
EEG-Based Anamoly Detection for Autistic Kids – A Pilot Study 

Menaka Radhakrishnan1*, Swagata Boruah2, Karthik Ramamurthy1 

1 Centre for Cyber Physical Systems and School of Electronics Engineering, Vellore Institute of Technology, Chennai 600127, 

India 
2 School of Electronics Engineering, Vellore Institute of Technology, Chennai 600127, India 

Corresponding Author Email: menaka.r@vit.ac.in

https://doi.org/10.18280/ts.390327 ABSTRACT 

Received: 29 March 2022 

Accepted: 15 May 2022 

An electroencephalogram (EEG) test can be utilized to capture the electrical impulses in the 

human brain. EEG signal analysis is crucial in the detection and treatment of brain diseases. 

Autism is one of the neurological disorders that needs to be diagnosed in the early stages of 

life. Autistic behavior is difficult to differentiate and it can even lead to adverse effects in 

the daily routine of a kid. Recent advances in Artificial Intelligence have proven to be an 

effective way of diagnosing ASD. This research employs PyCaret framework to analyze the 

anomalies present in the EEG signal data in the context of differentiating Autistic children 

from Typically developing children. The different anomaly detection modules have been 

used to detect anomalies, compute their anomaly scores and visualize it. The goal of this 

study is to determine if PyCaret's anomaly detection module can aid the detection of ASD. 
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1. INTRODUCTION

Autism Spectrum Disorder (ASD) is a form of 

developmental disorder used to describe individuals with a 

specific mix of deficits in social communication and repetitive 

behaviours, as well as very restricted interests and/or sensory 

behaviours that begin early in infancy. It is defined by a 

diverse set of behavioural abnormalities that arise throughout 

a person's early stages of development. Psychosocial therapies 

in children can enhance particular behaviours such as joint 

attention, language, and social engagement, all of which can 

have an impact on future development and symptom severity. 

However, more study is needed to determine the long-term 

requirements of persons with autism, as well as therapies and 

mechanisms that might lead to improvement in quality of life 

in the long run [1]. The EEG's potency as a component of brain 

study continues to expand as new means of evaluating and 

obtaining information from biophysical signals. Network 

variability may be seen through time series estimations using 

methods for analysing complex and intricate networks such as 

the human brain. As a result, a collection of invariant measures 

derived from EEG data must represent the neuronal prospects 

in the brain that generates the signals [2-5]. EEGs are 

established as observations of electrical activity in the brain 

acquired from the surface of the scalp. These devices with 

excellent temporal resolution can monitor brain impulses in 

milliseconds, providing a lot of data. Graphical analysis can 

be highly valuable, but it isn't always enough since the volume 

of data becomes too vast to comprehend. J48 and Random 

Tree are employed with the band frequency and the Beta band 

frequency as input [6]. The voltage fluctuations in EEG were 

analysed using classification based algorithms [7]. These 

techniques reveal typical or dysfunctional EEG activity that 

would otherwise be undetectable [8]. Autism features can be 

detected by screening tests, but they are costly and time 

consuming. Autism may now be predicted at an early stage due 

to the advances in Artificial Intelligence. The authors proposed 

an effective machine learning model that was developed by 

merging Random Forest-CART and Random Forest-Id3 for 

detecting normal and autistic traits [9]. Machine learning 

models were used to predict ASD diagnoses and ADOS-2 

scores, which offered an approximation of the presence of long 

and short term tendencies [10]. According to the findings in 

the study [11], a small portion of EEG provides valuable 

information that can be used to identify autism if it is 

processed using modern computer techniques like machine 

learning. Machine learning algorithms can handle a lot of data. 

They do it as part of their on going hunt for critical decision-

making connections. There is an enormous quantity of 

material to be discussed in the realm of medical diagnosis [12]. 

As a result, spotting outliers in a complicated data 

environment is critical in both science and engineering. 

