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 Focusing on the feature extraction process of convolutional neural network (CNN), this 

paper establishes a CNN-based retrieval method of book pages. Then, the pretraining and 

feature finetuning of the CNN were described separately. The performance of the proposed 

optimization method was demonstrated through experiments. Considering overall 

performance and transfer learning capacity, the eight-layer VGG-Fast was selected as the 

structural framework of our CNN. To train the CNN, it is necessary to gather millions of 

book page images, and complete the complex task of labeling all these images. Given the 

excellence of VGG in many transfer learning tasks, this paper chooses to pretrain the CNN 

with a task-independent dataset. After that, a small book page dataset was adopted to convert 

the knowledge domain of the CNN from image classification to image page retrieval. In this 

way, desirable retrieval effects were achieved, without wasting lots of time and energy in 

collecting and labeling a large book page dataset. 
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1. INTRODUCTION 

 

The research of image retrieval can be traced back to the 

1970s. The earliest image retrieval technology is the fast and 

efficient text-based image retrieval (TBIR): Firstly, the 

original images are labeled manually, forming several 

keywords about image contents. Then, the user searches for 

images in the same way as he/she searches for texts. By 

entering the keywords/descriptors of the desired image, the 

relevant images are identified based on the matching degree 

between texts [1]. 

As our society is increasingly informatized and networked, 

however, several defects of TBIR have surfaced: (1) Manual 

labeling is too costly facing the massive number of images; (2) 

The image labels are highly subjective, because people differ 

in cognition and cultural background; (3) A few keywords do 

not necessarily reflect the rich information embed in an image 

[2-5]. To sum up, TBIR faces problems like the heavy load of 

manual labeling, and the subjectiveness of labels. Content-

based image retrieval (CBIR), another popular image retrieval 

technology, is jeopardized by the semantic gap problem.  

To overcome the shortcomings of TBIR and CBIR, 

semantic-based image retrieval (SBIR) was proposed. The key 

of SBIR is to establish the correlations between the high-level 

semantic information and low-level visual features of images, 

thereby fusing the visual and semantic information. As a result, 

SBIR is also referred to by some scholars as the two-phase 

fusion image retrieval technology [6]. However, the retrieval 

strategy of SBIR is essentially the same as that of TBIR and 

CBIR. SBIR still searches for images by keywords, images, or 

the combination between them. The difference is that SBIR 

represents features based on both text semantics and visual 

features. The combination between image semantics and 

visual information significantly improves the performance of 

image retrieval, and boasts great practical and application 

values [7]. 

Although machine learning has been extensively applied to 

image semantic learning, there is no universally applicable 

image semantic learning method, calling for better learning 

accuracy for image semantics [8-10]. Drawing on various 

previous studies, this paper firstly introduces the structure of a 

self-deigned convolutional neural network (CNN), with a 

special focus on the feature extraction process of the network. 

Then, the pretraining and finetuning of the CNN were 

introduced in details. Finally, the proposed optimization 

method was verified through experiments. 

Giving full consideration to performance and transfer 

learning ability, this paper chooses the eight-layer VGG-Fast 

network as the structural framework of our CNN [11-13]. The 

training of the CNN requires the collection and complex 

labeling of millions of book page images. Considering the 

excellence of VGG in many transfer learning tasks, the authors 

pretrained the CNN with a task-independent dataset. After that, 

a small book page dataset was adopted to convert the 

knowledge domain of the CNN from image classification to 

image page retrieval [14, 15]. In this way, desirable retrieval 

effects were achieved, without wasting lots of time and energy 

in collecting and labeling a large book page dataset. 

 

 

2. CNN MODELING 

 

To realize powerful expression of image features, the eight-

layer VGG-Fast network was selected as the structure of our 

CNN, in the light of both performance and transfer learning 

ability. On 2014 ILSVRC competition, the eight-layer VGG-
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Fast network finished first in the positioning task, and second 

in the classification task [16-18]. The Top-5 error of the 

network on images of 1,000 classes was merely 7.3%, only 

0.6% higher than that of the best network. Despite the slight 

lag in classification error, the VGG network achieved the best 

results on many transfer learning tasks. Figure 1 shows the 

structure of the pretrained CNN network [19-21]. 

