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The satellite navigation receiver works in an environment, where the received signal is very 

weak. Sometimes, frame synchronization is impossible, for the antenna rotates with the 

flight carrier, and occlusions exist in the environment. After losing look, it is necessary to 

positioning reacquired signals. Rapid positioning can be completed without frame 

synchronization, utilizing auxiliary positioning algorithms like A-GPS. If the carrier is 

highly dynamic, however, the computing load of reacquired signal positioning would be too 

high, owing to the extreme fuzziness of the approximate position. Therefore, the application 

of auxiliary positioning algorithms is premised on the acquisition of the approximate 

position information, when frame synchronization is not possible. This paper proposes a 

method for estimating the approximate position of a satellite navigation receiver without 

frame synchronization: The approximate position is quickly obtained by measuring the 

elevation with a barometer, and searching under a user-defined “geocenter-satellite” 

coordinate system. Simulation results show that, the proposed algorithm could successfully 

compute the approximate position, when the barometric altimeter measures elevation with 

an accuracy within 1.8km, and when the coordinate system is established based on satellites 

with a long distance and a low angle of elevation, under the condition of global navigation 

satellite system (GNSS) constellation. 
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1. INTRODUCTION

The satellite navigation receiver needs to receive the signal 

data through the antenna and other devices to derive the signal 

time. The signal time above milliseconds are generally 

acquired after frame synchronization of the received 

navigation messages. If frame synchronization is impossible, 

the equivalent calculation of frame synchronization must be 

completed, assisted by approximate position, approximate 

time and other information. The auxiliary information is 

always needed, whether the results of frame synchronization 

are solved directly from the information, or the frame 

synchronization is eliminated by auxiliary positioning 

methods like A-GPS. Approximate information leads to a high 

accuracy, no matter it is maintained by the crystal oscillator of 

the receiver, or processed by some time prediction models. On 

the contrary, the approximate position is easily affected by 

high dynamics. After the loss of lock, the approximate position 

is unfeasible due to the large error range. 

Domestic research on assisted GPS positioning methods 

started relatively early [1-5]. In recent years, a series of new 

methods and new application backgrounds have emerged, 

which combine relevant algorithms with new disciplines like 

5G [7], smart city [8], and artificial intelligence [9]. This trend 

demonstrates the strong practicality of the assisted GPS 

positioning algorithms. With the development of society, 

science, and technology, and the proliferation of various 

communication infrastructures (e.g., cellular networks and 

WiFi scenarios), many auxiliary conditions that seemed 

inconvenient and relevant hardware devices (e.g., portable 

high-precision clocks) become convenient for data acquisition 

by the assisted GPS positioning algorithms. 

Under weak signal conditions, the receiver is often unable 

to receive all or part of the messages for bit synchronization, 

or frame synchronization, making it impossible to acquire the 

integer part of the milliseconds of the satellite signal 

transmission time. Then, the positioning cannot be completed 

by the traditional method [10, 11]. The A-GPS (Assisted-GPS) 

positioning algorithm sets the receiver millisecond time as the 

unknown to be solved, and introduces the fifth satellite 

observation equation to solve the unknown [12-20]. Before 

operation, the receiver obtains the user’s approximate position, 

approximate time, and navigation messages via auxiliary 

methods like information addition, and cellular network 

reception. After solving the integer part of the milliseconds of 

receiving signal’s transmission time, the receiver solves the 

positioning results. The above method is particularly suitable 

for the weak signal situation. However, the early studies 

mostly focus on the low dynamic environment, which leads to 

certain limitations. 

In the conventional low-dynamic scenarios of the carrier, 

the signal reception is generally not blocked or interfered. By 

contrast, the high-dynamic applications are usually subjected 

to specific confrontation backgrounds, and highly susceptible 

to signal interference. Some applications at high altitudes may 

also be affected by the atmosphere, and thus face short-term 

loss of lock. The existing algorithms and technical solutions 

can rely on devices like inertial navigation to mitigate the 

problem that satellite navigation is susceptible to interference. 

