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 The possibilities of constructing a solution to an inhomogeneous the third-order 

equation have been studied, in particular the Clausen equation in the vicinity of special 

points x=0 and x=∞. The construction of the method for indeterminate coefficients to 

the construction of partial solutions of the Clausen equation is shown. These ideas are 

extended to constructing private solutions of the simple Clausen system near a regular 

feature with solutions in the form of a product of two hypergeometric Clausen functions, 

each of which depends on one variable. A number of properties of the product of 

Clausen functions constructed near these features have been proved. The construction 

of a common solution of the main heterogeneous system of Clausen is investigated. 

Four new functions have been created, representing the private solutions of the 

heterogeneous equation and systems like Clausen. 

 

Keywords: 

Clausen equations, Clausen-type system, 

regular, special points, features, system 

 

 

 
1. INTRODUCTION 

 

The monograph by Appel and de Feriet [1] are the main 

literature where the basic properties of systems on differential 

equations in partial derivatives of the second and the third 

orders are studied. The monograph pays more attention to the 

second-order systems whose solutions are generalized 

hypergeometric functions of two variables and their properties 

have been studied in detail, as well as the relation to orthogonal 

polynomials of two variables. This level has not been achieved 

with the third-order systems research. Although some 

information is given about the Clausen system and its 

decisions in the form of the Clausen function of two variables. 

So far, the problems of constructing solutions to 

inhomogeneous systems of the third order, in particular the 

system and the Clausen equations have been learned. 

Constructions of partial solutions on heterogeneous linear 

differential equations, which study heterogeneous special 

equations with elementary functions in the right-hand parts are 

considered in the works of various authors [2-4]. Usually the 

second-order differential equations and solutions in the form 

of different special functions of a single variable are usually 

studied. The Lommel, Struve, Anger and Weber functions are 

used in the applications depending on the type of the right and 

the ratios between the index and the degree. They are partial 

solutions to Bessel’s heterogeneous equation. 
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where, μ and ν permanent.  

The partial solution of the heterogeneous Bessel Eq. (1) is 

represented by [4] as the Lommel function: 
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The functions of Struve, Anger and Weber are special cases 

of this function. The relationship between them and their 

property is studied in the monograph [2]. It should be noted 

that the problems are limited to the integration of 

inhomogeneous Bessel equations where there are sources 

distributed by volume. These and other non-homogeneous 

hypergeometric equations have been studied in the Babister [4] 

monograph. This monograph is the only fundamental work 

dedicated to research of this nature. Sikorski and 

Tereshchenko investigated more general linear differential 

equations, a with an inhomogeneous right part in the form of a 

normal series by method of null coefficients [5]. 

Recently, in connection with the study of multidimensional 

degenerate equations, the properties of generalized 

hypergeometric functions of the third and the higher orders 

have often been used [6, 7]. 

The first example of a generalized hypergeometric function 

is the Clausen function [8] with five parameters. 

Definition 1. View function. 
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where, Pochhammer notation (α, 0)=1, (α, n)=α(α+1)...(α+n-

1), n>0, (1,n)=1⋅2⋅...⋅n=n!, is used with five parameters αj 

(j=1, 2, 3) and βl(l=1, 2) is called Clausen function.  

Define a generalized hypergeometric function.  

Definition 2. A generalized hypergeometric function is a 

function of the species. 
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it is assumed that none of them β is an integer negative. The 

series (4) is reduced to a polynomial if at least one α is negative 

number. 

Generalized hypergeometric functions of many variables 

have also been defined and studied. 

Definition 3. Generalized hypergeometric functions of two 

variables are defined by double series. 
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coefficients satisfying the following ratios: 
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where, P, Q, R and S polynomials of m, n. They are subject to 

three conditions. Of these, the common condition is: 
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provides for the unambiguous determination of the 

coefficients am,n in the series (5). 

The purpose of this work is to explore the possibility of 

constructing solutions to the heterogeneous Clausen equation 

near regular special points x=0 and x=∞, as well as Clausen-

type systems near a regular feature (x=0, y=0). The study of 

their properties, constructed solutions in the form of the work 

of Clausen functions. 

The work consists of three parts. The introduction 

summarizes the research conducted in this direction and the 

generalized hypergeometric functions of one and two variables. 

