
Investigation of Temperature Distribution in a Slab Using Lattice Boltzmann Method 

Moses O. Petinrin1, Al-Amin Owodunni1, Rasaq A. Kazeem1,2, Omolayo M. Ikumapayi3,4*, Sunday A. Afolalu2,3, 

Esther T. Akinlabi5 

1 Department of Mechanical Engineering, University of Ibadan, Ibadan 200281, Nigeria  
2 Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Campus, Johannesburg 2092, 

South Africa
3 Department of Mechanical and Mechatronics Engineering, Afe Babalola University, Ado Ekiti 360101, Nigeria  
4 Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, DFC, Johannesburg 2092, 

South Africa 
5 Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, University of 

Northumbria, Newcastle, NE7 7XA, United Kingdom 

Corresponding Author Email: Ikumapayi.omolayo@abuad.edu.ng

https://doi.org/10.18280/ijdne.170405 ABSTRACT 

Received: 29 April 2022 

Accepted: 7 June 2022 

In this paper, the temperature distribution in a slab was investigated. A model based on 

the Boltzmann transport equation without heat source was simplified using the 

Bhatnagar-Gross-Krook (BGK) approximation was applied. This is an example of the 

Lattice Boltzmann Method. The model was developed based on using a D2Q4 lattice 

arrangement for the medium of study. To obtain results, the model was tested on different 

cases: Two box-shaped slabs with different boundary conditions, and a T-shaped and an 

L-shaped slabs to determine the temperature distributions different times t > 0. The results

obtained based on the developed model were validated with the enterprise software

COMSOL Multiphysics which is based on the Finite Element Method. For the two cases

of box-shaped and the T-shaped slabs, their results were in nearly perfect agreement with

the finite element method. However, for the L-shaped slab, there was good agreement at

most points apart from the regions where there was change of shape. In conclusion there

is high agreement between the results of LBM and using COMSOL, which proves that

LBM can be used to determine temperature distribution in a slab accurately.
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1. INTRODUCTION

Heat transfer across different materials is a common 

occurrence in traditional sciences and engineering, such as in 

the cooling of turbine blades, heat exchangers, and electronic 

devices and the transfer of heat between solids and the fluids 

that surround them [1]. A configuration that is frequently 

observed in engineering components and systems is a solid 

slab that exists having its ends at different temperatures. Heat 

energy is transferred across the ends of the slab by thermal 

conduction [2]. 

CFD techniques are powerful instruments for exploring 

physical and chemical processes, as well as solving thermal, 

fluid, and other real-world engineering issues. The finite 

difference method (FDM), finite element method (FEM), and 

finite volume method (FVM) are all common CFD techniques 

[3]. Using nodal values, the finite difference technique 

provides an estimated solution. From a succession of local 

approximations of solutions derived from local data, the finite 

element technique produces an approximate global solution 

[4]. The final volume technique calculates an estimated 

solution by averaging the solution's average value across a 

certain volume. 

In applying the lattice Boltzmann method (LBM) the 

behaviour of a group of particles is studied as a whole and a 

distribution function is created to express the properties of the 

collection of particles. LBM offers several advantages. Its 

calculation technique is easier since its foundation is the 

Lattice Boltzmann equation, whose solution is simpler than the 

Navier-Stokes equation, which is the foundation of the finite 

volume method. LBM can take full use of parallel computing, 

which divides huge problems into smaller ones that can be 

tackled at the same time. This cuts down on the time it takes 

to find a solution. LBM stands for high computing 

performance in terms of solution correctness and stability [5]. 

The LBM can be used in a variety of problems concerning 

the flow of fluids and heat, especially those that involve 

conduction, convection, and radiation. Wolf-Gladrow [6] is 

one of the pioneering researchers to establish an LB formula 

for problems relating to diffusion, he demonstrated how 

simple it is to derive such a model from the kinetic equation. 

Ho et al. [7] employed the LBM to investigate the behaviour 

of conduction of heat in a non-Fourier problem in a plane 

medium. The heat transfer together with the transmission–

reflection phenomenon is numerically investigated when heat 

passes through a joint interface of construction with a double 

layer. Miller and Succi [8] developed a LB model which 

studies anisotropic crystal growth in melt with improved 

computation power. A linear collision matrix on a face-centred 

hyper-cubic lattice is used to manage hydrodynamics and heat 

transport. 

Semma et al. [9] applied LBM in modelling the 
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relationships between convective flows and the liquid/solid 

interfaces in rectangular cavities. It employed the customised 

probabilistic bounce-back approach. This novel methodology 

is found to be a useful method for problems with moving 

boundaries. To simulate thermo-hydrodynamics, Chatterjee 

[10] developed a thermal LB algorithm whose foundation is 

the complete enthalpy formulation because it is based on 

kinetic theory and thermodynamic basics. 