As shown in Figure 1, our CNN encompasses an input layer, 

convolutional layers, pooling layers, rectified linear units 

(ReLUs), Dropout layers, and fully-connected layers. 

Specifically, the first convolutional layer (conv1) adopts a 

kernel size of 11×11 with the sliding step length (stride) of 4 

over the feature map. The second convolutional layer (conv2) 

adopts a kernel size of 5×5 with a stride of 1, and a feature map 

edge extension (pad) of 2. The third to fifth convolutional 

layers (conv3-conv5) have the same parameters: kernel size of 

3×3, stride of 1, and pad of 1. A pooling layer is arranged after 

each of conv1, conv2, and conv5 to reduce the dimensionality 

of features. All three pooling layers adopt the max pooling 

structure with the kernel size of 3×3, and the stride of 2. In 

addition, each convolutional layer is followed by an activation 

function ReLU: ReLU(x)-max(O, x), with x being the input. 

ReLU does better in one-sided suppression and sparsity than 

another popular activation function: sigmoid. It can effectively 

mitigate exploding gradients and vanishing gradients in 

backpropagation. The last part of the network is two fully-

connected layers F6 and F7, whose dimensionality is 4,096, 

plus a 1,000-dimensional output layer F8, which is also a fully-

connected layer. The dimensionality of F8 can be adjusted 

according to the output class. Table 1 lists the specific 

parameters. 

 

2.1 CNN pretraining 

 

Through end-to-end training, CNN can fully characterize 

the visual features of images benefits. It is necessary to train 

the CNN with a dataset containing millions and even tens of 

millions of targets. When it comes to book page retrieval, 

millions of book page images should be collected in advance, 

and labeled one after another. This is obviously a very time-

consuming and labor-intensive work. 

 

 
 

Figure 1. Structure of our CNN 

 

Table 1. Structure and parameters of our CNN  

 
Input: A color image of the size 224×224 

Step 1: Convolutional layer conv1: kernel size 11×11, stride=4, output 64×55×55 

Step 2: Pooling layer 1: kernel size 3×3, stride=2, max pooling, output 64×27×27 

ReLU: ReLU(x)-max(O, x) 

Step 3: Convolutional layer Conv2: kernel size 5×5, stride=1, pad=2, output 256×27×27 

Step 4: Pooling layer 2: kernel size 3×3, stride=2, max pooling, output 256×13×13 

ReLU: ReLU(x)-max(o, x) 

Step 5: Convolutional layer Conv3: kernel size 3×3, stride=1, pad=1, output 256×13×13 

ReLU: ReLU(x)-max(O, x) 

Step 6: Convolutional layer Conv4: kernel size 3×3, stride1, pad=1, output 256×13×13 

ReLU: ReLU(x)-max(O, x) 

Step 7: Convolutional layer Conv5: kernel size 3×3, stride1, pad=1, output 256×13×13 

Step 8: Pooling layer 3: kernel size 3×3, stride=2, max pooling, output 256×6×6 

Step 9: Fully-connected layer F6: output 4096×1, Fully-connected layer F7: output 4096×1, Output layer F8: output 1,000×1 

 

 
 

Figure 2. ImageNet dataset 
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Some recent studies have shown that, after a CNN is trained 

on the datasets for image classification tasks, the eigenvectors 

outputted from the intermediate layers can be used to complete 

other tasks excellently. In addition, our CNN is a VGG 

network, which performs exceptionally in transfer learning. To 

sum up, this paper firstly pretrains the CNN with ImageNet, a 

task-independent task, to generate the initial model. Next, the 

initial model was finetuned with a small dataset of book page 

images, such that the knowledge domain of the CNN transfers 

from image classification to book page retrieval. 

As shown in Figure 2, the ImageNet dataset contains a total 

of 1.2 million images in 1,000 classes. The images are 

disturbed by geometric distortion, perspective variation, and 

scale difference. 

