝑡) 𝐼 0
0 −(𝐼 + 𝐻 △ 𝑡) 𝐼
0
⋮
⋮
⋮
0

0
0
⋮
⋮
0

⋱
⋱
⋱
⋮
0

    

0
0
0
⋮
0
𝐼

−(𝐼 + 𝐻 △ 𝑡)

0
0
0
⋮
⋮
0
𝐼)

 
 
 
 

(

 
 
 
 

𝑥(0)

𝑥(1)

𝑥(2)
⋮
⋮
⋮

𝑥(𝑁))

 
 
 
 

 

= 𝐷 ×△ 𝑡

(

 
 
 
 

𝑢(0)

𝑢(1)

𝑢(2)
⋮
⋮
⋮

𝑢(𝑁 − 1))

 
 
 
 

 

(25) 

 

where, 𝐼 ∈ 𝑅𝑛×𝑛 is the identity matrix. 

N qubits are needed to solve the matrix system (34) and thus 

solve for x. However, we propose here a method that reduces 

the number of qubits to two and then uses the HHL algorithm 

to solve the 2D system of equations. It should be noted that 

expression (25) comprises a 2x2 matrix used repeatedly, while 

the remaining elements are zeros. A more compact way of 

expressing this matrix appears in expression (26), obtained by 

considering initial conditions to be null, which is the case in 

most engineering systems. 
 

(−(𝐼 + 𝐻 △ 𝑡) 𝐼) (
𝑥(𝑘)

𝑥(𝑘 + 1)
) = 𝐷 △ 𝑡𝑢(𝑘) (26) 

 

Therefore, only two qubits can be used with repetitive runs 

over time instead of using N qubits. The core improvement of 

this technique is that resolving problem (26) is exponentially 

faster using a quantum computer than with a conventional 

computer. 

Since matrix (−(𝐼 + 𝐷 △ 𝑡) 𝐼)  in Eq. (26) is not 

Hermitian, matrix (
−(𝐼 + 𝐻 △ 𝑡) 𝐼

𝐼 −(𝐼 + 𝐻 △ 𝑡)
)  is used 

instead in order to avoid errors during the execution of the 

HHL algorithm, which makes the second side of Eq. (26): 𝐷 △

𝑡 (
𝑢(𝑘)

𝑢(𝑘 + 1)
). 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Illustrative example 

 

As an illustrative example, the motion of a DC motor is 

considered. The model of this system can be written in the state 

domain with an 𝑛 = 1 dimension state Eq. (27). 
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𝐽
𝑑𝜔

𝑑𝑡
= −𝐵𝑚𝜔 + 𝜏𝑒𝑙  (27) 

 

With state vector 𝑥 = 𝜔 , the shaft angular velocity, 

considered also as system output, and control signal 𝑢 = 𝜏𝑒𝑙 , 
the electromagnetic torque. 

𝐽  and 𝐵𝑚  are respectively the inertia constant and the 

viscous coefficient constant. 

The system parameters are chosen to simplify the 

computation for illustrative purposes: 

△ 𝑡 (i.e., sampling period) considered as 1 s. 

𝐵𝑚/𝐽 ratio considered as 2/3. 

Discretization by state domain Eq. (27) with initial 

conditions (null) brings the system to expression (28). 

 

(
−1 3⁄ 1

1 −1 3⁄
) (
𝑥1
𝑥2
) = (

1
1
) (28) 

 

The 4-qubit HHL is developed and run considering matrix 

A and vector b obtained after replacing the parameters with 

their numerical values: 𝐴 = (
−1 3⁄ 1

1 −1 3⁄
) and 𝑏 = (

1
1
). 

Vector b results from the step response of the system being 

targeted in this example; in other words, the input to the 

system is constantly 1. 

The DC motor case quantum state equation model was 

implemented using Qiskit simulator. Figure 2 illustrates a 

screen shot of the code that was developed and run along with 

the execution result. 

 

 
(a) Qiskit program 

 
(b) Schematic obtained after one run 

 

Figure 2. Implementing the HHL algorithm for a DC motor 

(Images obtained using Qiskit [33]) 

 

Running this algorithm leads to the following results: Naive 

norm: 1.5. 

For broader analysis and comparison with conventional 

method results, the DC motor transfer function 𝐹(𝑠)  was 

developed and simulated, in Eq. (29). A step input was inserted 

into the system, giving the response shown in Figure 3. 

 

𝐹(𝑠) =
𝑋(𝑠)

𝑈(𝑠)
=

1

𝐽𝑠 + 𝐵𝑚
 (29) 

 

𝑋(𝑠) and 𝑈(𝑠) are the Laplace transform of the signals 𝑥(𝑡) 

and 𝑢(𝑡), respectively. 

