

Optimized Piccolo Lightweight Block Cipher: Area Efficient Implementation

Ayoub Mhaouch1*, Wajdi Elhamzi2, Abdessalem Ben Abdelali1, Mohamed Atri3

1 Laboratory of Electronics and Microelectronics (EµE), Faculty of Sciences of Monastir, University of Monastir, Monastir

5000, Tunisia
2 College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University Al-kharj, Al-kharj 11942, Saudi

Arabia
3 College of Computer Science, King Khalid University, Abha 61421, Saudi Arabia

Corresponding Author Email: wajdi.elhamzi@essths.rnu.tn

https://doi.org/10.18280/ts.390305

ABSTRACT

Received: 1 March 2022

Accepted: 16 May 2022

 Piccolo algorithm is one of the lightweight block ciphers designed specifically for low-

resource devices which present physical constraints in terms of area, power, and memory.

Various hardware architectures for Piccolo block cipher have been proposed in recent years

with the aim of obtaining a more appropriate low-resource design for specific constrained

applications. The latter must meet real-time processing constraints without affecting the

need for hardware resources. Finding a good compromise between computation time and

implementation resource consumption is a major consideration in the design process. In this

paper, we suggest six serial hardware architectures for Piccolo lightweight algorithm with a

128 bits key length. Proposed architectures are compared to existing designs based on

hardware resource occupancy, latency, and throughput. Also, we tested the security of the

Piccolo algorithm, and the obtained results show the good robustness of the Piccolo block

cipher against statistical attacks. Thus, we can use the Piccolo algorithm in lightweight

applications that require a high level of privacy.

Keywords:

piccolo block cipher, serial architectures,

hardware implementation, low-resource,

VHDL, FPGA, security analysis

1. INTRODUCTION

Recent advances in technology have boosted the need for

mobile devices with limited computation resources. Such

devices are the basic component of the internet of things (IoT)

[1]. The idea behind connecting objects through sensors has

been raised in the past decade but many challenges have

blocked the way to reach this achievement. The development

of IoT was very slow because of the unavailability of fast

connectivity and small effective sensors with low power

consumption. Sensors such as RFID tags were considered a

feature key for connecting billions of objects. RFID tags are

low-power devices that can connect wirelessly. Combining

such devices with the available internet, cellular, and wireless

networking has solved most of the problems.

Connecting a huge number of objects has many concerns.

Devices must be equipped with a limited computation

processor to be able to run at low power, since most of them

are based on batteries [2]. Also, the connection between

objects must be performed securely without any overlapping

to maintain the continuity and safety of data communication

[3, 4]. In this context, encryption algorithms for IoT devices

must run in real-time. Nevertheless, ordinary cryptography

algorithms were designed to run on powerful devices without

any power consumption limit. Algorithms such as AES [5] and

DES [6] were mostly used for data encryption in cloud-based

systems [7]. However, they cannot be used for limited

computation devices and real-time systems. The need for

optimized cryptography techniques taking into consideration

the requirements of constrained IoT applications is highly

imposed.

In this paper, we propose an optimized lightweight

cryptography algorithm suitable for IoT devices. The proposed

technique is based on the PICCOLO algorithm [8]. The latter

has been designed for hardware implementation to deal with

low computation needs. The algorithm can be implemented in

different ways: The parallel implementation which is used for

speed purposes and the iterative one which is designed for low

area occupation. The suggested algorithm aims to reduce the

hardware implementation area occupation, while maintaining

a good level of processing speed.

Optimized iterative implementation is proposed to achieve

a trade-off between processing speed, computation resources,

and power consumption. Six different implementations were

developed and two optimization techniques were applied. The

first optimization technique is based on using different data

paths. First, a single data path was used to load the data, and

after, the data path was divided into two parts to load the data.

The second optimization technique is based on changing the

number of bits used to load the data: 8-bits, 16-bits, and 32-

bits were used to implement the algorithm.