The second part shows the features of constructing solutions 

to Clausen’s heterogeneous equation in the vicinity of regular 

special points x=0 and x=∞. Here, by analogy of the Lommel 

function, partial solutions of the Clausen equation are 

constructed according to the features x=0 and x=∞. The third 

part extends these ideas to the simple Clausen system 

consisting of two ordinary differential equations near regular 

features (0, 0). A number of properties on the product of 

Clausen functions constructed near these features have been 

proved. Then the general and private solutions of the main 

system of Clausen are built and a number of properties are 

considered. 

 

 

 

 

2. SOLUTION OF THE INHOMOGENEOUS CLAUSEN 

EQUATION BY THE FROBENIUS- LATYSHEVA 

METHOD IN THE VICINITY OF REGULAR SPECIAL 

POINTS 

 

Formulation of the problem. Showfeatures of 

constructing solutions to the inhomogeneous Clausen equation: 
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subject to the right side.  

Situation where an ordinary differential equation has a right: 
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has been studied in work [4].  

In this case, it is efficient to use the method of indeterminate 

coefficients, where the partial solution is found in a 

generalized power series: 
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in (11) f0(λ) coincides with the left part of the defining equation: 
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the corresponding uniform equation. Put λ=ρ, then (11) 

implies that the generalized power series (9) will be the formal 

solution of Eq. (8) with the right side (9) when Aj (j=0, 1, 2, ...) 

is satisfying a particular system: 

 
( )

( ) ( )

( ) ( ) ( )

0 0 0

1 0 0 1 1

2 0 1 1 0 2 2

,

1 ,

2 1 ,

A f

A f A f

A f A f A f

 

  

   

=

+ + =

+ + + + =

 
(13) 

 

The unknown Aj (j=0, 1, 2, ...) can be determined 

sequentially from the system (13) provided that λ+k, where k-

any natural number is not an indicator of the solution for Eq. 

(8). The convergence of the series in the expression (9) will 

lead to the convergence of the series in the expression (10). 

As is known [9] the construction of a general solution of the 

inhomogeneous equation (2.1) consists of two parts. 
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Theorem 2.1. If the partial solution Y(x) of heterogeneous 

Eq. (8) is known, the general solution is the sum of that 

particular solution and the general solution of the 

corresponding homogeneous equation. 

Start constructing a partial solution Y(x) (10) of the 

heterogeneous Eq. (8) by the method of undefined coefficients. 

The type of general solution of the corresponding uniform 

equation is established by the following theorem [9]. 

Theorem 2.2. The Clausen function (3) is a partial solution 

of the differential equation of the third-order hypergeometric 

type: 
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and the total decision is presented as an amount. 
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2.1 Features of the Frobenius -Latysheva method 

 
By the Frobenius -Latysheva method [10], the classification 

of regular and irregular special points of ordinary differential 

equations is defined by the concept of rank: 
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which introduced by A. Poincare (1886) and antirank: 
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added by L. Tome. These notions of K.Y. Latysheva were used 

as a basis for the classification of regular and irregular special 

points of ordinary differential Eq. [10]. 

According to this classification, if both rank 𝑝 ≤ 0  and 

antirange ≤ 0 , then features x=0 and x=∞ special regular. 

Theorem 2.3. Let be a generalized inhomogeneous Clausen 

equation given: 
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where, ρ- permanent. Then the general solution of the 

generalized heterogeneous Clausen Eq. (18) is represented as 

the sum of the general solution𝑦(𝑥)  of the corresponding 

homogeneous Clausen Eq. (14) and the private solution Y(x) 

of the heterogeneous Eq. (18), that is, it has the form: 
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Proof. We know the general solution 𝑦(𝑥) of the respective 

homogeneous equation. In the А0≠0 defining equation relative 

to a special point x=0 there are three distinct real roots: λ1=0, 

λ1=1-β1, λ2=1-β2. These roots are linear-independent partial 

solutions in the form of generalized power series of the 

homogeneous Clausen Eq. (14): 
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(20) constitutes the fundamental system of solutions to the 

Clausen equation. 

