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Electromyography (EMG) signals are one of the most studied inputs for driver drowsiness 

detection systems. As the number of EMG features available can be daunting, finding the 

most significant and minimal subset features is desirable. Hence, a simplified feature 

selection method is necessary. This work proposed a dual-layer ranking feature selection 

algorithm based on statistical formula f EMG signals for driver fatigue detection. In the 

beginning, in the first layer, 21 filter algorithms were calculated to rank 47 sets of EMG 

features (25 time-domain and 9 frequency-domain) and applied to six classifiers. Then, in 

the second layer, all the ranks were re-ranked based on the statistical formula (average, 

median, mode and variance). The classification performance of all rankings was compared 

along with the number of features. The highest classification accuracy achieved was 95% 

for 12 features using the Average Statistical Rank (ASR) and LDA classifier. It is conclusive 

that a combination of features from the time domain and frequency domain can deliver better 

performance compared to a single domain feature. Concurrently, the statistical rank ASR 

performed better than the single filter rank by reducing the number of features. The proposed 

model can be a benchmark for the enhanced feature selection method for EMG driver fatigue 

signal.  
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1. INTRODUCTION

Drowsiness or fatigue is one of the top three causes of road 

accidents in Malaysia [1]. The use of physiological signals as 

the input to the driver drowsiness detection systems was 

widely studied including electromyography (EMG) as a single 

input sensor [2] or multimodal system [3-5] ]with EMG, 
electroencephalography (EEG), electrocardiography (ECG) 

and these inputs are high in performance, reliable, efficient and 

low cost [6]. In a signal analysis process, the number of signal 

features can be overwhelming, which may result in a longer 

processing time. Feature selection is a critical step in signal 

processing, in which the best minimum set of features with the 

best performance is selected.  

The use of feature selection (FS) methods such as the Fisher 

filter to rank EEG signals have proven that a single EEG 

electrode from a wearable EEG device [7] is sufficient to 

detect driver drowsiness. In a study of steering wheel data for 

driver fatigue, the features were ranked using Fisher, Pearson, 

mutual information (MIFS), and T-test filters. Then 

optimization was done using adaptive neuro-fuzzy inference 

system (ANFIS) in search of the best subset of features [8]. A 

hybrid FS method using ReliefF and neighborhood component 

analysis (NCA) filters achieved 100% classification accuracy 

using k-nearest neighbor (kNN) for EEG driver fatigue 

detection [9]. Minimum redundancy, maximum relevancy 

(MRMR) FS was used in detecting driver fatigue using facial 

landmarks the eyes and mouth using logic regression model 

achieves 84% accuracies [10]. Behavioural input is another 

type of input for driver drowsiness detection systems, which 

involves machine vision inputs. Video and images of the upper 

body of the drivers are always used in driver fatigue detection. 

A study using face image as the input applied with Fisher and 

principal component analysis (PCA) FS method [11] performs 

better than the deep neural network (DNN). Sharanabasappa 

et al. had used ReliefF, Infinite (InFS), Pearson Correlation 

and Term Variance FS methods to reduce the number of (140 

million) features from the driver images to detect drowsiness 

[12]. Once the best features were selected, the DNN was used 

for the driver drowsiness system FS in signal processing are; 

to reduce feature redundancies, improve accuracy, and reduce 

processing time. Henni et. al in her study, used six types of 

filters to improve driving fatigue detection using driver’s 

facial expressions, driving behaviors, and bio-signals. The 

filters used were: Learning for Local Learning-Based 

Clustering (LLCFS), Features Selection via Eigenvector 

Centrality (ECFS), Laplacian, Infinte FS (InFS), and 

Laplacian score. The proposed model achieved 85% accuracy 

[13]. 