The original implementation of the PICCOLO algorithm

was performed on ASIC. The parallel implementation requires

757.75 GE (gate equivalent) and achieved a throughput of

12.12 Kbps and 528 clock cycles of latency, while the iterative

implementation occupies 1196.50 GE and has a throughput of

193.94 Kbps and 33 clock cycles of latency.

The rest of the paper is organized as follows: the

background of the Piccolo algorithm will be presented in

section 2. The proposed hardware design will be detailed in

section 3. The experiments and the result comparison will be

Traitement du Signal
Vol. 39, No. 3, June, 2022, pp. 805-814

Journal homepage: http://iieta.org/journals/ts

805

https://crossmark.crossref.org/dialog/?doi=10.18280/ts.390305&domain=pdf

presented in section 4. Finally, the paper’s content will be

concluded in section 5.

2. DESCRIPTION OF PICCOLO ALGORITHM

Piccolo's algorithm is a symmetric lightweight block cipher,

that was introduced by Shibutani et al. in CHES 2011 [8]. It is

an iterative block cipher based on a Feistel network structure.

To encrypt any message by Piccolo block encoder, the Piccolo

algorithm needs a 64-bit block size of plaintext to initiate the

encryption process with a variable key size of 128 bits or 80

bits. In addition, Piccolo has 31 or 25 rounds for encryption or

decryption of a message with a 128-bit and 80-bit key length,

respectively.

Piccolo block cipher uses the same data path as the

encryption process for the decryption operation of ciphertext,

whereas the difference is in the key scheduling, as the

decryption process uses inverse key scheduling compared to

the encryption process. The round keys can be calculated from

the input key by the key scheduling part, which consists of

Multiplexers and XOR operations to generate two subkeys for

each round. The specification for the key scheduling algorithm

of Piccolo is presented in Alg.1 and Alg.2 for a key size of

128-bit and 80-bit, respectively.

Datapath of Piccolo block cipher has two branches of

Feistel structure, which is illustrated in Figure 1. Each branch

of the Feistel structure consists of two layers S-Box,

MixColunns, AddSubKey and RP.

S-Box: In this function, every four bits of the message are

converted to another value in output by Piccolo's substitution.

The S-Box converts the input to an output value based on a

predefined Look-Up-Table. The Look-Up-Table used for the

conversion of the S-Box is showcased in Table 1. It is obtained

based on statistical analyzes whose objective is to minimize

the probability of correlation between the plaintext and the

ciphertext.

Algorithm 1. Round key operation for Piccolo-128 with r

= 31.

1 Input: A 128-bit secret key K.

2
𝑤𝑘0 = 𝑘0

𝐿|𝑘1
𝑅 , 𝑤𝑘1 = 𝑘1

𝐿|𝑘0
𝑅 , 𝑤𝑘2 = 𝑘4

𝐿|𝑘7
𝑅 , 𝑤𝑘3 =

𝑘7
𝐿|𝑘4

𝑅

3 For i = 1 to r do

4 If ((I + 2) mod 8 = 0)

5
(𝑘0, 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6, 𝑘7) ←

 (𝑘2, 𝑘1, 𝑘6, 𝑘7, 𝑘0, 𝑘3, 𝑘4, 𝑘5)
6 End if

7 End for

8 𝑟𝑘𝑖 ← 𝑘(𝑖+2)𝑚𝑜𝑑 8 ⊕ 𝑐𝑜𝑛𝑖
128

9 Return 𝑟𝑘𝑖 , 𝑊𝑘𝑖

Algorithm 2. Round key procedure for Piccolo as described

in [8] with r = 25 for Piccolo-80.

1 Input: A 128-bit secret key K.

2
𝑤𝑘0 = 𝑘0

𝐿|𝑘1
𝑅 , 𝑤𝑘1 = 𝑘1

𝐿|𝑘0
𝑅 , 𝑤𝑘2 =

𝑘4
𝐿|𝑘3

𝑅,𝑤𝑘3 = 𝑘3
𝐿|𝑘4

𝑅

3 For i = 1 to r do

4 If (i mod 8 = 3)

5 𝑆𝑘𝑖 ← (𝑘4, 𝑘4)
6 elsif (i mod 8 = 0 or 2)

