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 Piccolo algorithm is one of the lightweight block ciphers designed specifically for low-

resource devices which present physical constraints in terms of area, power, and memory. 

Various hardware architectures for Piccolo block cipher have been proposed in recent years 

with the aim of obtaining a more appropriate low-resource design for specific constrained 

applications. The latter must meet real-time processing constraints without affecting the 

need for hardware resources. Finding a good compromise between computation time and 

implementation resource consumption is a major consideration in the design process. In this 

paper, we suggest six serial hardware architectures for Piccolo lightweight algorithm with a 

128 bits key length. Proposed architectures are compared to existing designs based on 

hardware resource occupancy, latency, and throughput. Also, we tested the security of the 

Piccolo algorithm, and the obtained results show the good robustness of the Piccolo block 

cipher against statistical attacks. Thus, we can use the Piccolo algorithm in lightweight 

applications that require a high level of privacy.  
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1. INTRODUCTION 

 

Recent advances in technology have boosted the need for 

mobile devices with limited computation resources. Such 

devices are the basic component of the internet of things (IoT) 

[1]. The idea behind connecting objects through sensors has 

been raised in the past decade but many challenges have 

blocked the way to reach this achievement. The development 

of IoT was very slow because of the unavailability of fast 

connectivity and small effective sensors with low power 

consumption. Sensors such as RFID tags were considered a 

feature key for connecting billions of objects. RFID tags are 

low-power devices that can connect wirelessly. Combining 

such devices with the available internet, cellular, and wireless 

networking has solved most of the problems. 

Connecting a huge number of objects has many concerns. 

Devices must be equipped with a limited computation 

processor to be able to run at low power, since most of them 

are based on batteries [2]. Also, the connection between 

objects must be performed securely without any overlapping 

to maintain the continuity and safety of data communication 

[3, 4]. In this context, encryption algorithms for IoT devices 

must run in real-time. Nevertheless, ordinary cryptography 

algorithms were designed to run on powerful devices without 

any power consumption limit. Algorithms such as AES [5] and 

DES [6] were mostly used for data encryption in cloud-based 

systems [7]. However, they cannot be used for limited 

computation devices and real-time systems. The need for 

optimized cryptography techniques taking into consideration 

the requirements of constrained IoT applications is highly 

imposed. 

In this paper, we propose an optimized lightweight 

cryptography algorithm suitable for IoT devices. The proposed 

technique is based on the PICCOLO algorithm [8]. The latter 

has been designed for hardware implementation to deal with 

low computation needs. The algorithm can be implemented in 

different ways: The parallel implementation which is used for 

speed purposes and the iterative one which is designed for low 

area occupation. The suggested algorithm aims to reduce the 

hardware implementation area occupation, while maintaining 

a good level of processing speed. 

Optimized iterative implementation is proposed to achieve 

a trade-off between processing speed, computation resources, 

and power consumption. Six different implementations were 

developed and two optimization techniques were applied. The 

first optimization technique is based on using different data 

paths. First, a single data path was used to load the data, and 

after, the data path was divided into two parts to load the data. 

The second optimization technique is based on changing the 

number of bits used to load the data: 8-bits, 16-bits, and 32-

bits were used to implement the algorithm. 

The original implementation of the PICCOLO algorithm 

was performed on ASIC. The parallel implementation requires 

757.75 GE (gate equivalent) and achieved a throughput of 

12.12 Kbps and 528 clock cycles of latency, while the iterative 

implementation occupies 1196.50 GE and has a throughput of 

193.94 Kbps and 33 clock cycles of latency. 

The rest of the paper is organized as follows: the 

background of the Piccolo algorithm will be presented in 

section 2. The proposed hardware design will be detailed in 

section 3. The experiments and the result comparison will be 
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presented in section 4. Finally, the paper’s content will be 

concluded in section 5. 

 

 

2. DESCRIPTION OF PICCOLO ALGORITHM 
 

Piccolo's algorithm is a symmetric lightweight block cipher, 

that was introduced by Shibutani et al. in CHES 2011 [8]. It is 

an iterative block cipher based on a Feistel network structure. 