Nevertheless, the inertial navigation components face a large 
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cumulative deviation, in the absence of satellite navigation. 

Therefore, it is crucial to restore the capability of satellite 

navigation as soon as possible when conditions permit. For a 

highly dynamic aircraft, after the signal is reacquired, the 

position information before the loss of lock cannot be used as 

a reference. This is because the high dynamics and other issues 

could bring a large change in the error of approximate position. 

The traditional methods will become infeasible due to the large 

computing load, calling for new algorithms to solve the 

problem.  
 

 

2. USER-DEFINED “GEOCENTER-SATELLITE” 

COORDINATE SYSTEM 

 

When the receiver is near the surface of the earth, the 

elevation range is about 0~20km, that is, the uncertainty is 

10km. The uncertainty is rather small in contrast to the error 

required to estimate the approximate position of the receiver 

(no greater than 150km). Thus, the receiver is basically on a 

sphere near the earth’s surface. Hence, our idea is to establish 

a polar coordinate system based on two satellites. The 

coordinates can be represented as a distance and two angles. 

The distance refers to the elevation of the receiver, and the two 

angles stand for the position coordinates of the receiver near 

the ground. In this way, the three-dimensional approximate 

position of the receiver was reduced to two dimensions. 

 

 

 

 
 

Figure 1. Schematic diagram of user-defined coordinate 

system 

 

In Figure 1, 𝑂 is the center of the earth; 𝑆1 and 𝑆2 are two 

observation satellites. Then, a Cartesian coordinate system 

was defined, with the geocenter 𝑂 as the original, and 𝑂𝑆1
⃗⃗ ⃗⃗ ⃗⃗  ⃗ as 

the x-axis direction. The z-axis is perpendicular to the plane 

𝑂𝑆1𝑆2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , while the y-axis is perpendicular to the plane 𝑂𝑋𝑍⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , and 

has a right-hand relationship with 𝑋𝑍. 

Let the receiver position be U, and the delay of the satellite 

reaching the receiver signal be 𝜌1 . Let the distance from a 

satellite to the geocenter be 𝑅, namely, 𝑂𝑆1 and 𝑂𝑆2. Let the 

angle between the two satellites relative to the geocenter be 𝜏. 

Let the distance from the receiver to the geocenter be 𝑟 , 

namely, 𝑂𝑈⃗⃗⃗⃗⃗⃗ . The value of 𝑂𝑈⃗⃗⃗⃗⃗⃗  is the sum of the earth radius 

and the estimated elevation of the receiver. According to the 

definition of receiver coordinates, the position of the receiver 

is affected by two angles: field angle 𝛼 and rotation angle 𝛾. 

The former represents the angle between the receiver and the 

x-axis; the latter refers to the field angle of the receiver on 

plane OY. In this self-defined coordinate system, the receiver 

is located near the earth’s surface; 𝑟 is the known elevation of 

the receiver; 𝛼  and 𝛾  are the horizontal coordinates of the 

receiver. Then, the receiver position can be expressed as 
(𝑟, 𝛼, 𝛾). 

The ranging values 𝜌1  and 𝜌2  of the two satellites can be 

respectively calculated by:  
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Specifically, 𝛼  and 𝛾  can be determined according to the 

time in milliseconds of the receiver, and the discrete values of 

the integer part of the milliseconds. For example, the signal 

propagation delay from the GPS satellite to the ground is 

67~86ms. Then, 20 values of 𝛼 can be obtained by traversing 

20 possible kinds of 𝜌1. Next, 20 possible values of 𝛾 can be 

derived from the value of each 𝛼. In this way, 400 possible 

combinations between 𝛼 and 𝛾 are formed. It is necessary to 

note a premise: the discretization of 𝛼 values utilizes auxiliary 

time. The integer part of the milliseconds are separated by an 

interval of 1ms. Thus, the auxiliary time should not exceed 

0.5ms. Otherwise, more combinations will appear. 