7 𝑆𝑘𝑖 ← (𝑘2, 𝑘3)
8 else

9 𝑆𝑘𝑖 ← (𝑘0, 𝑘1)
10 End if

11 End for

12 𝑟𝑘𝑖 ← 𝑆𝑘(𝑖) ⊕ 𝑐𝑜𝑛𝑖
80

13 Return 𝑟𝑘𝑖 , 𝑊𝑘𝑖

Table 1. Substitution box of Piccolo block cipher

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

S E 4 B 2 3 8 0 9 1 A 7 F 6 C 5 D

Figure 1. Piccolo encryption process

806

MixColumnns: The MixColumns function uses a 16-bit

input to generate another one with the same size. This function

is used to multiply the input value by the diffusion matrix MD.

The MixColumns operation is defined using the following

equation:

(

𝑉0
𝑉1
𝑉2
𝑉3

) ∗ (

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

) =

(

𝑉0
′

𝑉1
′

𝑉2
′

𝑉3
′)

 (1)

INPUT MD OUTPUT

RP: RP function consists in rearranging all bytes in the

message, as listed in Table 2.

Table 2. RP function of Piccolo block cipher

Byte

0

Byte

1

Byte

2

Byte

3

Byte

4

Byte

5

Byte

6

Byte

7

Byte

2

Byte

7

Byte

4

Byte

1

Byte

6

Byte

3

Byte

0

Byte

5

AddSubKey: This process performs to add sub-keys for

each round (RKs and WKs) to a message by the XOR

operation.

3. PROPOSED HARDWARE IMPLEMENTATION OF

PICCOLO ALGORITHM

3.1 Single path for data encryption process

In this section, we detailed the use of a single path to encrypt

the data and discuss its impact on different hardware

architectures of Piccolo block cipher.

As mentioned in the last section, the Piccolo block cipher

takes input data and keys with a length of 64 bits and 128 bits,

respectively. But in the proposed architectures, we generate

data packages of 4 bits. So, the proposed architectures need 32

cycles to load 64 bits of data and 128 bits of the key.

The purpose of the suggested encryption process design

presented in this paragraph consists of processing data by

using a single path. It is composed of 64-bit registers, AND

gates, XOR gates, and a single block of the F function. The

AND gates are used to enable the XOR operation between

subkey, data from the F function and plain data.

In this work, an improved F function hardware design that

uses fewer resources compared to paper [8] has been

developed. The role of this f-function in the Piccolo algorithm

is to enhance the security level of the encrypted data. The

mathematical expression of the F function is given by Eq. (2),

while Y is a line vector of 4 4-bits values (x). Before the

MixColumns function application, each X value will be

substituted using the SBox.

𝑭(𝑌) = 𝑺𝑩𝒐𝒙(𝑴𝒊𝒙𝑪𝒐𝒍𝒖𝒎𝒏𝒔(𝑺𝑩𝒐𝒙(𝑌))) (2)

In the proposed design, the F function architecture is based

on only one S-Box layer (i.e., four S-Box) instead of 8 [8], two

multiplexers and 16-bit registers as shown in Figure 2 and

Figure 3, which respectively represent the single path block

cipher 8-bit architecture and 16-bit architecture.

The proposed 8-bit architecture was designed to be suitable

for any applications with low-resources. The inputs and output

of the F function require 8 bits. It contains two S-Boxes. This

design requires 8 clock cycles to generate all 64-bit of data,

which gives 248 cycles as a total latency of the Piccolo

algorithm with a key length of 128 bits.

The proposed 16-bit architecture for Piccolo block cipher

using a single path for the data encryption process contains

four S-Boxes. For this architecture, the F function block

requires 8 bits as input and 8 bits as output, which minimizes

the total latency of one round by a half. Compared to 8-bit

architecture. The total response time of the Piccolo block

cipher required 124 cycles for Piccolo-128 (Piccolo algorithm

with 128 bits of key size).

In our work, we also proposed a 32-bit architecture (Figure

4) for the Piccolo block cipher implementation. In the

suggested architecture, we reduced the number of Feistel

network structures to one. This design requires two cycles to

perform one round. As a result, this design needs 62 cycles to

generate the ciphertext output of Piccolo-128.