However, when data streams vary over time, standard 

approaches become ineffective, necessitating the use of an 

outlier identification algorithm that can handle dynamic data 

streams. PyCaret is a Python machine learning package that 

automates machine learning operations and is open-source 

[13]. Low-code autoML framework PyCaret (automatic 

machine learning) can be utilized to enhance data for a variety 

of applications, but there is a dearth of expertise about them. 

In this study, we will be using PyCaret’s anomaly detection 

module to analyse our data. 

2. PROPOSE METHODOLOGY

The work flow process followed for this study has been 

depicted in Figure 1. 

2.1 EEG data acquisition 

The collection of raw data is the first stage in processing any 
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type of signal. The signals were collected at a frequency of 500 

Hz. EEG montage describes the practice of taking EEG 

readings as a relative metric. Bipolar, Laplacian, common 

electrode reference, average, and weighted averaged 

references are among the several montages [8]. EEG data was 

gathered with average reference electrodes for this study. 

Participants in the study ranged in age from 3 to 7. For each 

individual, a total of 10,000 EEG signal samples were obtained 

from each of the 19 distinct EEG channels which were then 

used for training. The first 10,000 sample points of EEG data 

for all children were chosen as the sample points. Because 

each kid had a varied set of sample points recorded, ranging 

from 10,000 to 15,000, the first 10,000 data points were picked 

for everyone to guarantee that the number of sample points 

was consistent. During the course of the acquisition, the 

participants were given visual stimuli. The International 10-20 

system of electrode placement positions has been endorsed. 

Figure 2 shows the pictorial representation of the electrode 

placement. The positions were Fp1, Fp2, F7, F3, Fz, F4, F8, 

P3, P4, Pz, T3, T5, T4, T6, O1, O2, C3, C4 and Cz [14-19]. 

 

 
 

Figure 1. Workflow of the proposed work 

 

 
 

Figure 2. International 10-20 system of EEG. Electrode 

placement 

 

In total, there were 6 EEG signal datasets used in this study, 

out of which 3 belong to typically developing children (TD) 

and 3 belong to children with autism spectrum disorder (AD). 

The output of each channel is digitized and stored as comma 

separated values (.CSV format). These datasets were used in 

their original form for performing spatial analysis which helps 

to determine the time stamp of occurrence of anomalies. Then 

this dataset was transposed for performing time analysis which 

helps in identifying particular channels in the EEG signal 

which have different behavior than other channels. 

Furthermore, these datasets were fed into PyCaret’s Anomaly 

detection models, namely ABOD, Isolation forest and MCD 

which have been discussed in detailed in section 2.2. 

 

2.2 PyCaret – anomaly detection module 

 

PyCaret is a Python-based machine learning framework for 

automating machine learning workflows [11, 13]. Anomaly 

detection is the process of discovering unusual things, events, 

or observations that raise concerns because they differ 

significantly from the overall set of data points. Here in this 

study, we have utilized the anomaly detection module, namely 

Angle-based Outlier Detector, Isolation Forest and Minimum 

Covariance Determinant models which have been discussed 

below: 

 

2.2.1 Angle-based outlier detection (ABOD) 

The ABOD model allots the Angle-based Outlier Factor 

(ABOF) to each point in the dataset and the result is a list of 

points sorted according to this factor. The divergence in 

orientations of objects when compared to each other is 

described by an ABOF. We compute the scalar product of the 

difference vectors of any triple of points with a normalization 

process. This is carried out by determining the quadratic 

product of the length of the difference vectors. The distance 

does impact the value, but only to a little extent, because of 

this weighting component [19-21]. In short, given a dataset 

D⊆ℝd, a point L⃗ ∈D, and a norm ||.||:ℝd→ℝd
0. The scalar 

product is denoted by 〈. , . 〉:ℝd×ℝd→ℝ. For two points M⃗⃗⃗ , N⃗⃗ ∈

D, MN denotes the difference vector M⃗⃗⃗ -N⃗⃗ . The ABOF(L⃗ ) is 

the variance over the angles between the difference vectors of 

L⃗  to all pairs of points in D weighted by the distance of the 

points [22, 23]. 