An LB approach that studied convection under the influence 

of natural forces in the fluid with porous sections and whose 

viscosity is temperature-dependent was proposed by Guo and 

Zhao [11]. Mishra et al. [12] developed a basic LBM to solve 

the energy equation. Zhao et al. [13] developed the LBM 

algorithm for solving problems during the process of 

conducting heat in three-dimensional porous media to explore 

the conduction problem existing inside a porous wick. 

Shafeie et al. [14] studied the performance of heat transfer 

for single-phase heat sinks with the structure of micro pin-fin, 

which is another example of numerical analysis in a heat 

transfer problem. Eshraghi and Felicelli [15] created a model 

that uses LBM to handle phase change heat conduction 

difficulties. It was discovered that phase transition happens 

over a wide temperature range rather than at a single 

temperature. LBM was utilised by Semma et al. [16] to handle 

problems related to melting and solidification Heat transfer 

due to the movement of the fluid in the molten zone has been 

found to have a considerable impact on the rate at which a 

cavity heated from the bottom is melted. 

Chen et al. [17] introduced LBM for conjugate heat research, 

which is defined as the mixing of conduction and convection 

in a fluid flowing over a solid. The results of the model and 

the data were in good accord. Chaabane et al. [9] solved energy 

equation for a two dimensional enclosure problem with several 

boundary conditions using the LBM, their results were also 

found to be in good agreement with that of finite volume 

method. Lu et al. [18] suggested a thermal LB equation to 

predict heat transfer in their paper. Gao et al. [19] suggested a 

modified LBM for conjugate heat transport in porous medium 

systems. Previous research's analytical and numerical 

solutions correspond well with the model. 

Seddiq et al. [20] applied the Lattice Boltzmann Equation 

to create a model for heat transmission at the fluid-solid 

boundary. The location that was discovered to possess the 

highest rate of heat transfer does not affect the thermal 

characteristics of the fluid and solid mediums, according to the 

study. For transfer of heat involving a change of state such as 

solidification and melting, Su and Davidson [21] built a model 

on a time step adjustable non-dimensional LBM. 

In this work, two-dimensional temperature distribution 

patterns within slabs of three different shapes and boundary 

conditions are predicted using the lattice Boltzmann method. 

The slabs are of two box-shaped (rectangular) and a T-shaped 

and an L-shaped, which are deviations from the common 

shapes in the available literature. The developed model is 

validated with the results of the models developed with finite 

element based computational code, COMSOL Multiphysics to 

ensure the accuracy of the predictions. 

 

 

2. EQUATIONS AND METHODOLOGY 

 

2.1 The heat diffusion equation 

 

In this study, the lattice Boltzmann method has been used to 

solve a heat diffusion problem. The heat diffusion equation for 

a two-dimensional study is presented in Eq. (1). 

 

T T T
C k k

t x x y y


      
= +   

         

(1) 

 

T denotes temperature, C denotes medium's specific heat, ρ 

denotes density, and k denotes thermal conductivity. The 

thermal conductivity (k), density (ρ), and specific heat 

diffusion (C) influence the heat diffusion caused by molecular 

action. For a case with constant thermal conductivity, the 

previous equation appears in the form of Eq. (2): 

 

2 2

2 2

T T T

t x y

   

= + 
     

(2) 

 

where, α denotes thermal diffusivity (k/ρC). As a result, the 

thermal diffusivity which is a material property is the 

parameter that determines heat diffusion. The rate of the 

diffusion process increases as α increases. 

 

2.2 The lattice Boltzmann method 

 

For the temperature distribution function, the kinetic 

equation is stated as depicted in Eq. (3) [22]: 

 

( , ) ( , )k k

k k

f x t f x t
c

t x

 
+  = 

   

(3) 

 

where, k = 1,2 for (one dimensional problems, D1Q2). 

The streaming process is represented by the variables on the 

left side of equation 3, in which the distribution function flows 

with velocity along the lattice linkages is presented in Eq. (4). 

 

k

x
c

t


=
  

(4) 

 

The variable on the right side Ωk in equation 3 is called the 

collision operator. It denotes the distribution function's fk rate 

of change during the collision process. Ωk can be replaced by 

the BGKW approximation for the collision operator, and this 

will give Eq. (5): 

 

1
( , ) ( , )eq

k k kf x t f x t

  = − − 

 
(5) 

 

where, τ denotes the relaxation time. 

The kinetic equation with BGK approximation can be 

written in a discrete form as indicated in Eq. (6). 