Among the EMG advantages are noninvasive, user-friendly, 

and able to detect muscle fatigue at an early stage [14]. These 

are the reasons why it is selected as inputs in the driver 

drowsiness studies. In one of the studies by Aiamklin et al., 

facial EMG was used to detect light sleep in drivers. An 84% 

accuracy was achieved by placing the electrodes on the 

masseter and trapezius muscles [15]. Satti et al. had utilised 

microneedle electrode EMG on hand-gripping muscles and 

they found that both the time - domain and frequency-domain 

features detected the increase in driver drowsiness, which was 

proportional to the decrease in the handgrip muscle activities 
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[16]. In EMG signal processing, there are more than fifty 

features in the time and frequency domains [17] that can be 

studied to reduce drowsiness in drivers [18]. 

The focus on the FS method for driver drowsiness detection 

is mostly in the EEG, ECG and vision inputs. There is a lack 

of studies in feature selection methods for EMG signals in the 

detection of driver drowsiness. Hence, this paper explores the 

possibilities of enhanced feature selection methods that will 

give the best performance in this area. The contributions of this 

paper are as follows: 

1) To determine the best feature subset with a minimal 

number of EMG features for driver fatigue. 

2) To determine the best filter performance among the time-

domain and frequency-domain features. 

3) To measure the performance of the dual-layer ranking FS 

method. 

 

 

2. METHODOLOGY 

 

The basic framework of the study is shown in Figure 1. The 

collected data will be pre-processed to remove unwanted noise 

before performing feature extractions. In the feature extraction 

step, filtered data will be applied to twenty-five time-domain 

features equations to acquire the feature values. Meanwhile, 

for the frequency-domain feature values, the filtered data is 

first transformed to the frequency domain before applying the 

nine frequency-domain feature equations. Then, in the first 

layer FS the features will be ranked using 21 FS filters selected 

in three groups; time-domain feature group, frequency-domain 

feature group and combined time and frequency-domain 

feature group. In the second layer, a new rank based on 

statistical formula was calculated from the 21 ranks. Then, the 

features will be classified using all the ranks calculated. The 

classification performance of all available ranks in first and 

second layer FS will be compared to select the best subset of 

features based on the highest classification accuracy and 

minimum number of features. 

 

2.1 Experimental setup 

 

The data was collected from a driving simulator that was set 

in the lab. The simulator was comprised of a monitor, a 

computer with an installed driving game (Need for Speed), a 

steering wheel with pedal and EMG sensors that would be 

attached to the biceps brachii on the right arm of the 

participants. Figure 2 shows the experimental setup of the 

driving simulator. The participants were required to sleep for 

seven hours on the night before the experiment and avoid 

caffeinated drinks within 24 hours before the experiment. A 

total of 15 participants were recruited (seven males and eight 

females) with an average age of 23 ± 3 years. All participants 

filled out the Fatigue Assessment Scale (FAS) [19], which was 

composed of ten questions to evaluate the participants’ fatigue 

levels before the driving simulation started. The FAS score 

was later used to classify the drivers into two classes—fatigue 

and non-fatigue—in the feature selection and classification 

stage. Seven out of fifteen samples were labelled fatigue and 

eight samples were labelled as non-fatigue Personal 

information such as name, age, driving experience and health 

were also collected. The experiment was conducted at 2 pm to 

induce natural drowsiness [4] and the participants drove for 

two hours on the driving simulator. The collected data in the 

form of EMG signals were kept as a database for analysis in 

MATLAB 2020b®. The procedure of this study has been 

approved with ethics number IREC 2020-070 from 

International Islamic University Malaysia’s ethics committee. 