 

2.2.2 Isolation forest 

Isolation forest internally uses the concept of decisions trees. 

Here, a tree structure is generated based on randomly drawn 

attributes from the sub-sampled information, which is then 

analyzed by the isolation forest. Anomalies are much less 

likely to occur in samples that travel further down the tree 

since they require more cuts to isolate them. Similarly, 

samples that end up in shorter branches suggest anomalies 

since the tree had an easier time distinguishing them from 

other data. There are two stages in this process, firstly it builds 

isolation trees based on sub samples of the data and then these 

instances are tested through isolation trees to assign an 

anomaly score to each data point [24-26]. The process of 

building the tree is given below and illustrated in Figure 3. 

Let X={x1, …, xn} be a set of d-dimensional points and X'⊂X 

Any Isolation Tree data structure can be described by the 

following characteristics: 

1. For every node N in the tree, N can either be an external 

node with no child or an internal-node with one “test” and 

exactly two daughter nodes (Nleft and Nright). 

2. A test at node N comprises of an attribute a and split value 

b such that a<b which will determine the traversal of the data 

point towards either Nleft or Nright. 

 

 
 

Figure 3. Structure of the spanning tree – red dot is the 

anomalous data point 
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The algorithm recursively splits X' by randomly selecting a 

and b in order to build the isolation (iTree) until either of the 

following scenarios is incurred: 

1. There is only one instance of the node. 

2. Every data point in the particular node has same values. 

Once this tree is fully constructed, every element in X is 

isolated at one of the external nodes. Hence, anomalous data 

points are those with the smaller path length in the tree, where 

the path length p(xi) of point xi∈X is defined as the number of 

edges traversed from the root node to get to an external node 

by xi. In other words, while scoring, the data point is navigated 

through all the trees which have been trained earlier. These 

scores are assigned based on the depth of the particular tree 

required to reach that particular point. The depth acquired 

from each of the Isolation Trees is combined to produce this 

score and the data points which have the smallest path length 

are taken as the anomalous data point. 

 

2.2.3 Minimum covariance determinant (MCD) 

Minimum Covariance Determinant is a technique for 

assessing the mean and covariance matrix by locating data 

points with the lowest determinants in the Covariance matrix. 

To put it another way, the covariance matrix is utilized as a 

distinguishing parameter to determine if data points are 

outliers or not [25-32]. The MCD estimator can be described 

as (µ̂0,∑̂0) having a tuning constant n/2≤h≤n where, 

1. µ̂0 is the mean of h data points for which the determinant 

value of this sample’s covariance matrix is as low as possible. 

This is known as the location estimate. 

2. ∑̂0 is the corresponding covariance matrix multiplied by 

constant c0 (consistency factor). This is known as the scatter 

matrix estimate. 

This MCD estimator (𝜇^𝑀𝐶𝐷 , ∑^𝑀𝐶𝐷) has been given below 

as Eq. (1) where di=d(x,µ̂0,∑̂0) and W is a weight function of 

choice. W is set to 1 if the distance is less than a threshold 

√x2
p,0.975 and 0 otherwise [33-36]. 𝑥𝑖 is the particular data point 

and constant c1 is a consistency factor. 