To encrypt any message by Piccolo block encoder, the Piccolo 

algorithm needs a 64-bit block size of plaintext to initiate the 

encryption process with a variable key size of 128 bits or 80 

bits. In addition, Piccolo has 31 or 25 rounds for encryption or 

decryption of a message with a 128-bit and 80-bit key length, 

respectively. 

Piccolo block cipher uses the same data path as the 

encryption process for the decryption operation of ciphertext, 

whereas the difference is in the key scheduling, as the 

decryption process uses inverse key scheduling compared to 

the encryption process. The round keys can be calculated from 

the input key by the key scheduling part, which consists of 

Multiplexers and XOR operations to generate two subkeys for 

each round. The specification for the key scheduling algorithm 

of Piccolo is presented in Alg.1 and Alg.2 for a key size of 

128-bit and 80-bit, respectively. 

Datapath of Piccolo block cipher has two branches of 

Feistel structure, which is illustrated in Figure 1. Each branch 

of the Feistel structure consists of two layers S-Box, 

MixColunns, AddSubKey and RP.  

S-Box: In this function, every four bits of the message are 

converted to another value in output by Piccolo's substitution. 

The S-Box converts the input to an output value based on a 

predefined Look-Up-Table. The Look-Up-Table used for the 

conversion of the S-Box is showcased in Table 1. It is obtained 

based on statistical analyzes whose objective is to minimize 

the probability of correlation between the plaintext and the 

ciphertext. 

 

Algorithm 1. Round key operation for Piccolo-128 with r 

= 31. 

1 Input: A 128-bit secret key K. 

2 
𝑤𝑘0 = 𝑘0

𝐿|𝑘1
𝑅 , 𝑤𝑘1 = 𝑘1

𝐿|𝑘0
𝑅 , 𝑤𝑘2 = 𝑘4

𝐿|𝑘7
𝑅 , 𝑤𝑘3 =

𝑘7
𝐿|𝑘4

𝑅 

3 For i = 1 to r do 

4  If ((I + 2) mod 8 = 0) 

5   
(𝑘0, 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6, 𝑘7) ← 

 (𝑘2, 𝑘1, 𝑘6, 𝑘7, 𝑘0, 𝑘3, 𝑘4, 𝑘5) 
6  End if 

7 End for 

8 𝑟𝑘𝑖  ← 𝑘(𝑖+2)𝑚𝑜𝑑 8 ⊕ 𝑐𝑜𝑛𝑖
128 

9 Return 𝑟𝑘𝑖 , 𝑊𝑘𝑖 
 

Algorithm 2. Round key procedure for Piccolo as described 

in [8] with r = 25 for Piccolo-80. 

1 Input: A 128-bit secret key K. 

2 
𝑤𝑘0 = 𝑘0

𝐿|𝑘1
𝑅 , 𝑤𝑘1 = 𝑘1

𝐿|𝑘0
𝑅 , 𝑤𝑘2 =

𝑘4
𝐿|𝑘3

𝑅,𝑤𝑘3 = 𝑘3
𝐿|𝑘4

𝑅 

3 For i = 1 to r do 

4  If (i mod 8 = 3) 

5   𝑆𝑘𝑖 ←  (𝑘4, 𝑘4) 
6  elsif (i mod 8 = 0 or 2) 

7   𝑆𝑘𝑖 ← (𝑘2, 𝑘3) 
8  else 

9   𝑆𝑘𝑖 ← (𝑘0, 𝑘1) 
10  End if 

11 End for 

12 𝑟𝑘𝑖  ← 𝑆𝑘(𝑖) ⊕ 𝑐𝑜𝑛𝑖
80 

13 Return 𝑟𝑘𝑖 , 𝑊𝑘𝑖 
 

Table 1. Substitution box of Piccolo block cipher 

 
X 0 1 2 3 4 5 6 7 8 9 A B C D E F 

S E 4 B 2 3 8 0 9 1 A 7 F 6 C 5 D 

 

 
 

Figure 1. Piccolo encryption process 
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MixColumnns: The MixColumns function uses a 16-bit 

input to generate another one with the same size. This function 

is used to multiply the input value by the diffusion matrix MD. 