3.2 Double paths for data encryption process

The proposed 8-bit architecture for Piccolo block cipher

includes two blocks of F functions. Each block takes 4 bits

input and generates a 4 bits output. It is composed of one S-

Box. This design requires 8 cycles to generate an output for

one round, giving 248 cycles total latency for the Piccolo

algorithm with a key length of 128 bits. The detail of the

proposed 8 bits hardware architecture for Piccolo block cipher

using two paths of the data encryption process is presented in

Figure 5.

Figure 6 is shown the proposed 16-bit architecture for

Piccolo block cipher using two paths for the data encryption

process. Each block of the F function contains two S-Boxes. It

requires 8 bits for input and 8 bits for output, which minimize

latency by half compared to 8-bit architecture. The total

response time of this design required 124 cycles for Piccolo-

128.

For the proposed 32-bit hardware architecture for Piccolo

block cipher, Figures 7 illustrate the proposed design. This

design uses an improved Feistel network architecture to

encryption data. It has four S-Boxes. As a result, the proposed

architecture has 8 S-Boxes for two paths. To perform the

encryption of 64 bits of data, the proposed design requires two

cycles to perform one round. It needs 62 cycles a total latency

to generate the ciphertext output of Piccolo-128.

Figure 2. Proposed 8-bit architecture for Piccolo block cipher using the single path for data encryption process

807

Figure 3. Proposed 16-bit architecture for Piccolo block cipher using the single path for data encryption process

Figure 4. Proposed 32-bit architecture for Piccolo block cipher using the single path for data encryption process

Figure 5. Proposed 8-bit architecture for Piccolo block cipher using two paths for the data encryption process

Figure 6. Proposed 16-bit architecture for Piccolo block cipher using two paths for the data encryption process

Figure 7. Proposed 32-bit architecture for Piccolo block cipher using two paths for the data encryption process

4. EXPERIMENTS AND RESULTS

4.1 Security analysis

The main goal of using the Piccolo lightweight algorithm in

IoT applications is to protect the private data. In this section,

we assess the security of the Piccolo algorithm against a

known statistical analysis.

In order to assess the security of the Piccolo algorithm, we

perform a statistical analysis of some evaluation parameters of

808

the encrypted image by the Piccolo algorithm (using a key size

of 128 bits). The proposed experiments and the performances

analysis evaluation were performed on an Intel Core i5-

3337U@1.80GHz processor using MATLAB 2018.

To evaluate the level of security provided by the piccolo

algorithm for the encrypted image, we use the following five

metrics. They are mainly based on the analysis of pixel

intensities between the original images and the encrypted ones:

• Image histogram

• Image entropy

• Correlation analysis

• NPCR

• UACI

(a) (b) (c) (d)

Figure 8. Histogram results of Lena’s image. (a) Lena image, (b) histogram of Lena image, (c) encrypted Lena image, and (d)

histogram of encrypted Lena image

(a) (b) (c) (d)

Figure 9. Histogram results of Baboon image. (a) Baboon image, (b) histogram of Baboon image, (c) encrypted Baboon

image, and (d) histogram of encrypted Baboon image

(a) (b) (c) (d)

Figure 10. Histogram results of Boat image. (a) Boat image, (b) histogram of Boat image, (c) encrypted Boat image, and (d)

histogram of encrypted Boat image

(a) (b) (c) (d)

Figure 11. Histogram results of Pepper image. (a) Pepper image, (b) histogram of Pepper image, (c) encrypted Pepper image,

and (d) histogram of encrypted Pepper image

809

4.1.1 Image histogram

This metric is especially used for reducing the probability

of images attack and to hide the main information from input

images. The histogram is used to evaluate the performance of

the encryption process. It shows how the gray pixel levels are

distributed in the image, which should be very close to the

uniform distribution. Generally, extracted histogram of the

encrypted image is significantly different from the input image.