 

( , ) ( , )

( , ) ( , )

1
[ ( , ) ( , )]

k k

k k

k

eq

k k

f x x t t f x t

t

f x x t t f x t t
c

x

f x t f x t


+  +  −
+



+  +  − + 




= − −
 

(6) 

 

from Eq. (4) kx c t =   substituting in Eq. (6), is replaced 

with Eq. (7): 
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( , ) ( , )

[ ( , ) ( , )]

k k

eq

k k

f x x t t f x t

t
f x t f x t



+  +  − =


− −

 

(7) 

 

Eq. (7) is the main equation that does all the work in solving 

diffusion problems in one-dimensional domains, it is 

shortened to produce Eq. (8). 

 

( , ) ( , )[1 ] ( , )eq

k k kf x x t t f x t f x t + +  = − +  
(8) 

 

2.3 Two-dimensional LBM equation 

 

However, the subject of this paper is in solving two-

dimensional diffusion problems and the D2Q4 lattice 

arrangement is employed for this research work (see Figure 1). 

The Kinetic Lattice Boltzmann equation has two steps: 

Collision and streaming. The collision step without including 

a force function is represented in Eq. (9): 

 

( , , )

( , , )[1 ] ( , , )

k

eq

k k

f x y t t

f x y t f x y t 

+  =

− +  

(9) 

 

where, k = 1 – 4. 

Then, the streaming step is written as in the form of Eq. (10): 

 

( , , ) ( , , )k kf x x y y t t f x y t t+ + + = +  
(10) 

 

where, k = 1 – 4. 

For example, in the streaming step f1 (i, j) streams to f1 (i + 

1, j), f2 (i, j) streams to f2 (i - 1, j), f3 (i, j) streams to f3 (i, j + 1) 

and f4 (i, j) streams to f4 (i, j - 1). The weighting factor and the 

thermal diffusivity. 

 

 
 

Figure 1. D2Q4 lattice arrangement 

 

The weighting factor: 

 

1

4
i

 
=  
  for   i = 1, 2, 3, 4 

(11) 

 

Also thermal diffusivity: 

 
2 1 1

2 2

x

t




  
= − 

    

(12) 

 

 

2.4 Boundary conditions 

 

The LBE has its basis in particle distributions functions, and 

thus the macroscopic hydrodynamic quantities' boundary 

conditions must be translated to particle distributions' 

boundary conditions. 
 

2.5 Dirichlet boundary condition 

 

In thermodynamics, Dirichlet boundary conditions consist 

of boundaries held at fixed temperatures. Considering a case 

where the boundaries temperature fixed for the bottom and left 

borders are known. 

 

T = C1 at x = 0 and T = C2 at y = 0. 

 

1 2 3 4      f f f f T+ + + =  (13) 

 

f2 and f4 can be solved for using the streaming step: 

 

( ) ( ) ( ) ( )2 2 4 4,    1,    ,    ,  1f i j f i j and f i j f i j= + = +  
(14) 

 

f1 and f3 can be solved by using the equation for flux 

conservation:  

 

1 1 2 2 0eq eqf f f f− + − =  
(15) 

 

ω = 0.25 at every streaming direction. 

 

1 2 0.25 1eq eqf f C= =  
(16) 

 

Therefore: 

 

1 1 20.5f C f= −  
(17) 

 

Similarly: 

 

3 2 40.5f C f= −  
(18) 

 

If temperature T is fixed on the right and top borders, then 

f2 and f4 respectively need to be calculated. 

 

2.6 Constant heat flux 

 

As expressed in Eq. (19), the constant heat flow is presented 

as defined in [23]: 

 

T
k q

x


=

  
(19) 

 

The boundary condition above will be approximated using 

the finite difference approach to become: 

 

( 1, ) ( , )T i j T i j
k q

x

+ −
=

  
(20) 

 

This is re-written as: 
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( , ) ( 1, )
q x

T i j T i j
k


= + −

 
(21) 

 

1 1( , ) ( 1, )
q x

f i j f i j
k


= + −

 
(22) 

 

2.7 Adiabatic boundary condition 

 

For example: 

 

0
T

x


=

  
(23) 

 

The boundary condition above is approximated using a 

finite difference approach to become: 

 

( 1, ) ( , )
0

T i j T i j

x

+ −
=

  
(24) 

 

This is rewritten as ( , ) ( 1, )T i j T i j= + . Therefore: 

 

1 2 3 4

1 2 3 4

( , ) ( , ) ( , ) ( , )

( 1, ) ( 1, ) ( 1, ) ( 1, )

f i j f i j f i j f i j

f i j f i j f i j f i j

+ + + =

+ + + + + + +  

(25) 

 

2.8 Methodology flow chart 

 

The steps by step processes in performing a simulation 

using LBM are shown in Figure 2. 