It remains to construct a partial solution of the 

inhomogeneous Eq. (18), at λ=ρ. To this end, we construct a 

characteristic Frobenius function of the Eq. (18), placing the 

Eq. (18) in the left side of the equation y=xλ: 
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From the system the unknown constant coefficients Aj (j=0, 

1, 2, ...) of the series (2.3), at λ=ρ. The coefficient А0 shall be 

determined from the first equation of the system, taking into 

account α0 at xρ that the coefficient at: α0=1 
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Since all other coefficients αl (l=1, 2, ...) to α0are zero, the 

partial solution of the heterogeneous Eq. (18) is represented as: 
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(24) 

Therefore, the general solution of the inhomogeneous 

equation in the neighborhood of a special point x=0 as the sum 

of the general solution 𝑦(𝑥) of the corresponding uniform Eq. 

(14) and the partial solution of the inhomogeneous Eq. (18) is 

represented (19). 

Babister also called the Frobenius method for constructing 

a particular solution to an inhomogeneous equation. The 

method was used exclusively to construct the second-order 

decisions. The generalization to Clausen equations is the first 

application. The newly constructed partial solution of the 

inhomogeneous Clausen equation is further denoted by: 
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2.2 Constructions of a solution to the Clausen equation in 

the vicinity of a regular special point at infinity 

 

All of the special points of the Clausen equation x=0, x=1 

and x=∞ the regular ones. The case x=1 can be traced back to 

the previous case by converting x-1=t. Now we move to build 

the solution in the vicinity of a special point x=∞ and study 

their properties. 

Theorem 2.4. A generalized uniform Clausen Eq. (14) in 

the vicinity of a regular special point x=∞ has three linear-

independent private solutions yj(x)(j=1, 2, 3) and the general 

solution is represented as a sum 
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Proof. To construct a fundamental system of solutions 

yj(x)(j=1, 2, 3), we use the Frobenius-Latysheva method. For 

this purpose, we rewrite the characteristic function from (21) 

in the following form: 
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where, ϕ0(λ)=f1(λ), ϕ1(λ)=f0(λ). 

Now in (27): 
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is the defining equation, the Clausen Eq. (14) with respect to a 

special point x=∞. 

The solution is found as a generalized power series in 

descending degrees of an independent variable x: 
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Unknown constants Cn (n=0, 1, ...) are defined from the next 

recurrence sequence system: 
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From the first equation of the system (30): 
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when, С0≠0, we find three roots: λ1=α1, λ2=α2, λ3=α3 defining 

Eq. (28) with respect to a special point x=∞. By inserting the 

found roots into the system (30), one successively defines the 

unknown constant 𝐶𝑛
𝑗(𝑗 = 1,2,3) generalized power series 

(29): 
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where to use the notation 𝛼 ⋅ (𝛼 − 1) ⋅ (𝛼 − 2). . . (𝛼 − 𝑛 +
1) = (−1)𝑛 ⋅ (−𝛼)𝑛. 

The sum of three decisions yj(x)(j=1, 2, 3)represents the 

general solution (26) of the homogeneous Clausen Eq. (4). 

What needed to be proved. These solutions (32) constitute a 

fundamental system of solutions Clausen’s Eq. (14) in the 

vicinity of a regular special point x=∞. 

Theorem 2.5. The partial solution of the heterogeneous 

Clausen Eq. (18) in the vicinity of a special point x=∞ is 

represented as: 
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where the species designation is used 𝛼(𝛼 − 1). . . (𝛼 − 𝑛 +
1) = (−1)𝑛(−𝛼)𝑛. 

Proof. To prove the theorem we will use the information of 

the previous theorem 2.3. The solution is sought as a 

generalized power series (29). Only, in this case, unknown 

constants Cn (n=0, 1, ...) are defined from another system of 

recurrence sequences: 
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here, we define 
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as a coefficient xρ-1 is using the defining Eq. (28) from is (34). 

Since all subsequent coefficients αl (l=1, 2, ...) are zero, the 

coefficients of the partial solution (33) Cl (l=1, 2, ...) of the 

heterogeneous Eq. (18) are defined as homogeneous, only 

expressed in (35): 
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where, 𝜌 ⋅ (𝜌 − 1) ⋅ (𝜌 − 2) ⋅. . .⋅ (𝜌 − 𝑛 + 1) = (−1)𝑛 ⋅
(−𝜌)𝑛 . Partial decision received (2.21) nonhomogeneous 

Clausen equation is further denoted by: 
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On the basis of proven theorems three and four, it is possible 

to formulate a general theorem on the representation of a 

general solution of the heterogeneous Clausen Eq. (18). 