As shown in Figure 8 to Figure 11, compared to the histogram

of the input image, the histogram of the encrypted image is

totally different and flat. In this case, successful attacks may

not be possible. We note that this type of analysis (based on

the histogram) is highly recommended to verify the risk of

attacks.

4.1.2 Image entropy

Image entropy presents an efficient metric to measure the

degree of the randomness of the input image or the message in

general. It is also an efficient metric used to produce a

powerful cryptosystem. Generally, data that presents full

entropy contributes to no meaningful features that can be

extracted. The low value of entropy provides a high possibility

to predict forthcoming extracted values. Entropy algorithms

are highly recommended to secure encryption systems and

hash functions. Entropy values must be secret or unpredictable

in order to ensure a high-security process. Therefore, using

entropy algorithms is critical for the cryptosystem’s security.

The entropy gives an idea about the degree of uncertainty.

Generally, a high entropy value indicates high uncertainty.

The information entropy was introduced by Shannon [9, 10].

It is defined using the following equation:

𝑯(𝒙) = −∑𝑷(𝒙𝒊). 𝐥𝐨𝐠 (𝑷(𝒙𝒊))

𝒊

 (3)

H(x) is the entropy of the encrypted image. The Eq. (3) is

applied on the intensity (x) while 𝑃(𝑥𝑖) is the probability of

the ith intensity 𝑥𝑖 . The maximum entropy value is 8 for an

encrypted image [11]. In this paper, Table 3 presents the

results of four tested images.

4.1.3 Correlation

Correlation measures the degree of similarity between two

adjacent pixels. In order to contribute to a secure system, we

need to have a low correlation value between adjoining pixels.

The correlation metric presents a numerical measure preceding

a relationship between two variables. Good encryption is

expected to remove the relationship between the original data

and its encryption. So, the relationship connecting the

plaintext and its encryption cannot be determined and no

useful data can be extracted. In this work, we calculated the

association relating the original image to its encrypted output.

The correlation coefficient 𝑟𝑥,𝑦 is calculated using Eq. (4).

𝒓𝒙,𝒚 =
𝟏

𝑵
∑ (𝒙𝒊−𝑬(𝒙))(𝒚𝒊−𝑬(𝒚))
𝑵
𝒊=𝟏

√(
𝟏

𝑵
∑ (𝒙𝒊−𝑬(𝒙))

𝟐)𝑵
𝒊=𝟏 √(

𝟏

𝑵
∑ (𝒚𝒊−𝑬(𝒚))

𝟐)𝑵
𝒊=𝟏

,

Where 𝑬(𝒙) =
𝟏

𝑵
∑ 𝒙𝒊
𝑵
𝒊=𝟏

(4)

The correlation 𝑟𝑥,𝑦 should be equal to 0 for the perfect

cipher and it will be equal to 1 for the worst cipher. This

criterion is best explained by the theory of Shannon [12].

The correlation of adjacent pixels is illustrated in Figure 12

to Figure 15. It shows the contrast between the original and the

encrypted image. The original image can be thought of as

having a high correlation coefficient. Whereas the encrypted

image does not appear to have any correlation.

The correlation and entropy of Lena, Peppers, Baboon, and

Boats of size 256 x 256 are presented in Table 3. The obtained

entropies result proved the robustness of the evaluated

encryption algorithm, where the achieved results are close to

the maximum value. From these results, we conclude that the

Piccolo block cipher has a high degree level of resilience.

Table 3. Correlation and entropy results for Lena, peppers, baboon, and boats of size 256 x 256

Lena Baboon Boats Peppers

Orig Encp Orig Encp Orig Encp Orig Encp

H(x) 7.176 7.997 7.228 7.997 7.158 7.997 7.577 7.997

𝒓𝒙,𝒚 0.952 0.001 0.874 0.005 0.927 0.001 0.964 0.002

(a)

(b)

Figure 12. Correlation of adjacent pixels for: (a) the plain-image of Lena, (b) the cipher-image of Lena

810

(a)

(b)

Figure 13. Correlation of adjacent pixels for: (a) the plain-image of Baboon, (b) the cipher-image of Baboon

(a)

(b)