 

 

 
 

Figure 1. The research framework of dual-layer ranking feature selection 

 

 
 

Figure 2. Experimental setup of the driving simulator 

2.2 Signal pre-processing 

 

Approximately three million points were extracted from the 

Shimmer EMG sensor input. The raw EMG data is first 

sampled to regenerate the signal in MATLAB. The sampling 

rate of 512 Hz was chosen in accordance with the hardware 

requirements of the ShimmerTM EMG sensor. Then, these data 

were filtered using a Butterworth bandpass filter between 10 

and 20 Hz to remove the unnecessary noise. Figure 3 shows an 

example of the raw and filtered data. The filtered signal, will 

be processed further for feature extraction; where for the time-

domain features, the filtered signal can be directly applied to 

the feature calculations. While, for the frequency-domain 

features, filtered signal must be transformed using FFT. 
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2.3 Feature extraction 

 

In general, EMG signal characteristics can be classified into 

three categories: time domain, frequency domain and time-

frequency domain. The time-frequency features are 

mathematically complex, highly dimensional and require pre-

condition transformation to extract the features [20]. This 

study explored the time-domain and frequency-domain 

features since they are the most commonly used in EMG signal 

processing due to their robustness and high performance [17]. 

A modified version of MATLAB 2021(b) code was used for 

feature extraction [21] and feature selection [22] methods. 

 

2.3.1 Time-domain features 

The time-domain features are the features calculated from 

the raw EMG time-series signals. They are fast and 

straightforward to be implemented because no signal 

transformations are involved in the feature extractions [23, 24]. 

These features are extensively utilised in medical and 

technical research. The time-domain features treat the signal 

as stationary, which overcomes the drawback of EMG signals 

that have non-stationary characteristics [25]. Although these 

features may be affected by the dynamic movement noise, 

especially features that involve energy characteristics [26], the 

high classification performance in low noise environments and 

low computational complexity made it the extensive features 

for EMG signal analysis. 

In this study, twenty-five time-domain features, as listed in 

Table 1, were included in the analysis of long-duration EMG 

signal processing. These proposed features have been widely 

used in EMG signal processing for hand movement detection 

[27]. Out of these 25 features, four features had more than one 

feature due to their essential parameters: absolute temporal 

moment (TM) has four features, auto-regressive coefficients 

(AR) have four features, cepstral coefficients (CC) has two 

features, and v-order (V) has two features. The total time 

domain for each sample was extracted resulting in 525 features 

acquired. 

 

 
 

Figure 3. Raw and filtered EMG data for sample no. 8 

 

Table 1. Time-domain features 

 
Time Domain Features Abbrv Ref 

Absolute temporal moment (order = 3,4,5,6) TM [28] 

Auto-regressive coefficients (order = 1- 4) AR [29, 30] 

Average amplitude change  AAC  [28, 31] 

Cepstral coefficients (order = 2,3, 4) CC [28, 29] 

Difference absolute standard deviation value  DASDV  [28, 31] 

Enhanced Mean Absolute Value EMAV [21] 

Enhanced Wavelength EWL [21] 

Integral absolute value IEMG [30, 31] 

Kurtosis  Kurt  [32, 33] 

Log detector  LD [29, 30] 

Maximum fractal length MFL  [26, 34] 

Mean absolute value MAV  [23, 29] 

Mean absolute value slope (segment = 2) MAVS  [23, 28] 

Modified mean absolute value 1 MAV1  [24, 28] 

Modified mean absolute value 2 MAV2  [24, 28] 

Myopulse percentage rate (threshold = 16) MYOP  [28] 

Root mean square  RMS  [24, 31] 

Simple square integral SSI  [28] 

Skewness  Skew  [33, 35] 

Slope sign change (threshold = 16)  SSC  [8, 16] 

Variance  VAR  [29, 30] 

V-order (v = 3,4) V [29, 30] 

Waveform length  WL [8, 16] 

Willison amplitude (threshold=10)  WAMP  [29, 30] 

Zero crossing (threshold=10) ZC [8, 16] 
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2.3.2 Frequency-domain features 

Frequency-domain features are the raw EMG signals that 

are transformed into the frequency domain, which have the 

properties of the spectrum domain [36]. The main frequency-

domain feature was the Power spectral density (PSD), which 

was calculated by applying the Fourier transform of the 

autocorrelation function to the pre-processed EMG signal. By 

applying statistical properties to PSD, more frequency-domain 

features were generated from previous studies, as listed in 

Table 2. For each sample, a set of nine frequency-domain 

features were extracted. The total features became twelve due 

to the additional features from the spectral moment (SM), 

which had four values. A total of 180 features were acquired. 