Moreover, this paper chooses Softmax as the loss function 

of the pretained model. The Softmax loss function applies to 

the training of multi-class classifiers. The function can be 

expressed as: 

 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥𝐿𝑜𝑠𝑠 = −𝑙𝑜𝑔𝑃𝑘 (1) 

 

where, k∈{,1...,K} is the class label; Pk is the probability 

density: 

 

𝑃𝑘 =
𝑒𝑥𝑘

∑ 𝑒𝑥𝑗𝐾
𝑗=1

 (2) 

 

The meaning of Pk is the probability for a normalized data 

sample x to belong to class k. The above formulas show that 

the loss function can converge to the minimum, if each sample 

is assigned the class label with the highest probability. This is 

in line with the training objective of CNN. 

 

 

3. DATASET OPTIMIZATION 

 

The CNN pretrained on ImageNet has fully learned the 

representation of image features. The next task is to transfer 

the knowledge domain of the CNN from image classification 

to book page retrieval. To this end, the network was finetuned 

with a small dataset of book page images to further consolidate 

and optimize CNN parameters, making the network more 

suitable for the retrieval of book page images.  

 

3.1 Dataset preparation 

 

To optimize the CNN, this paper collects 8,000 book pages, 

and scans them in turn to obtain candidate standard images on 

book pages. After that, five different images were shot on each 

book page by a smart camera. These images were taken as the 

book page images to be tested. Note that the actual conditions 

were fully considered during the shooting. Thus, the images to 

be tested cover various disturbances, such as background 

clutter, local highlights, geometric deformation, perspective 

variation, and scale difference. 

Through the above process, the authors obtained a dataset 

containing 8,000 candidate standard images, and 36,000 book 

page images to be detected. From the candidate standard 

images, 4,000 standard images were randomly selected. These 

images, along with the corresponding 16,000 images to be 

tested, were utilized to finetune the CNN. 

Firstly, each of 16,000 the book page images were 

preprocessed to eliminate the influence of background clutter 

and geometric deformation, turning the image size to 224×224. 

Next, each preprocessed image to be tested was coupled with 

the corresponding candidate standard image into a standard 

sample pair, and with another randomly selected candidate 

standard image into a non-standard sample pair. In this way, 

36,000 image pairs were ready for finetuning the CNN. Half 

of these images are standard samples, and half are non-

standard samples. Furthermore, 24,000 sample pairs were 

selected as the training samples for the model. The rest 10,000 

sample pairs were used to test the training effect. Figure 3 

shows the entire dataset. 

 

 
 

Figure 3. Dataset for network finetuning 

 

3.2 Dataset optimization 

 

The CNN pretrained on ImageNet intends to complete 

image classification. To transfer the knowledge domain of the 

CNN from image classification to book page retrieval, this 

paper finetunes the pretrained CNN with a small dataset of 

book page images. The training structure is the Siamese 

network, the earliest training network for face recognition 

models. The objective function of the network uses contrastive 

loss.  

The Siamese network, coupled from two identical CNNs 

through parameter sharing, receives image pairs, and aims to 

gradually reduce the distance between positive sample pairs, 

and widen the distance between negative sample pairs. After 

network training, the two CNNs making up the network will 

have the same network parameters. Each CNN can 

independently express and extract image features. This 

training mode increases the similarity between each image to 

be tested and the corresponding standard image, and reduces 

that between each image to be tested and another image. This 

is conducive to the subsequent similarity calculation, and 

matching accuracy. The contrastive loss function can be 

expressed as: 

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒𝐿𝑜𝑠𝑠=∥ 𝑝 − 𝑞 ∥2
2 

𝑝, 𝑞 is a positive sample pair 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒𝐿𝑜𝑠𝑠= max(0, 𝑚 −∥ 𝑝 − 𝑞 ∥2
2) 

𝑝, 𝑞 is a negative sample pair 

(3) 

 

where, p, q is a pair of input images; m is the control factor 

regulating the lower bound of the interval between positive 

sample and negative sample pairs. According to the objective 

function, as the loss function approaches the minimum through 

the training, the distance between positive sample pairs will 

gradually reduce to zero, while that between negative sample 

pairs will gradually widen. Then, the lower bound of the 

interval between positive sample and negative sample pairs 

gradually approximates m. 
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Figure 4. Basic structure of our Siamese network 