Figure 14. Correlation of adjacent pixels for: (a) the plain-image of Boats, (b) the cipher-image of Boats

(a)

(b)

Figure 15. Correlation of adjacent pixels for: (a) the plain-image of Peppers, (b) the cipher-image of Peppers

4.1.4 NPCR and UACI

For a strong encryption system, the Piccolo algorithm

should be sensitive to a light input variation, even to one-bit

change in the input image. That means changing any bit in the

input image will produce a different encrypted image

compared to the old encrypted image. To measure Piccolo

block cipher sensitivity, the number of pixel change rate

(NPCR) and the unified average changing intensity (UACI)

[13, 14] were deployed. These measures are defined as follows:

𝑁𝑃𝐶𝑅 =
1

𝑀 ∗ 𝑁
∑𝐷(𝑖, 𝑗) ∗ 100%

𝑖,𝑗

 (5)

811

Table 4. Performance result of the proposed designs for piccolo block ciphers

Design

Area (Resources) Speed Efficiency

FPGA

Device
No. of

Slices

No.

of

FFs

No. of

LUTs

No. of

LUTs+FFs

Clock

Cycles

Max.

Freq

(MHz)

Throughput

(Mbps)

Eff.

(Mbps/slices)

Proposed 8-bit

architecture

(section 2.A)

271 260 512 772 248 47.83 12.34 0.04

XC3S50-

5

Proposed 8-bit

architecture

(section 2.B)

237 243 439 682 248 49.65 12.81 0.05

Proposed 16-bit

architecture

(section 2.A)

279 270 524 794 124 49.07 25.32 0.09

Proposed 16-bit

architecture

(section 2.B)

281 241 532 773 124 47.63 24.58 0.08

Proposed 32-bit

architecture

(section 2.A)

286 206 545 751 62 69.56 71.8 0.25

Proposed 32-bit

architecture

(section 2.B)

301 248 575 823 62 48.23 49.78 0.16

Table 5. Performance result of the existing FPGA implementation for Piccolo block ciphers

Design

Key

size

(bits)

Datapath

size (bits)

Area (Resources) Speed Efficiency

FPGA

Device
No. of

Slices

No.

of

FFs

No. of

LUTs

No. of

LUTs+FFs

Clock

Cycles

Max.

Freq

(MHz)

Throughput

(Mbps)

Eff.

(Mbps/slices)

AES

[15]
128 128 17425 - - - - 196.1 25.1 1.44

Spartan-3

XC3S2000-

5

Piccolo

[16]
128 4 265 260 442 - 496 45.85 5.92 0.02

Spartan-3

XC3S50-5

Piccolo

[16]
128 64 397 207 757 - 31 81.82 168.9 0.49

Spartan-3

XC3S50-5

Lilliput

[17]
80 4 - 205 592 797 - 119.2 28 -

Spartan-3

XC3S50-5

Klein

[17]
80 4 - 194 597 791 - 116 26 -

Spartan-3

XC3S50-5

AES

[18]
128 8 393 - - - 534 - 16.86 0.04

Spartan-3

XC3S50-5

𝑈𝐴𝐶𝐼 =
1

𝑀 ∗ 𝑁 ∗ 255
∑|𝐶1(𝑖, 𝑗) − 𝐶2(𝑖, 𝑗)|

𝑖,𝑗

∗ 100%

(6)

𝐷(𝑖, 𝑗) = {
1 𝑖𝑓 𝐶1(𝑖, 𝑗) ≠ 𝐶2(𝑖, 𝑗)

0 𝑖𝑓 𝐶1(𝑖, 𝑗) = 𝐶2(𝑖, 𝑗)
 (7)

where, 𝐶1 and 𝐶2 correspond to two encrypted images with a

one-bit difference. The achieved values of NPCR and UACI

are summarized in Table 6. The obtained results show that the

Piccolo algorithm has a high sensitivity to one-bit change in

the input images.