 

Table 2. Frequency-domain features 

 
Frequency Domain Features Abbrev Ref 

Mean frequency MNF  [24, 37] 

Mean power MNP  [24, 28] 

Median frequency MDF  [24, 28] 

Peak frequency PKF  [28] 

Power spectrum ratio (n=20) PSR  [28] 

Signal-to-noise ratio SNR  [37] 

Spectral moment (order=4) SM [28] 

Total power TTP  [28] 

Variance of central frequency VCF  [28] 

2.4 Feature selection methods 

 

As discussed previously, there was a total of 47 features that 

were analysed in this paper, which were composed of 35 and 

12 features from the time and frequency domains respectively. 

Feature selection or feature reduction is a method in acquiring 

the best set of features of the EMG signals. In this study, a total 

of 705 features were extracted from 15 samples with 47 

features. Feature selection aimed to choose the best subset of 

features with a minimal number of features. 

 

2.4.1 First layer feature selection 

Feature selection algorithm can be performed in three ways: 

filter method, wrapper method and embedded method. This 

paper adopted the first method, in which filter algorithms were 

calculated to rank the features and it’s the best classification 

performance will be selected as the best group of features. 

Twenty-one filter methods were used to calculate the rankings 

of features. Table 3 lists down all filter algorithms used in this 

study. The first 15 ranking methods are the supervised learning 

ranking algorithm while the last six methods are the 

unsupervised learning ranking algorithm. 

 

 

 

 

Table 3. Filter feature selection methods 

 
Full Name Abbr Ref 

Infinite Latent Feature Selection ILFS  [38] 

Infinite Feature Selection InfFS  [39] 

Features Selection via Eigenvector Centrality ECFS  [40] 

Minimum redundancy, maximum relevancy MRMR [41] 

ReliefF RELIEFF [42] 

Mutual Information Feature Selection MIFS [43] 

Feature Selection via Concave Minimization FSCM [44] 

Neighbourhood Component Analysis Feature Selection NCA [45] 

Fisher score Fisher [46] 

Pearson Corelation Pearson [47] 

ANOVA F-value [48] 

Chi-square Chi-square [49] 

Spearman Correlation Spearman [50] 

T-Test  T-test [51] 

Laplacian Laplacian [52] 

Feature Section for Multi Class/Cluster data MCFS [53] 

Unsupervised Discriminative Feature Selection UDFS [54] 

Feature Selection and Kernel Learning for Local Learning-Based Clustering LLCFS [55] 

Unsupervised Feature Selection with Adaptive Structure Learning FSASL [56] 

Dependence Guided Unsupervised Feature Selection DGUFS [57] 

Unsupervised Feature Selection with Ordinal Locality UFSOL [58] 

Infinite Latent Feature Selection (ILFS) is a probabilistic 

algorithm that performs the ranking step by considering all 

possible subsets of features and bypassing the combinatorial 

problem [59]. Infinite Feature Selection (InFS) has two steps. 

The first step is to rank the features without a label, where the 

score is based on the connecting path of the features on the 

affinity graph. Then the best features are selected based on the 

performance of the cross-validated classification model [39]. 

Similar to InFS, Features Selection via Eigenvector Centrality 

(ECFS) uses the affinity graph based on the features mutual 

information, Fisher’s score and maximum standard deviation. 

The rank is then calculated based on the eigenvector centrality 

[40]. Minimum redundancy, maximum relevancy (MRMR) is 

a criterion-driven algorithm that determines the maximum 

relevance and minimum redundancy of each feature based on 

the determined criteria [41]. ReliefF is an algorithm that 

iteratively calculates the rank of random labelled features with 

the goal of finding the distinction between each neighbouring 

feature [42]. Mutual Information Feature Selection (MIFS) 

identifies the mutual information predetermined by the criteria 

that are established between the value distribution of a feature 

in its class to rank the feature [43]. Feature Selection via 

Concave Minimization (FSCM) ranks features based on linear 

Support Vector Machine (SVM) as the training sets [44]. 