Theorem 2.6. The general solution of the heterogeneous 

Clausen Eq. (18) in the vicinity of the regular special point 

x=∞ is represented as the sum of the general solution 𝑦(𝑥) (26) 

of the corresponding homogeneous Eq. (2) and the partial 

solution Y(x) (36) of the inhomogeneous Eq. (18), that is, has 

the form: 
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where the notation is used. 
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Let us consider the differentiability property of Clausen 

functions. 

Theorem 2.7. The generalized hypergeometric Clausen 

function (3) has m-a derivative order 
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From here, for different values, you can get derivatives of 

the 1st, the 2nd, etc. of other orders. So you get m=1 the first-

order derivative: 
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In the same way, derivatives of the second and the third 

solutions can be found: 
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and 
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To determine their derivatives, we shall use the general 

formula [11]: 

 

( )

.
,1

,1

1

11 













−+

+

+−=





























++

−

x
m

F

xmxFx
dx

d

q

p

qp

m

m

q

p

qpm

m











 
(44) 

 
For p=3, q=2, m- private derivative solutions (42) and (43) 

are presented as: 
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3. SPECIFIC FEATURES OF THE CLAUSEN TYPE 

SOLUTION 

 
Problem Statement. The construction of solutions (0, 0) 

near a regular homogeneous system consisting of two 

differential equations in the third-order partial derivatives at 

the type is investigated: 
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where, p0,0 (x, y)=Z(x, y)(j=0, k=0)the common is not known 

for the two equations of the system (1); through the different 

order pj,k of the partial derivatives of the unknown function Z(x, 

y). The order depends on the value ω. If ω=1 we get the second 

order systems. 
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(48) 

 

where, p0,0 (x, y)=Z(x, y) common unknown, rj,k, αj,k, tj,k, βj,k (j, 

k=0, 2)unknown constants; coefficients (3) - polynomials of 

two variables. 

The case h=1 is the most explored. Ya.Horn proved that all 

34 known hypergeometric functions, in particular four 

hypergeometric functions of two variables. P.Appell F1-F4 are 

solutions to individual cases of such systems. If you get 

systems h=2 whose solutions are orthogonal polynomials of 

two variables. Thus the solutions of the system [12] in type (48) 

are more than forty special functions of two variables. The 

establishment of this relation is important in the approximate 

calculation on the values of the hypergeometric function at the 

two variables. Some work in this direction began to be carried 

out in the works of the American scientist O. I. Marichev. 

When ω=2 we get third-order systems. The most interesting 

ones are systems like Clausen. The research on these systems 

is not well developed. In this work we will study two systems 

like Clausen. From them, the construction of a simple Clausen-

type system solution as a product of two Clausen functions 

allows to reveal a number of different properties of Clausen 

functions of two variables.  

 

3.1 A simple Clausen-type system with Clausen function 

solutions 

 

This paper examined two types of Clausen-type system: 

simple and basic Clausen systems 

Theorem 3.1. Clausen type system 
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has nine linearly independent private solutions as a product of 

various Clausen functions, and one of them is a Clausen type 

function. 
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Proof. The system (49) consists of two joint ordinary 

differential equations. They are united by a common unknown 

equation p0,0 (x, y)=Z(x, y). Applying the Frobenius-Latysheva 

method as in the common case where the solution of the 

system is sought as a generalized power series of two variables: 
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ρ, σ, Cm,n (m,n=0, 1, 2, ...)-unknown constants) by inserting 

( )  yxyxZ =,  into the system (47) define the system of 

characteristic functions of Frobenius. 

The series (51) shall be determined from the system of 

defining equations with respect to the feature (0, 0): 
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in the form of pairs: 
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These pairs determined the series (51) and the unknown 

coefficients Cm,n(m, n=0, 1, 2, ...) are derived from the 

recurrence sequence system. 
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This gives nine linearly independent private solutions: 
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Theorem 3.2. The general solution of the Clausen system 

(49) is represented as a sum 
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where, 𝐶𝑖(𝑖 = 1,9)-arbitrary permanent, Zi (x, y) (𝑖 = 1,9)-

nine linearly independent private decisions (50), (56)-(63).  

Simple heterogeneous system partial solution 

Theorem 3.3. The simple heterogeneous system of the 

Clausen type 
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with the right part 
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has a specific solution of type. 
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Evidence. By analogy with the ordinary case (paragraph 2), 

we first construct a system of characteristic functions of 

Frobenius of the given system (62) and by substituting in place 

Z(x, y)=xρyσ: 
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where, 
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of these, 
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forms a system of defining equations with respect to the 

feature (0,0). (70) has nine pairs of roots (53). They are 

indicators of decisions (56)-(63) and define the overall 

solution (3.17) of the homogeneous system (49). 