 

Table 2. Training parameters for network finetuning 

 
Training parameter Value 

base_lr:# basic learning rate 0.0001 

momentum:# momentum factor 0.9 

weight_decay:# learning rate attenuation factor 0.00005 

test_interval:# number of iterations for each 

attenuation 
1000 

max_iter:# maximum number of iterations 60000 

Solver_mode:#CPU or GPU GPU 

 

Overall, our finetuning network is a Siamese network 

composed of two CNNs, with contrastive loss as the loss 

function. The general structure of the network is illustrated in 

Figure 4. 

Since the CNN has been pretrained, the initial learning rate 

was set to a low level for finetuning. By gradient descent with 

moment, the learning rate was attenuated after each specified 

number of iterations. The optimal network was determined by 

slowing down network convergence. Table 2 lists the relevant 

training parameters. 

After finetuning, any single CNN can complete feature 

extraction of book page images, for the two CNNs of Siamese 

share the same network parameters. During the extraction of 

book page image features, the eigenvector outputted by a 

fully-connected layer was employed as the feature 

representation of the corresponding book page image. 

Contrastive experiments show that the eigenvalue from the 

fully-connected layer F6 of the CNN led to the best retrieval 

results. Therefore, this paper adopts the 4,096-dimensional 

single-precision eigenvector outputted by the F6 layer of the 

CNN as the feature representation of the corresponding image. 

 

 

4. EXPERIMENTS AND RESULTS ANALYSIS 

 

The proposed method was tested and verified through 

experiments on five aspects: 

(1) Performance of direct retrieval of image features; 

(2) Necessity of image segmentation and geometric 

correction; 

(3) Necessity of CNN finetuning; 

(4) Comparison between the effect of using each of the 

eigenvector outputted by the three fully-connected layers in 

the CNN; 

(5) Redundancy of image features. 

 

4.1 Experimental setup 

 

(1) Dataset and data library  

Our test set includes the 25,000 book page images to be 

tested, which are not used to finetuning in Section 3.2. The 

data library for our experiments has two image sources: 10,000 

standard book page images were obtained by scanning in that 

section; 100,000 standard book page images were acquired 

from the Internet. The two parts were combined to obtain a 

data library of 150,000 candidate book page images. 

(2) Performance metric 

The performance of book page retrieval was evaluated by 

the top-k hit rate: 

 

𝛾𝑘 =
𝑁𝑘

𝑁
 (4) 

 

where, N is the number of book page retrieval tests; Nk is the 

number of successful tests. A test is considered as successful, 

when the standard image corresponding to the image to be 

tested in contained in the top-k most similar candidate standard 

images. 

 

4.2 Results analysis 

 

(1) Performance of direct retrieval of image features  

To verify its performance, our method was adopted to 

extract the features of the book page images to be tested. Then, 

the output 4,096-dimensional vector was not compressed, but 

directly used to feature matching with the eigenvectors of the 

candidate standard images in the data library. The top-k hit 

rates on the test set were counted. The Euclidean distance was 

adopted to measure the similarity in the test. In addition, our 

method was compared with a state-of-art end-to-end image 

retrieval method. 

Figure 5 shows some typical retrieval results of our method. 

The correct candidate standard images are marked in green. 

Comparing Figures 5(a) and 5(b), it can be seen that our 

method can accurately distinguish between highly similar 

images of children's book pages. As shown in Figure 5(c), our 

method was robust in differentiating between children's book 

pages that are fuzzy or locally highlighted. It can be seen from 

Figures 5(d) and 5(e) that, our method could obtain accurate 

retrieval results, when the images were segmented by complex 

backgrounds or unsatisfactorily correctly geometrically. 

Figures 5(f) and 5(g) demonstrate the ability of our method to 

retrieve rotated images satisfactorily. Overall, our method has 

a high robustness on real-world disturbances such as fuzziness, 

local highlights, complex backgrounds, geometric 

deformation, and rotation. It always achieved outstanding 

retrieval results, despite these disturbances. 