Table 6. Results for the number of pixels change rate

(NPCR) and unified average changing intensity (UACI)

 Lena Baboon Boats Peppers

NPCR 89.76% 89.97% 90.63% 90.27%

UACI 30.04% 30.15% 30.78% 30.34%

4.2 Results of hardware implementations

In this section, the configuration of the hardware

implementation is displayed. The Spartan-3 was used for the

hardware implementation of the proposed architectures.

Various performance metrics are derived from the

implementation results, such as area, response time and

throughput. To choose the best design, Table 4 summarizes the

results of the resource usage and the performance of the

proposed implementations on the Spartan-3 device.

Figure 16. Occupied resources for the different

implementations of the Piccolo

812

Figure 16 presents the occupied resource for the different

developed implementations of the Piccolo.

Figure 17 presents the efficiency of the different hardware

implementations of the Piccolo. The efficiency is defined as

(Efficiency = throughput/slices).

The 8-bit single path implementation has occupied an area

of 772 (LUTs+FFs) and the 8-bit two paths implementation

has occupied 682 (LUTs+FFs). For the 16-bit architecture, the

single path implementation has used 794 (LUTs+FFs) and the

two paths implementation has used 773 (LUTs+FFs). The 32-

bit single path implementation has occupied an area of 751

(LUTs+FFs) and the 32-bit two paths implementation has

occupied 823 (LUTs+FFs).

The 32-bit single-path architecture achieves higher

throughput and efficiency compared to the 16-bit single-path

architecture. However, it requires more hardware resources

than the 16-bit architecture.

For 8-bit and 16-bit, the proposed two-path architectures are

less complex than the single-path ones. The reason is that the

single-path architectures use a larger number of Substitution

box units, additional multiplexers, and registers. Only the 32-

bit single-path architecture makes the exception because the F

Function uses only Sboxes (8) and simple logic gates for

combinatorial operations. In this version of architecture, the F

function is applied directly to the 32 bits of the message

without having to subdivide it into slices of 16 bits or 8 bits.

Therefore, there will be no need to use MUX for data routing

and Registers for temporary data storage. While for the 32-bit

dual-path architecture, it consists of 8 SBOx, 8 registers and 4

MUX.

Figure 17. Comparison of the efficient implementation of the

various implementations proposed

Based on the achieved results, the two paths

implementations have lower resources occupancy. However,

the single path implementations have a higher throughput. The

two paths implementations are more efficient for hardware

implementation because it provides a better trade-off between

the implementation area and throughput.

Table 5 presents the results of existing FPGA

implementation for some block cipher algorithms. The

proposed designs present the best efficiency in terms of

hardware resources implementation compared to the other

designs. They achieved a high throughput (Mbps) as indicated

by the results in Table 4.

5. CONCLUSION

To propose an efficient hardware architecture of the Piccolo

algorithm, we have proposed six architectures. The proposed

architectures were implemented on the Xilinx Spartan-3

XC3S50pq208-5 FPGA device. The proposed

implementations have different paths sizes (i.e. 8-bits, 16-bits

and 32-bits) to perform the encryption process. From the result

of hardware implementations on FPGA, the best

implementations are the architectures that use two paths for

encryption processing. They present a higher performance and

higher throughput/resource-occupation efficiency compared

to the existing design.

In the second step, we tested the security level of the Piccolo

algorithm, when it is used to encrypt an image. To assess the

security of the Piccolo algorithm, certain evaluation

parameters were used, such as image histogram, entropy,

NPCR and UACI. The obtained results show that the Piccolo

algorithm has high-level security for the analysis between the

original and the encrypted images.

In future work, we plan to implement the proposed efficient

architecture of the Piccolo algorithm with the VANET

protocol to assure the security of the connected vehicle data.

REFERENCES

[1] Ali, Z.H., Ali, H.A., Badawy, M.M. (2015). Internet of

Things (IoT): Definitions, challenges and recent research

directions. International Journal of Computer

Applications, 128(1): 37-47.

https://doi.org/10.5120/ijca2015906430

[2] Javed, F., Afzal, M.K., Sharif, M., Kim, B.S. (2018).