The MixColumns operation is defined using the following 

equation: 

 

(

𝑉0
𝑉1
𝑉2
𝑉3

) ∗ (

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

) =

(

 

𝑉0
′

𝑉1
′

𝑉2
′

𝑉3
′)

  (1) 

 

INPUT             MD           OUTPUT 

RP: RP function consists in rearranging all bytes in the 

message, as listed in Table 2. 

 

Table 2. RP function of Piccolo block cipher 

 
Byte 

0 

Byte 

1 

Byte 

2 

Byte 

3 

Byte 

4 

Byte 

5 

Byte 

6 

Byte 

7 

Byte 

2 

Byte 

7 

Byte 

4 

Byte 

1 

Byte 

6 

Byte 

3 

Byte 

0 

Byte 

5 

 

AddSubKey: This process performs to add sub-keys for 

each round (RKs and WKs) to a message by the XOR 

operation. 

 

 

3. PROPOSED HARDWARE IMPLEMENTATION OF 

PICCOLO ALGORITHM 

 

3.1 Single path for data encryption process 

 

In this section, we detailed the use of a single path to encrypt 

the data and discuss its impact on different hardware 

architectures of Piccolo block cipher. 

As mentioned in the last section, the Piccolo block cipher 

takes input data and keys with a length of 64 bits and 128 bits, 

respectively. But in the proposed architectures, we generate 

data packages of 4 bits. So, the proposed architectures need 32 

cycles to load 64 bits of data and 128 bits of the key. 

The purpose of the suggested encryption process design 

presented in this paragraph consists of processing data by 

using a single path. It is composed of 64-bit registers, AND 

gates, XOR gates, and a single block of the F function. The 

AND gates are used to enable the XOR operation between 

subkey, data from the F function and plain data.  

In this work, an improved F function hardware design that 

uses fewer resources compared to paper [8] has been 

developed. The role of this f-function in the Piccolo algorithm 

is to enhance the security level of the encrypted data. The 

mathematical expression of the F function is given by Eq. (2), 

while Y is a line vector of 4 4-bits values (x). Before the 

MixColumns function application, each X value will be 

substituted using the SBox.  

𝑭(𝑌) = 𝑺𝑩𝒐𝒙(𝑴𝒊𝒙𝑪𝒐𝒍𝒖𝒎𝒏𝒔(𝑺𝑩𝒐𝒙(𝑌))) (2) 

 

In the proposed design, the F function architecture is based 

on only one S-Box layer (i.e., four S-Box) instead of 8 [8], two 

multiplexers and 16-bit registers as shown in Figure 2 and 

Figure 3, which respectively represent the single path block 

cipher 8-bit architecture and 16-bit architecture. 

The proposed 8-bit architecture was designed to be suitable 

for any applications with low-resources. The inputs and output 

of the F function require 8 bits. It contains two S-Boxes. This 

design requires 8 clock cycles to generate all 64-bit of data, 

which gives 248 cycles as a total latency of the Piccolo 

algorithm with a key length of 128 bits. 

The proposed 16-bit architecture for Piccolo block cipher 

using a single path for the data encryption process contains 

four S-Boxes. For this architecture, the F function block 

requires 8 bits as input and 8 bits as output, which minimizes 

the total latency of one round by a half. Compared to 8-bit 

architecture. The total response time of the Piccolo block 

cipher required 124 cycles for Piccolo-128 (Piccolo algorithm 

with 128 bits of key size). 

In our work, we also proposed a 32-bit architecture (Figure 

4) for the Piccolo block cipher implementation. In the 

suggested architecture, we reduced the number of Feistel 

network structures to one. This design requires two cycles to 

perform one round. As a result, this design needs 62 cycles to 

generate the ciphertext output of Piccolo-128. 

 

3.2 Double paths for data encryption process 

 

The proposed 8-bit architecture for Piccolo block cipher 

includes two blocks of F functions. Each block takes 4 bits 

input and generates a 4 bits output. It is composed of one S-

Box. This design requires 8 cycles to generate an output for 

one round, giving 248 cycles total latency for the Piccolo 

algorithm with a key length of 128 bits. The detail of the 

proposed 8 bits hardware architecture for Piccolo block cipher 

using two paths of the data encryption process is presented in 

Figure 5. 