 

 
 

Figure 5. Retrieval results of our experiments 
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Table 3. Typical retrieval results of our method 

 

Method 

Hit rate (%) 

Top-

1 

Top-

2 

Top-

3 

Top-

4 

Top-

5 

LeCun’s method 

[17] 
17.13 24.41 37.15 48.33 53.19 

Our method 92.82 93.17 93.91 94.14 94.68 

 

Table 3 compares the hit rates of our method with those of 

the CNN-based image retrieval method in LeCun’s work [17]. 

The contrastive method is the most advanced end-to-end 

CNN-based strategy for image retrieval. For fairness, both our 

method and the contrastive method were pretrained on the 

ImageNet dataset, and finetuned on the same book page 

dataset. The results show that the Top-5 hit rate of our method 

was as high as 94.68%, while that of the contrastive method 

was only 53.19%. Hence, our method can retrieve book page 

images more accurately than the state-of-the-art, without 

feature compression. In addition, the results of the contrastive 

method indicate the difficulty in retrieving book page images 

ideally by directly applying the CNN after pretraining and 

finetuning. This indirectly shows the necessity of our image 

preprocessing to book page retrieval. 

(2) Necessity of image segmentation and geometric 

correction 

Table 4 displays the hit rates of book page retrieval using 

our method, our method without geometric correction, and our 

method without both geometric correction and image 

segmentation. The results show that, after geometric 

correction and image segmentation, our method had a Top-5 

hit rate of 94.68%; without geometric correction, the hit rate 

dropped to 57.23%; without geometric correction and image 

segmentation, the rate further declined to 54.58%. Therefore, 

both geometric correction and image segmentation are 

necessary steps for book page retrieval. 

 

Table 4. Hit rates of our method without image segmentation 

and geometric correction (%) 

 

Method 

Hit rate (%) 

Top-

1 

Top-

2 

Top-

3 

Top-

4 

Top-

5 

With image 

segmentation and 

geometric correction 

92.82 93.17 93.91 94.14 94.68 

Without geometric 

correction 
20.14 30.33 42.62 51.11 57.23 

Without image 

segmentation and 

geometric correction 

19.61 25.47 39.46 49.41 54.58 

 

(3) Necessity of CNN finetuning 

To demonstrate the necessity of CNN finetuning, the 

authors further compared the book page retrieval effects of the 

pretrained CNN and the pretrained and finetuned CNN. The 

similarity was still measured by Euclidean distance. The 

results are shown in Table 5. 

As shown in Table 5, the finetuning improved the hit rates 

of book page retrieval. The Top-1 to Top-5 hit rates of 

pretrained and finetuned CNN were 1.81%, 1.51%, 1.12%, 

0.79%, and 0.63% higher than those of the model only 

pretrained on a task-independent dataset, respectively. Hence, 

it is necessary to finetune the CNN pretrained on the task-

independent dataset, using book page images. The finetuning 

can to a certain extent improve the retrieval of book pages. 

Table 5. Hit rates before and after finetuning 

 

Method 

Hit rate (%) 

Top-

1 

Top-

2 

Top-

3 

Top-

4 

Top-

5 

Pretrained CNN 90.95 91.63 92.54 93.21 93.93 

Pretrained and 

finetuned CNN 
92.76 93.14 93.66 94.00 94.56 

 

(4) Comparison between the effect of using each of the 

eigenvector outputted by the three fully-connected layers 

Table 6 displays the hit rates of using each of the 

eigenvector outputted by the three fully-connected layers in 

the trained CNN. The eigenvectors outputted by F6 and F7 are 

4,096-dimensional, and the eigenvector outputted by F8 is 

1,000-dimensional. The results show that the best effect was 

achieved with the eigenvector outputted by F6 as the image 

feature. The retrieval accuracy declined, when the eigenvector 

outputted by F8 was taken as the image feature, because the 

dimensionality dropped to less than 1/4 of that of F6. Hence, 

the best feature representation can be realized by adopting the 

4,096-dimensional eigenvector from F6 as the image feature. 