 

𝜇𝑀𝐶𝐷 =
∑ 𝑊(𝑑𝑖

2)𝑥𝑖
𝑛
𝑖=1

∑ 𝑊(𝑑𝑖
2)𝑛

𝑖=1

 

∑^𝑀𝐶𝐷 = 𝑐1
1

𝑛
∑𝑊(𝑑𝑖

2)(𝑥𝑖 −

𝑛

𝑖=1

𝜇^𝑀𝐶𝐷)(𝑥𝑖 − 𝜇^𝑀𝐶𝐷) 

(1) 

 

 

3. RESULTS AND DISCUSSIONS 

 

3.1 Spatial analysis for TD and AD groups 

 

In total, six subjects were analyzed, out of which 3 were TD 

and 3 were diagnosed ASD. Each subject’s EEG data was fed 

into the three outlier detection models considered for this study. 

The red dots imply that, the particular data point has been 

identified as an anomaly by that model. The X-axis denotes 

the time/duration for which the EEG data was collected and Y-

axis denotes the resultant anomaly scores produced by the 

models. These graphs show the distribution of anomaly scores 

with respect to time i.e., in which particular time duration 

anomaly can be detected. The anomaly score graphs for each 

model were then analyzed.  

 

3.1.1 Graphs produced by ABOD model 

Figures 4-6 shows the resultant anomaly scores graphs for 

TD child and Figures 7-9 shows the resultant graphs for AD 

child which were produced using ABOD model.  

 

 
 

Figure 4. TD subject -1 
 

 
 

Figure 5. TD subject -2 

 

 
 

Figure 6. TD subject -3 

 

 
 

Figure 7. AD subject -1 

 

 
 

Figure 8. AD subject -2 
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Figure 9. AD subject -3 

 

Table 1. Mean, median and standard deviation of anomaly 

scores for each TD subject using ABOD 
 

S. no. Mean Median Std Dev 

1 -3.06×10-6 -8.31×10-7 5.46×10-6 

2 -4.06×10-6 -1.35×10-6 6.23×10-6 

3 -2.97×10-6 -1.04×10-6 4.67×10-6 

 

Table 2. Mean, median and standard deviation of anomaly 

scores for each AD subject using ABOD 
 

S. no. Mean Median Std Dev 

1 -6.47×10-9 -4.47×10-9 6.7×10-9 

2 -3.96×10-9 -2.39×10-9 4.78×10-9 

3 -5.33×10-9 -3.37×10-9 6.03×10-9 

 

In the case of TD child, these red dots (anomaly) have been 

visible in certain parts of time range but in AD child the 

anomalies are more scattered and larger in number. In a TD 

child the anomaly scores have visible peaks at the 2000th, 

6000th, 10000th time stamp while there are more numbers of 

peaks scattered across the time period in the AD child. The red 

dots represent the anomalous points recognized by the model. 

For TD child, the anomaly points mostly arise at certain time 

stamps of the signal whereas their anomalous data points are 

scattered throughout the time period in an AD child. Overall, 

there seems to be fewer peaks at specific time stamps in a TD 

child whereas these peaks are scattered throughout for the AD 

child. The distribution of the anomaly points has been 

summarized in Tables 1 and 2. 

It was observed that mean, median and standard deviation 

values of AD child were greater (since the numbers are in 

negative) when compared to the TD child. The percentage 

variation of mean, median and standard deviation of a TD 

child when compared to AD child is 199.38%, 199.62% and 

199.57% respectively. 
 

3.1.2 Analysis with isolation forest model 

Figures 10-12 shows the resultant anomaly scores graphs 

for TD child and Figures 13-15 shows the resultant graphs for 

AD child which were produced using Isolation Forest model. 
 

 
 

Figure 10. TD subject -1 

 
 

Figure 11. TD subject -2 

 

 
 

Figure 12. TD subject -3 

 

 
 

Figure 13. AD subject -1 

 

 
 

Figure 14. AD subject -2 

 

 
 

Figure 15. AD subject -3 

 

There are few peaks in the TD subject in the initial time 

stamp and towards the end i.e. from 0-2k range and 9-12k 
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range. Once there is a peak, it settles down after some time 

whereas for AD subjects peaks occur multiple times 

throughout the entire time range and do not settle down even 

after it occurs. The range of anomaly scores for TD child is 

between -0.2 to -0.25 whereas the range for an AD child is 

between -0.15 to 0.15. There are multiple anomalous peaks in 

the AD child’s graph which is scattered throughout the time 

period whereas there are fewer visible peaks which have in the 

TD child. The distribution of the anomaly points has been 

summed up in Tables 3 and 4. 