Figure 6 is shown the proposed 16-bit architecture for 

Piccolo block cipher using two paths for the data encryption 

process. Each block of the F function contains two S-Boxes. It 

requires 8 bits for input and 8 bits for output, which minimize 

latency by half compared to 8-bit architecture. The total 

response time of this design required 124 cycles for Piccolo-

128. 

For the proposed 32-bit hardware architecture for Piccolo 

block cipher, Figures 7 illustrate the proposed design. This 

design uses an improved Feistel network architecture to 

encryption data. It has four S-Boxes. As a result, the proposed 

architecture has 8 S-Boxes for two paths. To perform the 

encryption of 64 bits of data, the proposed design requires two 

cycles to perform one round. It needs 62 cycles a total latency 

to generate the ciphertext output of Piccolo-128. 
 

 
 

Figure 2. Proposed 8-bit architecture for Piccolo block cipher using the single path for data encryption process 
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Figure 3. Proposed 16-bit architecture for Piccolo block cipher using the single path for data encryption process 

 

 
 

Figure 4. Proposed 32-bit architecture for Piccolo block cipher using the single path for data encryption process 

 

  
 

Figure 5. Proposed 8-bit architecture for Piccolo block cipher using two paths for the data encryption process 

 

  
 

Figure 6. Proposed 16-bit architecture for Piccolo block cipher using two paths for the data encryption process 

 

  
 

Figure 7. Proposed 32-bit architecture for Piccolo block cipher using two paths for the data encryption process 

 

 

4. EXPERIMENTS AND RESULTS  
 

4.1 Security analysis 
 

The main goal of using the Piccolo lightweight algorithm in 

IoT applications is to protect the private data. In this section, 

we assess the security of the Piccolo algorithm against a 

known statistical analysis. 

In order to assess the security of the Piccolo algorithm, we 

perform a statistical analysis of some evaluation parameters of 
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the encrypted image by the Piccolo algorithm (using a key size 

of 128 bits). The proposed experiments and the performances 

analysis evaluation were performed on an Intel Core i5-

3337U@1.80GHz processor using MATLAB 2018. 

To evaluate the level of security provided by the piccolo 

algorithm for the encrypted image, we use the following five 

metrics. They are mainly based on the analysis of pixel 

intensities between the original images and the encrypted ones:  

• Image histogram 

• Image entropy 

• Correlation analysis 

• NPCR 

• UACI 

 

  
  

(a) (b) (c) (d) 

 

Figure 8. Histogram results of Lena’s image. (a) Lena image, (b) histogram of Lena image, (c) encrypted Lena image, and (d) 

histogram of encrypted Lena image 

 

    

(a) (b) (c) (d) 

 

Figure 9. Histogram results of Baboon image. (a) Baboon image, (b) histogram of Baboon image, (c) encrypted Baboon 

image, and (d) histogram of encrypted Baboon image 

 

 
   

(a) (b) (c) (d) 

 

Figure 10. Histogram results of Boat image. (a) Boat image, (b) histogram of Boat image, (c) encrypted Boat image, and (d) 

histogram of encrypted Boat image 

 

    
(a) (b) (c) (d) 

 

Figure 11. Histogram results of Pepper image. (a) Pepper image, (b) histogram of Pepper image, (c) encrypted Pepper image, 

and (d) histogram of encrypted Pepper image 
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4.1.1 Image histogram 

This metric is especially used for reducing the probability 

of images attack and to hide the main information from input 

images. The histogram is used to evaluate the performance of 

the encryption process. It shows how the gray pixel levels are 

distributed in the image, which should be very close to the 

uniform distribution. Generally, extracted histogram of the 

encrypted image is significantly different from the input image. 

As shown in Figure 8 to Figure 11, compared to the histogram 

of the input image, the histogram of the encrypted image is 

totally different and flat. In this case, successful attacks may 

not be possible. We note that this type of analysis (based on 

the histogram) is highly recommended to verify the risk of 

attacks. 

 

4.1.2 Image entropy 

Image entropy presents an efficient metric to measure the 

degree of the randomness of the input image or the message in 

general. It is also an efficient metric used to produce a 

powerful cryptosystem. Generally, data that presents full 

entropy contributes to no meaningful features that can be 

extracted. The low value of entropy provides a high possibility 

to predict forthcoming extracted values. Entropy algorithms 

are highly recommended to secure encryption systems and 

hash functions. Entropy values must be secret or unpredictable 

in order to ensure a high-security process. Therefore, using 

entropy algorithms is critical for the cryptosystem’s security. 