 

 

3. APPROXIMATE POSITION ERROR 

 

The possible error effect should be analyzed before 

explaining the search for the real approximate position in the 

user-defined coordinate system. 

In Figure 2, U is the real position of the receiver, (𝑟, 𝛼, 𝛾); 

U’ is the position to be confirmed due to the error in the 

auxiliary time, (𝑟, 𝛼′, 𝛾′). The physical interpretation of U’ is 

as follows: 𝑟  is the same for the proximity to the earth’s 

surface. Due to the error in the auxiliary time, the calculated 𝛼 

has deviations, so it is with the 𝛾 value derived from 𝛼. The 

auxiliary time error can be treated as the receiver clock error 

𝛥𝑏. 

To analyze the relationship between the clock error 𝛥𝑏 and 

the position deviation 𝑈′𝑈, the spatial coordinates (𝑟 𝑐𝑜𝑠 𝛼, 

𝑟 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛾 , 𝑟 𝑠𝑖𝑛 𝛼 𝑠𝑖𝑛 𝛾 ) and (𝑟 𝑐𝑜𝑠 𝛼 ′ , 𝑟 𝑠𝑖𝑛 𝛼 ′ 𝑐𝑜𝑠 𝛾 ′ , 

𝑟 𝑠𝑖𝑛 𝛼 ′ 𝑠𝑖𝑛 𝛾 ′) of U and U' are derived from the vicinity of 

the real position R. Then, the direction vector 𝑈′𝑈  can be 

expressed as:  

 

 
 

Figure 2. Schematic diagram of proposed approximate 

position error caused by time error 
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where, 𝛥𝛼 = 𝛼2 − 𝛼1; 𝛥𝛾 = 𝛾2 − 𝛾1. 

The two position coordinates of the receiver at U’ 

corresponding to the ranging values 𝜌1′  and 𝜌2′  of the two 

satellites. Under the influence of 𝛥𝑏, we have: 
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Using formula (1) and its derivable properties, we have 
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Similarly, using formula (2), we have 
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Combining formulas (4) and (5), it is possible to solve the 

influence of the local auxiliary time error 𝛥𝑏 over the error in 

probability approximate position, i.e., 𝛥𝛼 and 𝛥𝛾: 
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In the rectangular coordinate system, the vector 𝑈′𝑈 

corresponding to the error direction can be expressed as the 

following vectors: 
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Formula (7) shows the effect of 𝛥𝑏 on the vector: when 𝛥𝑏 

tends to 0, the size of the vector also tends to 0. This conforms 

to the fact that, when 𝛥𝑏 has no error when establishing the 

coordinate system, there must be only one true position in the 

established search space. 

4. VERIFICATION OF THE APPROXIMATE 

POSITION 

 

To confirm the correctness of the approximate position, the 

information from other observations needs to be added. Before 

using the third and more satellites for data redundancy 

verification, the satellite data, that is, the fractional part of the 

milliseconds of satellite time, are required. 

In the above user-defined coordinate system, the 

pseudorange measurement equation can be established 

according to the distance measuring principle of the receiver: 

 
( ) ( ) 0,

0-
tchip pos tro sat

i i i i i i i it d d t
       = + + + + + +   (8) 

 

where, 𝛥𝑡𝑖 is the local clock error of the receiver of the i-th 

verification satellite, which is outside the satellites used to 

establish the coordinate system; 𝑑𝑖
(𝛼,𝛾)

 is the distance of the i-

th satellite calculated based on the current position to be 

confirmed (𝛼, 𝛾) ; 𝑑𝑖
𝑐ℎ𝑖𝑝

 is the fractional part of the 

milliseconds of pseudoranges measured by the receiver; 𝑡0 is 

the auxiliary reception time; 𝜀𝑖
𝑝𝑜𝑠

 is the clock error induced by 

the deviations in the line-of-sight vector during the verification 

of satellite signals, which itself comes from the search error of 

the receiver for the approximate position arising from the 

errors in auxiliary time and auxiliary position; 𝜀𝑖
𝜌

 is the error 

of the original observation information; 𝜀𝑖
𝑡0 is the error of the 

auxiliary time 𝑡0 ; 𝜀𝑖
𝑡𝑟𝑜  is the error of each atmospheric 

correction value; 𝜀𝑖
𝑠𝑎𝑡 is the satellite position error induced by 

time error, which is reflected as the projection error on the line-

of-sight vector. 