 

Table 3. Mean, median and standard deviation of anomaly 

scores for each td subject using iforest 

 
S. no. Mean Median Std Dev 

1 -0.093 -0.106 0.049 

2 -0.125 -0.144 0.058 

3 -0.097 -0.111 0.052 

 

Table 4. Mean, median and standard deviation of anomaly 

scores for each AD subject using iforest 

 
S. no. Mean Median Std Dev 

1 -0.077 -0.087 0.049 

2 -0.091 -0.103 0.058 

3 -0.052 -0.059 0.052 

 

3.1.3 Analysis with minimum covariance determinant model  

 

 
 

Figure 16. TD subject -1 

 

 
 

Figure 17. TD subject -2 

 

 
 

Figure 18. TD subject -3 

 
 

Figure 19. AD subject -1 
 

 
 

Figure 20. AD subject -2 
 

 
 

Figure 21. AD subject -3 
 

Figures 16-18 shows the resultant anomaly scores graphs 

for TD child and Figures 19-21 shows the resultant graphs for 

AD child which were produced using Minimum Covariance 

Determinant model. 

In case of AD child, anomalous peaks have been identified 

at the positions 7-9k and 12-14k time range. The peak values 

for AD were 1800, 2500 and 3000 which are significantly 

higher values than that of TD child’s peak values. The peaks 

values for TD were 1800, 2000 and 800 for each subject 

respectively. The range of anomaly scores vary from 0 to a 

maximum of 3000 in the AD child whereas the peaks have a 

lower maximum value for the TD child. The distribution of the 

anomaly points has been summarized in Table 5 and 6. 
 

Table 5. Mean, median and standard deviation of anomaly 

scores for each TD subject using MCD 
 

S. no. Mean Median Std Dev 

1 64.84 21.05 159.14 

2 59.66 21.78 118.17 

3 51.02 22.01 94.06 

 

Table 6. Mean, median and standard deviation of anomaly 

scores for each AD subject using MCD 

 
S. no. Mean Median Std Dev 

1 60.26 22.98 154.29 

2 100.27 26.44 222.85 

3 47.90 21.99 77.31 
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3.2 Resultant graphs for TD and AD for time analysis 

 

There are 19 channels in the EEG signal namely Fp1, Fp2, 

F7, F3, Fz, F4, F8, P3, P4, Pz, T3, T5, T4, T6, O1, O2, C3, C4 

and Cz from which the data was being collected. Here, the 

dataset was transposed in order to analyze the anomaly scores 

of each channel in a particular subject. The x axis denotes the 

time/duration for which the EEG data was collected and y axis 

denotes the resultant anomaly scores. 

 

3.2.1 Results produced by ABOD model 

For the TD child, the channels F7 and F8 have been 

identified as anomalies whereas for AD child, the channels T5, 

Fp2 and Pz have been detected as an anomaly with the 

following anomaly scores summarized in Tables 7 and 8.  

 

Table 7. Depicting the channels in TD child identified as 

anomaly and respective anomaly score 

 
Subject Channel Anomaly Score 

1 F7 - 7.78×10-18 

2 F8 -1.82×10-17 

3 F7 -7.40 X 10-18 

 

Table 8. Depicting the channels in AD child identified as 

anomaly and respective anomaly score 

 
Subject Channel Anomaly Score 

1 T5 - 3.79×10-18 

2 Fp2 -2.89×10-19 

3 Pz -6.12×10-19 

 

3.2.2 Results produced by isolation forest model 

For all AD child the anomalies have been detected in Pz 

channel whereas for TD the anomalies are detected in FP1 

channel with the anomaly scores summarized in Tables 9 and 

10.  