Internet of Things (IoT) operating systems support,

networking technologies, applications, and challenges: A

comparative review. IEEE Communications Surveys &

Tutorials, 20(3): 2062-2100.

https://doi.org/10.1109/COMST.2018.2817685

[3] Gupta, A.K., Chakraborty, C., Gupta, B. (2019).

Monitoring of epileptical patients using cloud-enabled

health-IoT system. Traitement du Signal, 36(5): 425-431.

https://doi.org/10.18280/ts.360507

[4] Gupta, A.K., Chakraborty, C., Gupta, B. (2021). Secure

transmission of EEG data using watermarking algorithm

for the detection of epileptical seizures. Traitement du

Signal, 38(2): 473-479.

https://doi.org/10.18280/ts.380227

[5] Vincent, R., Daemen, J. (2001). Advanced encryption

standard. Proceedings of Federal Information Processing

Standards Publications, National Institute of Standards

and Technology, pp. 19-22.

[6] Smid, M.E., Branstad, D.K. (1988). Data encryption

standard: past and future. Proceedings of the IEEE, 76(5):

550-559.

[7] Babitha, M.P., Babu, K.R. (2016). Secure cloud storage

using AES encryption. In 2016 International Conference

on Automatic Control and Dynamic Optimization

Techniques (ICACDOT), pp. 859-864.

https://doi.org/10.1109/ICACDOT.2016.7877709

[8] Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A.,

Akishita, T., Shirai, T. (2011). Piccolo: An ultra-

lightweight blockcipher. In International Workshop on

Cryptographic Hardware and Embedded Systems, pp.

342-357. https://doi.org/10.1007/978-3-642-23951-9_23

[9] Wu, Y., Zhou, Y., Saveriades, G., Agaian, S., Noonan,

J.P., Natarajan, P. (2013). Local Shannon entropy

measure with statistical tests for image randomness.

Information Sciences, 222: 323-342.

813

https://doi.org/10.1016/j.ins.2012.07.049

[10] Zhu, C. (2012). A novel image encryption scheme based

on improved hyperchaotic sequences. Optics

Communications, 285(1): 29-37.

https://doi.org/10.1016/j.optcom.2011.08.079

[11] Huang, X., Ye, G. (2018). An image encryption

algorithm based on time-delay and random insertion.

Entropy, 20(12): 974. https://doi.org/10.3390/e20120974

[12] Shannon, C.E. (1949). Communication theory of secrecy

systems. The Bell System Technical Journal, 28(4): 656-

715. https://doi.org/10.1002/j.1538-

7305.1949.tb00928.x

[13] Ye, G., Huang, X. (2017). An efficient symmetric image

encryption algorithm based on an intertwining logistic

map. Neurocomputing, 251: 45-53.

https://doi.org/10.1016/j.neucom.2017.04.016

[14] Liu, H., Wang, X. (2011). Color image encryption using

spatial bit-level permutation and high-dimension chaotic

system. Optics Communications, 284(16-17): 3895-3903.

https://doi.org/10.1016/j.optcom.2011.04.001

[15] Good, T., Benaissa, M. (2005). AES on FPGA from the

fastest to the smallest. In International Workshop on

Cryptographic Hardware and Embedded Systems, pp.

427-440. https://doi.org/10.1007/11545262_31

[16] Mhaouch, A., Elhamzi, W., Atri, M. (2020). Lightweight

hardware architectures for the piccolo block cipher in

FPGA. In 2020 5th International Conference on

Advanced Technologies for Signal and Image Processing

(ATSIP), pp. 1-4.

https://doi.org/10.1109/ATSIP49331.2020.9231586

[17] Marchand, C., Bossuet, L., Gaj, K. (2017). Area-oriented

comparison of lightweight block ciphers implemented in

hardware for the activation mechanism in the anti-

counterfeiting schemes. International Journal of Circuit

Theory and Applications, 45(2): 274-291.

https://doi.org/10.1002/cta.2288

[18] Kaps, J.P., Sunar, B. (2006). Energy comparison of AES

and SHA-1 for ubiquitous computing. In International

Conference on Embedded and Ubiquitous Computing,

pp. 372-381. https://doi.org/10.1007/11807964_38

814