The original observation information includes three aspects: 

the fractional measurements in milliseconds of pseudorange 

results, the auxiliary time, and the auxiliary elevation. Among 

them, the observation pseudorange accuracy is only affected 

by the signal strength. As long as the signal can be tracked 

stably, it is generally within the controllable accuracy range, 

e.g., within 10m. The auxiliary time is affected by the local 

clock difference modeling algorithm, the local crystal 

oscillator accuracy, and the time of losing lock. It can be 

maintained within 10μs in a short time. As for the auxiliary 

elevation, some independent sensors can be installed to assist 

with the elevation measurement. For instance, the barometric 

altimeter can be adopted for auxiliary elevation measurement. 

The measurement error of this product can generally be 

controlled within 100m. Therefore, the error induced by 

observational measurement is negligible compared to 

auxiliary time error and auxiliary elevation error. 

 

 
 

Figure 3. Influence of the error of the proposed probability 

position on the ranging values of other verification satellites 

 

Note that 𝜀𝑖
𝑝𝑜𝑠

 represents the deviation of the approximate 

position due to the establishment of the coordinate system, that 

is, the error caused by 𝑈′𝑈 . Therefore, it is necessary to 
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analyze the impact of this deviation on other pseudoranges 

used to verify the calculation. Figure 3 shows the error of the 

proposed probability position on the ranging values of other 

verification satellites. 

Let 𝑚𝑖  be the projection of the vector 𝑈′𝑈  of the error 

direction on the line-of-sight vector of the i-th verification 

satellite 𝐷𝑖 . According to the vector projection formula, the 

projection can be expressed as: 
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As shown in formula (9), the presence of 𝛥𝑏  causes 

deviation to the approximate location to be confirmed. The 

deviation, reflected by the vector 𝑈′𝑈, eventually influences 

the pseudoranges of the other satellites in verification. The 

deviation from the true position is |𝑚𝑖|. 
Only from the above conclusion, it is not possible to directly 

judge which influencing factors cause the increase or decrease 

of |𝑚𝑖|. But it can be confirmed that when 𝛥𝑏 tends to 0, this 

error will also tend to 0, that is, 𝜀𝑖
𝑝𝑜𝑠

 tends to 0. Therefore, 

when the auxiliary elevation and time are very accurate, the 

above-mentioned errors except for the measurement of 

pseudoranges tend to 0. Therefore, the observation equation 

can be simplified as: 

 
( ) ( ),

0- chip

i i it d d t
 

 = +   (10) 

 

By virtue of this conclusion, the above derivation can be 

verified through experiments and simulations. 

 

 

5. ALGORITHM VERIFICATION AND ANALYSIS 

 

Our method only relies on 2 satellites to establish the 

coordinate system. Their geometric distribution can be easily 

divided into several simple cases for verification. One factor 

is the distance between the two satellites, and the other factor 

is the pitch angle of two satellites. This is easy to understand 

from the physical principle of geometric distribution. When 

the time assistance information is already available, the 

pseudo-satellite at the geocenter derived from the auxiliary 

elevation, two real satellites, and the receiver form a 

tetrahedron. The volume of the tetrahedron qualitatively 

reflects the pros and cons of the geometric distribution. The 

larger the volume, the better the geometric distribution, the 

higher the positioning accuracy, and the closer the 

approximate position to be confirmed is to the real position. 

The inverse is also true. 