A heterogeneous system solution is sought as a generalized 

power series of two variables (51). Only unlike a 

homogeneous system solution, in this case, unknown 

constants Аm,n (m, n=0, 1, 2, ...) are defined from the next 

recurrence sequence system: 
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A0,0- define from the first equation of the recurrence sequence 

system (71) taking into account that in (64) at j=1, 2: 
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Then, the coefficients at the values A1,0, A0,1, A2,0, A1,1, A0,2, ... 

are sequentially determined α1,0, α0,1, α2,0, α1,1, α0,2, ... to zero 

from the system (71). The partial solution obtained is 

represented as
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(74) 

On the basis of theorem 3.2 and 3.3, it is possible to 

formulate a general solution theorem for a heterogeneous 

simple Clausen system (65). 

Theorem 3.4. The general solution of a heterogeneous 

simple system of Clausen type (65) with right part (66) is 

represented as the sum of the general solution 𝑍(𝑥, 𝑦) of the 

relevant homogeneous system (49) and the private solution of 

the heterogeneous system (65), that is, it has the form: 
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where, Ci (i=1, 2, 3)-arbitrary permanent, (74) nine linearly 

independent private decisions (50)-(59). In the future, the 

newly constructed partial solution of a heterogeneous simple 

Clausen-type system (65) is denoted by: 
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Theorem 3.5. Derivatives of generalized hypergeometric 

Clausen functions of two functions have: 

The first-order derivatives for an independent variable x 
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Next, you can define the derivatives of two functions 

relative to an independent variable y. Then 
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In the same way, derivatives of two higher order Clausen 

functions (77) can be found near the feature (0,0). The above 

general formula (86) can also be applied to find a derivative 

solution of a simple Clausen system (56)-(63). Here is another 

new property of the formula (86). 

Indeed, if σ+1-nis a negative integer or zero, the ratio (2.27) 

can be written in a more convenient way, in one of the 

following three forms [11]: 

 
( )

( ) ( )
,

1,

1,

!

!
11 














−+−+

+−+


−
=




























++

−

− x
nn

nn
F

n

n
xFx

dx

d

q

p

qp

nq

np

q

p

qpn

n

















 
(79) 

 

( ) ,
,,

1

1

1

1













 +
=




























 +

−

+

−+ x
n

FxxFx
dx

d

q

p

qpn

q

p

qp

n

n

n









  

(80) 

 

 

913



 

( ) .
,

,
1

1

1

1















−
−=




























+

−−

+

− x
n

FxnxFx
dx

d

q

p

qp

n

n

q

p

qpn

n









  

(81) 

 

For example, if in formula (56) σ=1-β1and 𝜎 + 1 − 𝑛 =
1 − 𝛽1 + 1 − 𝑛 = 2 − 𝛽1 − 𝑛 < 0, to m- the derivative of the 

product: 
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can be defined using formula (80), at σ=1-β1, p=3, q=2: 
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The derivative m- of the private decision Z2 (x, y) is then 

presented as: 
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3.2 Solving and studying the features of constructing 

solutions of the main Clausen system 

 

Theorem 3.6. Hypergeometric system Clausen 
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near regular feature (0,0) has nine linearly independent private 

solutions of type 
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where, ρ, σ and Am,n (m, n − unknown permanent), if the 

conditions of 
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coefficients Am,n (m, n=0, 1, 2, ...) of series (86) and integration 

conditions [4]:  
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One particular solution is a generalized hypergeometric 

series of two variables. 
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Proof. For the classification of special curves, a simple rule 

applies [10]: 

Rule 3.1. If the coefficients r3,0≠0, t0,3≠0, at the 

characteristic (0.0) for the system (3.26) is special regular. 

Only in this case, the system of defining equations relative to 

the feature (0.0) has up to nine different root pairs (𝜌𝑡 , 𝜎𝑡)(𝑡 =

1,9) .Then by the Frobenius- Latysheva method [10], the 

system (54) has up to nine linearly independent regular 

solutions close to the feature (0.0) in the form of generalized 

power series of two variables: 
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where, ρ, σ and Am,n (m, n=0, 1, 2, ...)– unknown coefficients. 