The entropy gives an idea about the degree of uncertainty. 

Generally, a high entropy value indicates high uncertainty.  

The information entropy was introduced by Shannon [9, 10]. 

It is defined using the following equation: 

 

𝑯(𝒙) =  −∑𝑷(𝒙𝒊). 𝐥𝐨𝐠 (𝑷(𝒙𝒊))

𝒊

 (3) 

 

H(x) is the entropy of the encrypted image. The Eq. (3) is 

applied on the intensity (x) while 𝑃(𝑥𝑖) is the probability of 

the ith intensity 𝑥𝑖 . The maximum entropy value is 8 for an 

encrypted image [11]. In this paper, Table 3 presents the 

results of four tested images. 

 

4.1.3 Correlation 

Correlation measures the degree of similarity between two 

adjacent pixels. In order to contribute to a secure system, we 

need to have a low correlation value between adjoining pixels. 

The correlation metric presents a numerical measure preceding 

a relationship between two variables. Good encryption is 

expected to remove the relationship between the original data 

and its encryption. So, the relationship connecting the 

plaintext and its encryption cannot be determined and no 

useful data can be extracted. In this work, we calculated the 

association relating the original image to its encrypted output. 

The correlation coefficient 𝑟𝑥,𝑦 is calculated using Eq. (4). 

 

𝒓𝒙,𝒚 = 
𝟏

𝑵
∑ (𝒙𝒊−𝑬(𝒙))(𝒚𝒊−𝑬(𝒚))
𝑵
𝒊=𝟏

√(
𝟏

𝑵
∑ (𝒙𝒊−𝑬(𝒙))

𝟐)𝑵
𝒊=𝟏 √(

𝟏

𝑵
∑ (𝒚𝒊−𝑬(𝒚))

𝟐)𝑵
𝒊=𝟏

,  

Where 𝑬(𝒙) =  
𝟏

𝑵
∑ 𝒙𝒊
𝑵
𝒊=𝟏  

(4) 

 

The correlation 𝑟𝑥,𝑦  should be equal to 0 for the perfect 

cipher and it will be equal to 1 for the worst cipher. This 

criterion is best explained by the theory of Shannon [12]. 

The correlation of adjacent pixels is illustrated in Figure 12 

to Figure 15. It shows the contrast between the original and the 

encrypted image. The original image can be thought of as 

having a high correlation coefficient. Whereas the encrypted 

image does not appear to have any correlation. 

The correlation and entropy of Lena, Peppers, Baboon, and 

Boats of size 256 x 256 are presented in Table 3. The obtained 

entropies result proved the robustness of the evaluated 

encryption algorithm, where the achieved results are close to 

the maximum value. From these results, we conclude that the 

Piccolo block cipher has a high degree level of resilience. 

 

Table 3. Correlation and entropy results for Lena, peppers, baboon, and boats of size 256 x 256 

 

 
Lena Baboon Boats Peppers 

Orig Encp Orig Encp Orig Encp Orig Encp 

H(x) 7.176 7.997 7.228 7.997 7.158 7.997 7.577 7.997 

𝒓𝒙,𝒚 0.952 0.001 0.874 0.005 0.927 0.001 0.964 0.002 

 

 
(a) 

 
(b) 

 

Figure 12. Correlation of adjacent pixels for: (a) the plain-image of Lena, (b) the cipher-image of Lena 
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(a) 

 
(b) 

 

Figure 13. Correlation of adjacent pixels for: (a) the plain-image of Baboon, (b) the cipher-image of Baboon 

 

 
(a) 

 
(b) 

 

Figure 14. Correlation of adjacent pixels for: (a) the plain-image of Boats, (b) the cipher-image of Boats 

 
(a) 

 
(b) 

 

Figure 15. Correlation of adjacent pixels for: (a) the plain-image of Peppers, (b) the cipher-image of Peppers 

 