 

Table 6. Comparison of hit rates of using each of the 

eigenvector outputted by the three fully-connected layers 

 

Fully-connected 

layer 

Hit rate (%) 

Top-

1 

Top-

2 

Top-

3 

Top-

4 

Top-

5 

F6 92.38 93.15 93.93 94.21 94.57 

F7 91.11 91.75 92.3 92.34 93.99 

F8 84.69 88.58 89.66 89.75 90.18 

 

(5) Redundancy of image features 

The 4,096-dimensional eigenvector was subjected to 

principal component analysis (PCA) to different degrees. The 

retrieval results were recorded under each condition, and 

discussed to reveal the redundancy of image features. 

The PCA was performed on the book page images to be 

tested and the candidate standard images in the data library, 

and the Top-k hit rates were recorded at different compression 

degrees. The feature compression of the PCA is described as 

follows: 

Let X denote the 4,096-dimensional eigenvector, and m 

denote the scale of the standard images in the data library. 

Then, the eigenvectors of all candidate images constitute a 

4,096×m-dimensional matrix M. 

Step 1. For each row of the matrix, subtract the mean 

eigenvalue of that row from the eigenvalue of each row, and 

decentralize the result to obtain matrix M’. 

Step 2. Compute the variance matrix 2 of matrix M’. 

Step 3. Solve the eigenvector matrix U = SVD (M’’) 

through singular value decomposition (SVD). 

Step 4. Screen the first d columns of U to form the 

compression matrix Ua. 

Step 5. Compress any 4,096-dimensional eigenvector X to 

d dimensions: 
 

𝑑 =
𝛾𝑘

𝑁
 (5) 

 

where, 𝛾𝑘  is the compressed image feature; d is the 

dimensionality of the compressed feature. 

Figure 6 shows the variation in Top-k hit rates after the 

4,096-dimensional eigenvector undergoes different degrees of 

PCA. The ordinate is the hit rates, where the Top-1 to Top-5 
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results are shown in broken lines of different colors; the 

abscissa is the feature dimensionality after PCA. It can be seen 

that the book page retrieval accuracy was not significantly 

affected, as the 4,096-dimensional eigenvector was reduced to 

64 dimensions. However, the accuracy would drop obviously, 

once the dimensionality fell below 64. This means most 

feature information in the 4,096-dimensional image feature 

obtained by our CNN are redundant. The key useful 

information only takes up a very small portion. 

 

 
 

Figure 6. Influence of compressed dimensionality on the hit 

rates of book page retrieval 

 

 

5. CONCLUSIONS 

 

The following conclusions were drawn through our 

experiments: 

(1) In our method, the image features extracted by the CNN 

is directly applied to book page retrieval. The retrieval effect 

is quite satisfactory. The exceptionally good performance of 

our method was demonstrated in contrast to a representative 

method. 

(2) Without geometric correction and image segmentation, 

the accuracy of our method in book page retrieval declined 

drastically. Therefore, both geometric correction and image 

segmentation are necessary steps for book page retrieval. 

(3) The retrieval accuracy of the pretrained and finetuned 

CNN was higher than that of the model only pretrained on a 

task-independent dataset, indicating that the former is more 

suitable for our task of book page retrieval. 

(4) The eigenvector outputted by F6, F7, and F8 of our CNN 

was adopted as the image feature representation in turn. The 

experimental results show that the best effect was achieved by 

F6, followed by F7, and the worst was achieved by F8. Hence, 

the eigenvector outputted by F6 should be chosen to represent 

image features. 

(5) The PCA was performed on the 4,096-dimensional 

eigenvector. The accuracy of book page retrieval did not 

significantly worsen, when the compressed dimensionality 

was equal to or greater than 64. This means most feature 

information in the 4,096-dimensional image feature obtained 

by our CNN are redundant. The key useful information only 

takes up a very small portion. In actual retrieval tasks, the 

redundant information will greatly push up the computing 

overhead in feature matching. The efficiency of book page 

retrieval will be low, if the image features are directly adopted. 

It is necessary to further optimize the features to speed up the 

computing, and improve the retrieval efficiency.  
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