It should be noted that the nine linearly independent private 

solutions of the Clausen system have only if the conditions of 

the common area (87) and integrability (88) are met. Due to 

the difficulty of constructing different solutions, it is usually 

limited to constructing one solution in the form of Clausen 

functions (89). However, we built all nine linearly independent 

private solutions. 

The Frobenius- Latysheva method [10] is used to construct 

a private solution (89). To this end, we make up a system of 

characteristic Frobenius functions of the form (68), from 

which the system of determining equations with respect to the 

feature (0.0) is defined as: 
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It has nine pairs of roots: 
 

),1,(),,1(

),1,1(),0,1(

),1,0(),1,1(),1

,0(),0,1(),0,0(

'

2

'

442

3313

31

'

22

'

2

11211









−=−=−=−=

−=−==−=

−==−=−=−=

==−===

 
(92) 

 

which are indicators of the series (86). These different pairs (ρt, 

σt) (t=1, 2, ..., 9) correspond to nine linear-independent private 

solutions of the type (86). Let’s show now that one of the 

private solutions is a row (89). The coefficients Am,n (m, n=0, 

1, 2, ...) of the series (86) are determined by the use of 

recurrence sequence systems: 
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Indeed, the system of determining Eq. (91) of the Clausen 

source system (85) defines nine pairs of roots (92). The first 

partial solution corresponds to the indicator (ρ1=0, σ1=0), that 

is, by setting the values (ρ1=0) and (σ1=0) in the system (93) 

one successively defines the unknown coefficients of the 

series (86): 
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that is, the series (90) is represented as (89). Similarly, the 

other eight linear-independent private solutions are 

constructed: 
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For them, the assertion is true. 

Theorem 3.7. The general solution of the Clausen system 

(85) is represented as a sum: 
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where, 𝑍𝑡(𝑥, 𝑦)(𝑡 = 1,9)  linear-independent private 

decisions in series (86) and depend on arbitrary constants 

𝐶𝑡(𝑡 = 1,9). 

It should be noted that, to date, the construction of private 

solutions of the heterogeneous Clausen system has not been 

studied. 

 

Theorem 3.8. An inhomogeneous system of the Clausen 

hypergeometric type  
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with the right side 
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has a specific solution of type. 
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Evidence. On the basis of the characteristic Frobenius 

system of the homogeneous Clausen system, we construct a 

system of characteristic Frobenius equations of an 

inhomogeneous system of the hypergeometric type Clausen 

(97), taking into account the right part (98): 
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where, 
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The system 𝑓00
(𝑗)(𝜌, 𝜎) = 0defines a system of determining 

Eq. (91), allowing alsoρ-1=ρ1 and σ-1=σ1.  

An inhomogeneous equation solution is also sought as a 

series (86), the coefficients Am,n (m,n=0,1,2,...) are consistently 

defined as in the case of a simple Clausen-type system from a 

recurrence sequence system (71). 

The newly obtained partial solution (99) of the 

heterogeneous Clausen equation shall be denoted by: 
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Let’s focus on the individual properties of Clausen 

functions. 

Differentiatibility property  

 

Theorem 3.9. The generalized hypergeometric Clausen 

function of two variables (32) have:  

The first-order derivatives for independent variables x and y 

 

,,
1,,1

,,;1,1,1
'

'

3

'

2

'

1321321















++

+++
=




yxF

x

F







  
(103) 

 

,,
1,1,

1,1,1;,,
'

'

3

'

2

'

1321

'

'''

321















++

+++
=




yxF

y

F







  
(104) 

 

The higher-order derivatives 
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All formulas (103)-(109) can be derived from the general 

formula (110). 

Numerical computation of the Clausen function. A small 

summary of the difficulties of numerical estimation of the 

Gaussian function is given in the monograph L. Slater [7]. 

Difficulties arise from the increasing number of variables and 

parameters. The Clausen function ( )−xF ;,;,, 2132123 

depends on one variable and five parameters, and the Clausen 

function 
−
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 depends on nine 

parameters and two variables x and y . Therefore, there is not 

much information about the approximate calculation of special 

functions of two variables. Here we will limit ourselves to 

adding up the Zaalchutz theorem [12]. 

Definition 3.1. If the parameters are: 
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The series is called the Zaalchutz species. Zaalchutz’s 

theorem 
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allows you to calculate the sum of any finite series. 