 

Table 9. Depicting the channels in TD child identified as 

anomaly and respective anomaly score 

 
Subject Channel Anomaly Score 

1 F7 2.66×10-4 

2 F7 0.0549 

3 F7 0.0088 

 

Table 10. Depicting the channels in AD child identified as 

anomaly and respective anomaly score 

 
Subject Channel Anomaly Score 

1 Pz 0.1019 

2 Pz 0.1298 

3 Pz 0.1183 

 

3.2.3 Results produced by minimum covariance determinant 

model 

For the TD subjects, channels T5 and F7 have anomaly 

whereas in AD subject the anomaly has been detected in 

channels Fp2, Pz and P3 with the anomaly scores summarized 

in Tables 11 and 12. It was observed that the abnormal score 

does not vary from child to child, but there is a small range 

difference in the anomaly scores of ASD when compared to 

TD child. There was a percentage difference of 171.44% 

between the anomaly score of TD and AD child produced by 

ABOD model. While there was a 138.13% difference in 

anomaly scores when produced by Isolation Forest model. 

Whereas there was neither a anomaly score difference nor a 

significant range difference in anomaly scores produced by the 

MCD model. 

 

Table 11. Depicting the channels in TD child identified as 

anomaly and respective anomaly score 

 
Subject Channel Anomaly Score 

1 T5 18 

2 F7 18 

3 T5 18 

 

Table 12. Depicting the channels in AD child identified as 

anomaly and respective anomaly score 

 
Subject Channel Anomaly Score 

1 Fp2 18 

2 P3 18 

3 Pz 18 

 

In a TD child, the anomaly is observed in the F7 channel 

which is not the case for AD child. For the AD child anomalies 

have been detected in the Pz and Fp2 channels. So the variation 

in the signal for audio and audio visual stimuli is observed in 

F7 in TD child and in other regions in AD child.  

Therefore, through the spatial analysis we observed that on 

an average, a TD child’s resultant anomaly score graphs have 

lesser peaks which settles down/ recedes immediately after the 

peak occurs. Whereas, for an AD child multiple peaks have 

been observed throughout the time range and they do not 

recede with time. Furthermore, by comparing the mean, 

median and standard deviation of the anomaly scores for a TD 

and AD we can predict that regions having similar distribution 

metrics will behave similarly. Through time analysis we can 

decipher that in a TD child anomaly was detected in F7 

channel and in other regions in the AD child. Hence, wherever 

variation was observed by the particular outlier detection 

model, we can predict and conjugate the reason for the same. 

 

 

4. CONCLUSIONS 

 

Anomaly detection can be an effective way of discovering 

unusual events, or observations that raise concerns in a data. 

In this study, we have used PyCaret’s Anomaly Detection 

Module to analyze the EEG patterns of Autistic children for 

Visual stimuli. Although there are many anomaly detection 

methods in this module, here we have used Angle-based 

Outlier Detector, Isolation Forest and Minimum Covariance 

Determinant models. In total, 6 child subjects EEG signal data 

were used, out of which 3 were typically developing (TD) 

children and 3 were children with Autism Spectrum Disorder 

(ASD). Through spatial analysis, anomaly scores were 

generated and their occurrence throughout the time stamp was 

observed. Through time analysis, variation in the signal for 

audio and audio visual stimuli behaviour was observed in 

different channels of the EEG signal. These results were then 

used to essentially distinguish between a normal child and a 

child with autistic spectrum disorder. The gathering of EEG 

data from other subjects on a much greater scale for variability 

and the usage of alternative outlier detection models from 

PyCaret's Anomaly Detection Module could be possible future 

directions. These models can be further fine-tuned with 

sufficiently larger datasets to improve the credibility of the 
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results and enable the possible real-world deployment of these 

models. 
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