4.1.4 NPCR and UACI 

For a strong encryption system, the Piccolo algorithm 

should be sensitive to a light input variation, even to one-bit 

change in the input image. That means changing any bit in the 

input image will produce a different encrypted image 

compared to the old encrypted image. To measure Piccolo 

block cipher sensitivity, the number of pixel change rate 

(NPCR) and the unified average changing intensity (UACI) 

[13, 14] were deployed. These measures are defined as follows: 

 

𝑁𝑃𝐶𝑅 =  
1

𝑀 ∗ 𝑁
∑𝐷(𝑖, 𝑗) ∗ 100%

𝑖,𝑗

 (5) 
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Table 4. Performance result of the proposed designs for piccolo block ciphers 

 

Design 

Area (Resources) Speed Efficiency 

FPGA 

Device 
No. of 

Slices 

No. 

of 

FFs 

No. of 

LUTs 

No. of 

LUTs+FFs 

Clock 

Cycles 

Max. 

Freq 

(MHz) 

Throughput 

(Mbps) 

Eff. 

(Mbps/slices) 

Proposed 8-bit 

architecture 

(section 2.A) 

271 260 512 772 248 47.83 12.34 0.04 

XC3S50-

5 

Proposed 8-bit 

architecture 

(section 2.B) 

237 243 439 682 248 49.65 12.81 0.05 

Proposed 16-bit 

architecture 

(section 2.A) 

279 270 524 794 124 49.07 25.32 0.09 

Proposed 16-bit 

architecture 

(section 2.B) 

281 241 532 773 124 47.63 24.58 0.08 

Proposed 32-bit 

architecture 

(section 2.A) 

286 206 545 751 62 69.56 71.8 0.25 

Proposed 32-bit 

architecture 

(section 2.B) 

301 248 575 823 62 48.23 49.78 0.16 

 

Table 5. Performance result of the existing FPGA implementation for Piccolo block ciphers 

 

Design 

Key 

size 

(bits) 

Datapath 

size (bits) 

Area (Resources) Speed Efficiency 

FPGA 

Device 
No. of 

Slices 

No. 

of 

FFs 

No. of 

LUTs 

No. of 

LUTs+FFs 

Clock 

Cycles 

Max. 

Freq 

(MHz) 

Throughput 

(Mbps) 

Eff. 

(Mbps/slices) 

AES 

[15] 
128 128 17425 - - - - 196.1 25.1 1.44 

Spartan-3 

XC3S2000-

5 

Piccolo 

[16] 
128 4 265 260 442 - 496 45.85 5.92 0.02 

Spartan-3 

XC3S50-5 

Piccolo 

[16] 
128 64 397 207 757 - 31 81.82 168.9 0.49 

Spartan-3 

XC3S50-5 

Lilliput 

[17] 
80 4 - 205 592 797 - 119.2 28 - 

Spartan-3 

XC3S50-5 

Klein 

[17] 
80 4 - 194 597 791 - 116 26 - 

Spartan-3 

XC3S50-5 

AES 

[18] 
128 8 393 - - - 534 - 16.86 0.04 

Spartan-3 

XC3S50-5 

 

𝑈𝐴𝐶𝐼 =  
1

𝑀 ∗ 𝑁 ∗ 255
∑|𝐶1(𝑖, 𝑗) − 𝐶2(𝑖, 𝑗)|

𝑖,𝑗

∗ 100% 

(6) 

 

𝐷(𝑖, 𝑗) =  {
1 𝑖𝑓 𝐶1(𝑖, 𝑗) ≠  𝐶2(𝑖, 𝑗)

0 𝑖𝑓 𝐶1(𝑖, 𝑗) =  𝐶2(𝑖, 𝑗)
 (7) 

 

where, 𝐶1 and 𝐶2 correspond to two encrypted images with a 

one-bit difference. The achieved values of NPCR and UACI 

are summarized in Table 6. The obtained results show that the 

Piccolo algorithm has a high sensitivity to one-bit change in 

the input images. 
 

Table 6. Results for the number of pixels change rate 

(NPCR) and unified average changing intensity (UACI) 

 
 Lena Baboon Boats Peppers 

NPCR 89.76% 89.97% 90.63% 90.27% 

UACI 30.04% 30.15% 30.78% 30.34% 

 

4.2 Results of hardware implementations 

 

In this section, the configuration of the hardware 

implementation is displayed. The Spartan-3 was used for the 

hardware implementation of the proposed architectures. 