 

 
 

Figure 2. Methodology flow chart 

3. SAMPLE PROBLEMS SOLVED 

 

Case 1 

Different boundary conditions are applied to a two-

dimensional box-shaped slab as seen in Figure 3. The slab was 

initially at a non-dimensional temperature of 0.0. For times 

greater than 0, the vertical border at the origin is exposed to a 

relatively high temperature of a non-dimensionalized quantity 

of 1.0, while the other boundaries remain unchanged. The 

domain has a length of 100 units. Evaluate the distribution of 

temperature in the slab at various time periods. Compare the 

findings from the LB and FE approaches. The horizontal and 

vertical lengths are 100 units, and the thermal diffusivity is 

0.25. 
 

 
 

Figure 3. Case 1: Box-shaped slab 

 

Result 

The temperature distributions along line y = 50 obtained by 

the LBM algorithm and by the FEM algorithm were plotted 

and shown in Figure 4. 
 

 
 

Figure 4. Temperature distribution in box-shaped slab at 

different time intervals for y = 50 units 

 

It can be observed that there is a strong agreement between 

the lattice Boltzmann result and the result generated using the 

finite element method for all time steps in the study. Also, the 

plot at 6000 s shows the maximum limit for the temperature 

distribution in the domain, which is when the domain is at a 

steady state. 

 

Case 2 

For the problem in case 1, evaluate the temperature 

distribution at different positions as shown in Figure 5 for a 

time step of 24000 units. 
 

 
 

Figure 5. Case 2: Box-shaped slab 
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Result 

The temperature distributions along line y = 10, 30, 60, and 

90 obtained by the LBM and by the FEM were plotted and 

shown in Figure 6. 

 

 
 

Figure 6. Temperature distribution in box-shaped slab at 

different vertical distances 

 

It can be observed that there is strong agreement between 

the temperature distribution generated with LBM and the FEM. 

However, there are some inconsistencies around the region 

where the shape changes. 

 

Case 3 

Different boundary conditions are applied to a two-

dimensional T shaped slab as seen in Figure 7. The slab was 

initially at a temperature of 0.0. For times greater than 0, the 

vertical border at the origin is exposed to a relatively high 

temperature of a non dimensionalized quantity of 1.0, while 

the other boundaries remain unchanged. The domain has a 

length of 100 units. Evaluate the distribution of temperature in 

the slab at various time periods. Compare the findings from 

the LB and FE approaches. The horizontal and vertical lengths 

are 100 units, given that the thermal diffusivity of the medium 

is 0.25. 

 

 
 

Figure 7. T-shaped slab 

 

Result 

 

 
 

Figure 8. Temperature distribution in T-shaped slab at y = 50 

units 

The temperature distributions along line y = 50 obtained b 

LBM and by FEM were plotted and shown in Figure 8. It can 

be observed that there is good agreement between the 

temperature distribution generated with LBM and the FEM. 

 

Case 4 

Different boundary conditions are applied to a two-

dimensional L-shaped slab as seen in Figure 9. The slab was 

initially at a non-dimensional temperature of 0.0. For times 

greater than 0, the vertical border at the origin is exposed to a 

relatively high temperature of a non dimensionalized quantity 

of 1.0, while the other boundaries remain unchanged. The 

domain has a length of 100 units. Evaluate the distribution of 

temperature in the slab at various time periods. Compare the 

findings from the LB and FE approaches. The horizontal and 

vertical lengths are 100 units, given that the thermal diffusivity 

of the medium is 0.25. 

 

 
 

Figure 9. L-shaped slab 

 

Result 

 

 
 

Figure 10. Temperature distribution in L-shaped slab at y = 

25 units 

 

It can be observed that there is an agreement between the 

temperature distribution generated with LBM and the FEM 

(Figure 10). However, there are some inconsistencies around 

the region where the shape changes. 

 

 

4. CONCLUSION 

 

The research has been able to achieve the development of a 

mathematical model based on the Boltzmann transport 

equation to investigate temperature distribution in a slab of 

various shapes. The model developed was tested by using 

different shapes of slabs and boundary conditions. The results 

obtained for the temperature distribution using LBM were in 

good agreement with the result obtained using FEM with the 

COMSOL Multiphysics software. This implies that the Lattice 
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Boltzmann model can be used as an alternate method for the 

proprietary software. 
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NOMENCLATURE 

 

LBM lattice boltzmann method 

FEM finite element method 

CFD computational fluid dynamics 

f particle distribution function 

m mass of particle 

t time of particle 

v velocity of particle 

x,y Position 

ci lattice velocity 

feq equilibrium distribution function 

F force acting on the particle of 

C specific heat 

q heat flux 

 

Greek symbols 

 

Ω collision operator 

ω weighting factor 

α thermal diffusivity 

k thermal conductivity 

ρ Density 

τ relaxation time 
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