The two satellites were selected by their distance, and their 

pitch angle. Then, the following combinations were 

configured: 

Combination 1: Satellites 11 and 8. These two satellites are 

far from each other. The connection line between them is in 

the middle of the sky map, near the zenith. 

Combination 2: Satellites 11 and 16. These two satellites are 

far from each other. The connection line between them is at 

the edge of the star map. 

Combination 3: Satellites 19 and 25. These two satellites are 

close to each other. The connection line between them is in the 

middle of the sky map, near the zenith. 

 

 

 
 

Figure 4. Distribution and success rate of Combination 1 
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Figure 5. Distribution and success rate of Combination 2 

 

 

 
 

Figure 6. Distribution and success rate of Combination 3 

 

The above Figures 4-6 experimental results suggest that the 

success rate of the algorithm was affected by the geometric 

distribution of satellites, which is in line with theoretical 

expectations. The auxiliary elevation is equivalent to a pseudo-

satellite at the geocenter, and the receiver lies right at the 

middle of the sky map. To improve the geometric distribution 

of the satellites, it is important to obtain the pitch of the two 

satellites, and keep the distance between them as large as 

possible. The above cases show that the success rate of the 

algorithm could reach 100%, at an elevation error no greater 

than 1.8km and a time error no greater than 80μs, when the 

satellite constellation is of high quality, e.g., Satellites 11 and 

16 in Combination 2. When the situation was poor, e.g., 

Satellites 19 and 25 in Combination 3, the elevation error and 

time error must be controlled to 200m and 2μs, in order to 

guarantee the success of the algorithm. This limits the 

application of the algorithm. 

When the observation data remain at the same accuracy, the 

improvement of the geometric distribution of satellites can 

increase the success rate of the algorithm. From another 

perspective, to guarantee 100% success rate of the algorithm, 

it is necessary to choose a better satellite geometric 

distribution, which relax the accuracy requirements on the 

auxiliary information. In this way, the application value of the 

algorithm will be enhanced. 

The performance of the algorithm is affected not only by 

various observational errors, but also by the geometric 

distribution of satellites. In essence, our algorithm solves 

positions according to observed quantities. The only 

difference between it and the traditional algorithm is that: a 

few results are assumed first, and then verified by substituting 

more redundant data. 

To discretize possible reasonable approximate positions, the 

algorithm draws on the fact that the integer part of the 

milliseconds in satellite signal time of A-GPS is unknown, but 

may be discrete and equally spaced. The auxiliary conditions 

are utilized to solve the possible integer part of the 

milliseconds, and derive the positions of all receivers 

corresponding to the integer part. In this process, the auxiliary 

time and auxiliary elevation of the two satellites are utilized. 

The essence is to solve four unknowns from four observation 

data. Like the traditional theories, the geometric distribution 

of satellites through the process would affect the final 

positioning error. In our algorithm, the error directly affects 

the accuracy of the approximate position to be confirmed. If 

the positioning error is too large, the position would deviate 

far from the real approximate position. Then, the positions 

corresponding to the integer part would be closer to the real 

positions. All observational data of verification satellites 

would be affected. In severe cases, the final selection of the 

approximate position will be incorrect. 

 

 

6. CONCLUSIONS 

 

This paper proposes a fast estimation algorithm for the 

approximate position when the receiver cannot complete the 

frame synchronization. As a supplementation to the traditional 

A-GPS in high dynamic environment, our algorithm can 

effectively avoid the failure, when the approximate position 

cannot be obtained. The adaptability of our algorithm is 

exceptionally good, because the method is not limited to the 

type of navigation system or the geographical location. In 

addition, the authors analyzed the input conditions of the 

algorithm, and concluded that: as long as the receiver can 

receive multiple satellites normally, the satellites with better 

geometric distribution can be selected to form a user-defined 

coordinate system, and the requirements for auxiliary 

elevation can be relaxed to obtain an accurate approximate 

position. In this way, the receiver can complete positioning 

calculation with a high accuracy. 
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