Various performance metrics are derived from the 

implementation results, such as area, response time and 

throughput. To choose the best design, Table 4 summarizes the 

results of the resource usage and the performance of the 

proposed implementations on the Spartan-3 device.  

 

 
 

Figure 16. Occupied resources for the different 

implementations of the Piccolo 
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Figure 16 presents the occupied resource for the different 

developed implementations of the Piccolo. 

Figure 17 presents the efficiency of the different hardware 

implementations of the Piccolo. The efficiency is defined as 

(Efficiency = throughput/slices). 

The 8-bit single path implementation has occupied an area 

of 772 (LUTs+FFs) and the 8-bit two paths implementation 

has occupied 682 (LUTs+FFs). For the 16-bit architecture, the 

single path implementation has used 794 (LUTs+FFs) and the 

two paths implementation has used 773 (LUTs+FFs). The 32-

bit single path implementation has occupied an area of 751 

(LUTs+FFs) and the 32-bit two paths implementation has 

occupied 823 (LUTs+FFs).  

The 32-bit single-path architecture achieves higher 

throughput and efficiency compared to the 16-bit single-path 

architecture. However, it requires more hardware resources 

than the 16-bit architecture.  

For 8-bit and 16-bit, the proposed two-path architectures are 

less complex than the single-path ones. The reason is that the 

single-path architectures use a larger number of Substitution 

box units, additional multiplexers, and registers. Only the 32-

bit single-path architecture makes the exception because the F 

Function uses only Sboxes (8) and simple logic gates for 

combinatorial operations. In this version of architecture, the F 

function is applied directly to the 32 bits of the message 

without having to subdivide it into slices of 16 bits or 8 bits. 

Therefore, there will be no need to use MUX for data routing 

and Registers for temporary data storage. While for the 32-bit 

dual-path architecture, it consists of 8 SBOx, 8 registers and 4 

MUX. 

Figure 17. Comparison of the efficient implementation of the 

various implementations proposed 

Based on the achieved results, the two paths 

implementations have lower resources occupancy. However, 

the single path implementations have a higher throughput. The 

two paths implementations are more efficient for hardware 

implementation because it provides a better trade-off between 

the implementation area and throughput. 

Table 5 presents the results of existing FPGA 

implementation for some block cipher algorithms. The 

proposed designs present the best efficiency in terms of 

hardware resources implementation compared to the other 

designs. They achieved a high throughput (Mbps) as indicated 

by the results in Table 4. 

5. CONCLUSION

To propose an efficient hardware architecture of the Piccolo 

algorithm, we have proposed six architectures. The proposed 

architectures were implemented on the Xilinx Spartan-3 

XC3S50pq208-5 FPGA device. The proposed 

implementations have different paths sizes (i.e. 8-bits, 16-bits 

and 32-bits) to perform the encryption process. From the result 

of hardware implementations on FPGA, the best 

implementations are the architectures that use two paths for 

encryption processing. They present a higher performance and 

higher throughput/resource-occupation efficiency compared 

to the existing design. 

In the second step, we tested the security level of the Piccolo 

algorithm, when it is used to encrypt an image. To assess the 

security of the Piccolo algorithm, certain evaluation 

parameters were used, such as image histogram, entropy, 

NPCR and UACI. The obtained results show that the Piccolo 

algorithm has high-level security for the analysis between the 

original and the encrypted images. 

In future work, we plan to implement the proposed efficient 

architecture of the Piccolo algorithm with the VANET 

protocol to assure the security of the connected vehicle data. 

REFERENCES 

[1] Ali, Z.H., Ali, H.A., Badawy, M.M. (2015). Internet of

Things (IoT): Definitions, challenges and recent research

directions. International Journal of Computer 

Applications, 128(1): 37-47.

https://doi.org/10.5120/ijca2015906430 

[2] Javed, F., Afzal, M.K., Sharif, M., Kim, B.S. (2018).