Figure 3 shows the time response of a first-order system, as 

a unit electromagnetic torque (1 N.m) leads to an exponential 

increase in angular velocity w until stabilization at the final 

value of 1.5 rad/sec. 

The quantum simulation gives similar output as the one 

obtained with Laplace transform, as the final output value 

stabilizes to 1.5 for both methods. 

 

 
 

Figure 3. Step response of the DC motor 

 

 
 

Figure 4. Exact and approximate solutions compared to the 

system real output 

 

Another alternative would have been to use the exact 

solution of the problem 𝑥(𝑡) =
3

2
(1 − 𝑒−

2

3
𝑡)  and find its 

quantum computing version using the power series 𝑥(𝑡) ≈

−
3

2
(−

2

3
𝑡 +

1

2
(−

2

3
𝑡)
2

+
1

3
(−

2

3
𝑡)
3

+
1

3
(−

2

3
𝑡)
3

+⋯)  as 

suggested in quantum mechanics to approximate the 

exponential term [15]. 

The drawback of the power series approach is the high 

power needed to get closely matching results. In Figure 4, 

developing to a power of 5 was sufficient to get the first 

samples to match. However, with increasing time, precision 

decreases, and the approximation is no longer valid, making 

more higher-order terms necessary to get close to the real 

result. Adapting the power series expression at each iteration 

over time could solve this problem. 

The HHL method seems to offer a precise quantum solution 

to state domain equations for control purposed modelling 

compared to the exact solution and the quantum classic 

method involving power series. 
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5. CONCLUSION 

 

We have examined various aspects of quantum computing, 

including the quantum mechanics concepts that underlie its 

power, namely superposition, entanglement, and reversibility, 

which differentiate quantum computing from classical 

computing and open the door to new ways of thinking about 

computations. We summarize the essential elements that make 

quantum computing possible: qubits, quantum operators, and 

the bit status measurement process. We compared the 

performance of quantum algorithms to that of the 

corresponding classical algorithms. All the concepts 

introduced were supported in the HHL algorithm. 

The quantum HHL algorithm was developed and 

demonstrated using a theoretical example and the simulation 

of a DC motor. Running the HHL quantum algorithm yields 

numerical results like those of the corresponding conventional 

algorithm, with exponentially higher speed of execution. 

The present study was carried out using quantum simulators. 

Implementation of the algorithm on a real quantum computer 

can be considered for future work with a real DC motor or even 

other first-order systems with suitable developed interfaces. 

Even though quantum computing might seem extremely 

advantageous over classical computing, it remains subject to 

several physical limitations that currently prevent full 

leveraging of its potential power. While we wait for 

technological advances to overcome these limitations, 

theoretical studies will continue to suggest avenues of 

innovation. 
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NOMENCLATURE 

 

HHL Harrow, Hassidim, and Lloyd algorithm 

for solving systems of equations 

SWAP SWAP gate 

LQR Linear Quadratic Regulator  

QPE Quantum Phase Estimation 

|0⟩  Eigenstate in quantum computing, 

equivalent to the classical 0 state 

|1⟩  Eigenstate in quantum computing, 

equivalent to the classical 1 state 

ℏ  Reduced Planck constant 

�̂�  Hamiltonian operator 

𝑥 ∈ 𝑅𝑛  State domain vector 

𝑢 ∈ 𝑅𝑚  Control vector 

𝑦 ∈ 𝑅𝑝  Output vector 

R Set of Real numbers 

𝐻 ∈ 𝑅𝑛×𝑛  State matrix 

𝐷 ∈ 𝑅𝑛×𝑚  Control matrix 

𝐶 ∈ 𝑅𝑝×𝑛  Output matrix 

△ 𝑡  Sampling time 

𝐼  Identity matrix 

N Number of samples 

𝐽  Inertia constant of a DC motor 

𝐵𝑚  Viscous friction coefficient 

𝜏𝑒𝑙   Electromagnetic torque 

 

Greek symbols 

 

𝛼  Complex coefficient whose squared 

magnitude represents the probability of 

the qubit collapsing to state |0⟩ 
𝛽  Complex coefficient whose squared 

magnitude represents the probability of 

the qubit collapsing to state |1⟩ 
𝜆  Eigen value of a matrix 

𝜎𝑥, 𝜎𝑦 and 𝜎𝑧 Pauli matrices 

𝜓  Wave function in quantum mechanics 

|𝜓⟩  Qubit state 

 

886