3F2Zaalschutz species under conditions c+d=a+b-n+1. 

Example 3.1. Apply the formula (112) to calculate the sum 

of a series 
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atx=1 the series 3F2 can be summed by the theorems of Dixon, 

Watson, Whipple, Dugall and others [8].  

Example 3.2. If some of the parameters
j  и ( )3,2,1' =jj

 

are negative, then the Clausen function becomes polynomial. 

Thus: 1) 1,1 '

11 −=−=  or 2) 1,1 '

22 −=−=   or 3) 1,1 '

33 −=−=  . 

The Clausen series becomes a polynomial of two variables 
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In addition to the above three cases, other combinations are 

possible. 

The polynomial depends on six parameters and two 

variables to be taken into account in the numerical evaluation 

of the Clausen function in (114). 
 

 

 

4. CONCLUSIONS 

 

Thus, the possibilities of constructing solutions to the 

inhomogeneous the third-order equation and systems of 

differential equations in the third-order partial derivatives, in 

particular Clausen-type systems, have been studied in this 

paper. 

Recently, due to the active study of multidimensional 

degenerate equations, the properties of generalized 

hypergeometric functions have often been used as solutions to 

the Clausen equation. For example, the solution of differential 

equations with one line of degeneracy uses the properties in 

the solution of Clausen’s equation [6]. Therefore, it is 

important to study properties in the solution of the Clausen 

equation in the vicinity of the singular points x=0 and x=∞. 

The features of constructing a general and a private solution of 

the heterogeneous Clausen equation by the method of 

undefined coefficients are shown in part two. 

The third part extends these ideas to a simple Clausen 

system near a regular feature (0, 0). The solutions to such 

systems are series in the form of a product of two 

hypergeometric series, each of which depends on one variable. 

Horn found that such rows also belong to second-order 

hypergeometric rows, - along with 34 hypergeometric rows 

from the Horn list [12]. A number of properties of a product of 

functions of the Clausen type constructed near the feature (0, 

0). 

The solution properties of the degenerate hypergeometric 

Clausen system, derived from the Clausen core system by 

means of the boundary transition, are used to construct the 

solution to the multidimensional degenerate equation of the 

third order with three independent variables of the form 𝐿𝑢 ≡
𝑥𝑛 ⋅ 𝑦𝑚 ⋅ 𝑢𝑡 − 𝑡𝑘 ⋅ 𝑦𝑚 ⋅ 𝑢𝑥𝑥 − 𝑡𝑘 ⋅ 𝑥𝑛 ⋅ 𝑢𝑦𝑦𝑦 = 0,𝑚, 𝑛, 𝑘 =

𝑐𝑜𝑛𝑠𝑡 > 0 in the field 𝛺 = {(𝑥, 𝑦, 𝑡): 𝑥 > 0, 𝑦 > 0, 𝑡 > 0} [6]. 

The features of the construction of a common solution to the 

main heterogeneous Clausen system are discussed in the third 

part of this paper. It should be noted that the work has studied 

cases where the right-hand side of the Clausen equation 

f(x)=xρ- is a power function, the right-hand side of systems like 

Clausen’s product fj (x, y)=xρ⋅yσ, (j=1, 2) of power functions fj 

(x)=xρ and fj (y)=yρ, (j=1, 2). In the first part, it was noted that 

the right-hand parts of the Clausen equation are generalized 

power rows of increasing (9) and descending degrees of the 

species (29). The right-hand parts of Clausen-type systems can 

be represented as (86) a generalized power series of two 

degree-increasing variables. Depending on this submission, 

we have received four new functions. Two of them (24) and 

(36) are partial solutions of the heterogeneous Clausen Eq. (18) 

near regular points x=0 and x=∞. Two functions (35) and (86) 

in the form of private solutions of simple and basic 

heterogeneous Clausen systems (33) and (97) respectively. 

In conclusion, we would like to point out that the basis of 

the study of heterogeneous equations and systems like Clausen 

is laid down near regular features, at the above right-hand parts. 

However, this is only the beginning of the great research that 

lies ahead. For example, if the equation and the Clausen 

system have irregular features, then the right side is 

represented as a product of power and exponential functions, 

then research becomes much more complicated. In addition, 

related functions with Clausen functions of one and two 

variables should be established. 
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