Internet of Things (IoT) operating systems support,

networking technologies, applications, and challenges: A

comparative review. IEEE Communications Surveys &

Tutorials, 20(3): 2062-2100.

https://doi.org/10.1109/COMST.2018.2817685

[3] Gupta, A.K., Chakraborty, C., Gupta, B. (2019).

Monitoring of epileptical patients using cloud-enabled

health-IoT system. Traitement du Signal, 36(5): 425-431.

https://doi.org/10.18280/ts.360507

[4] Gupta, A.K., Chakraborty, C., Gupta, B. (2021). Secure

transmission of EEG data using watermarking algorithm

for the detection of epileptical seizures. Traitement du

Signal, 38(2): 473-479.

https://doi.org/10.18280/ts.380227

[5] Vincent, R., Daemen, J. (2001). Advanced encryption

standard. Proceedings of Federal Information Processing

Standards Publications, National Institute of Standards

and Technology, pp. 19-22.

[6] Smid, M.E., Branstad, D.K. (1988). Data encryption

standard: past and future. Proceedings of the IEEE, 76(5):

550-559.

[7] Babitha, M.P., Babu, K.R. (2016). Secure cloud storage

using AES encryption. In 2016 International Conference

on Automatic Control and Dynamic Optimization

Techniques (ICACDOT), pp. 859-864.

https://doi.org/10.1109/ICACDOT.2016.7877709

[8] Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A.,

Akishita, T., Shirai, T. (2011). Piccolo: An ultra-

lightweight blockcipher. In International Workshop on

Cryptographic Hardware and Embedded Systems, pp.

342-357. https://doi.org/10.1007/978-3-642-23951-9_23

[9] Wu, Y., Zhou, Y., Saveriades, G., Agaian, S., Noonan,

J.P., Natarajan, P. (2013). Local Shannon entropy

measure with statistical tests for image randomness.

Information Sciences, 222: 323-342.

813



 

https://doi.org/10.1016/j.ins.2012.07.049 

[10] Zhu, C. (2012). A novel image encryption scheme based 

on improved hyperchaotic sequences. Optics 

Communications, 285(1): 29-37. 

https://doi.org/10.1016/j.optcom.2011.08.079 

[11] Huang, X., Ye, G. (2018). An image encryption 

algorithm based on time-delay and random insertion. 

Entropy, 20(12): 974. https://doi.org/10.3390/e20120974 

[12] Shannon, C.E. (1949). Communication theory of secrecy 

systems. The Bell System Technical Journal, 28(4): 656-

715. https://doi.org/10.1002/j.1538-

7305.1949.tb00928.x 

[13] Ye, G., Huang, X. (2017). An efficient symmetric image 

encryption algorithm based on an intertwining logistic 

map. Neurocomputing, 251: 45-53. 

https://doi.org/10.1016/j.neucom.2017.04.016 

[14] Liu, H., Wang, X. (2011). Color image encryption using 

spatial bit-level permutation and high-dimension chaotic 

system. Optics Communications, 284(16-17): 3895-3903. 

https://doi.org/10.1016/j.optcom.2011.04.001 

[15] Good, T., Benaissa, M. (2005). AES on FPGA from the 

fastest to the smallest. In International Workshop on 

Cryptographic Hardware and Embedded Systems, pp. 

427-440. https://doi.org/10.1007/11545262_31 

[16] Mhaouch, A., Elhamzi, W., Atri, M. (2020). Lightweight 

hardware architectures for the piccolo block cipher in 

FPGA. In 2020 5th International Conference on 

Advanced Technologies for Signal and Image Processing 

(ATSIP), pp. 1-4. 

https://doi.org/10.1109/ATSIP49331.2020.9231586 

[17] Marchand, C., Bossuet, L., Gaj, K. (2017). Area-oriented 

comparison of lightweight block ciphers implemented in 

hardware for the activation mechanism in the anti-

counterfeiting schemes. International Journal of Circuit 

Theory and Applications, 45(2): 274-291. 

https://doi.org/10.1002/cta.2288 

[18] Kaps, J.P., Sunar, B. (2006). Energy comparison of AES 

and SHA-1 for ubiquitous computing. In International 

Conference on Embedded and Ubiquitous Computing, 

pp. 372-381. https://doi.org/10.1007/11807964_38 

 

814