Neighbourhood Component Analysis Feature Selection (NCA) 

ranks features based on the highest positive weight calculated 

for each feature [60]. The Fisher score method ranks the 

features by calculating the ratio between interclass separation 

and interclass variance [46]. The Pearson filter is the simplest 

form of ranking that is performed by computing the correlation 
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of every pair of features for all features [47]. ANOVA 

calculates the parametric statistical hypothesis score, F-value 

by comparing two or more samples of data (typically three 

samples) [48]. Chi-square scores calculate the dependencies 

between features by calculating the error between the observed 

and expected values [49]. Spearman’s score is the correlation 

between a pair of features [50]. T-test score is the statistical 

difference of features between two labels [51]. By using 

nearest neighbour graphs, the Laplacian method ranks feature 

relevance based on location maintenance [52]. 

The unsupervised FS (UFS) algorithm MCFS, which used 

the eigen decomposition of a similarity matrix of the features 

is used for multi cluster data. The best feature subset is chosen 

using a L1-norm regularizer to approximate the eigenvectors 

produced from the data's spectral embedding, which induces 

sparsity [53]. Unsupervised Discriminative Feature Selection 

(UDFS) identifies the strong discriminant structure by 

computing maximum inter-class divergence as well as 

minimizes intraclass divergences and L2,1 norm of the linear 

classifier coefficient matrix [54]. Learning for Local Learning-

based Clustering (LLCFS) adaptively learns the feature 

structure through clustering by iteratively updating the 

Laplacian graph to find the feature relevance [55]. 

Dependence-guided Unsupervised Feature Selection (DGUFS) 

is a hybrid of FS and clustering, where L2,0 norm equality 

constraint is used as FS and two guided terms are used to rank 

features that have the highest dependence raw data, cluster 

labels and features [57]. 

A set of 21 feature rankings were generated from the filter 

methods listed in Table 3. These sets of rankings were 

calculated for three groups of features: 1) rankings for time-

domain features (RTDF), 2) rankings for frequency-domain 

features (RFDF) and 3) rankings for combined time-domain 

and frequency-domain features (RCF). These groups of 

rankings were classified so as to compare their performance to 

determine the best subset of features. The performance of 

these grouped rankings was also compared to the performance 

of the second layer feature selection method. 

 

2.4.2 Second layer feature selection method (statistical rank) 

A new set of statistical ranks (SR) was calculated based on 

the pool of all 21 rankings for all 47 features. Four statistical 

formulas were considered in this study: 

1) Average statistical rank (ASR), where the average rank 

for each sample was recalculated as the new rank. 

2) Median statistical rank (MedSR), where the rank for each 

sample was sorted and the middle value of the sorted rank 

was selected as the new rank for the sample. 

3) Mode statistical rank (MSR), where the most repeated 

number that appeared for each sample rank was selected 

as the new rank for the sample. 

4) Variance statistical rank (VSR), where the variance of the 

rank across each sample was calculated as the new score 

for the statistical reranking.  

To calculate the SR, consider the ranking matrix (RM) in 

Eq. (1), where m is the number of features and n is the number 

of rankings. The pseudo-code for calculating ASR and VSR is 

presented in Algorithm 1 is the pseudocode for calculating the 

new statistical ranking. 

 

𝑅𝑀 =  [

𝑟11 𝑟12

𝑟21 𝑟22

⋯ 𝑟1𝑛

⋯ 𝑟2𝑛

⋮ ⋮
𝑟𝑚1 𝑟𝑚2

… ⋮
… 𝑟𝑚𝑛

] (1) 

Algorithm 1. Calculation of the new statistical rank 

Input Ranking Matrix (RM)  

Step 1. Calculate the new rank according to statistical 

formula (average, mode, median or variance) value across 

all rankings for each feature (i.e., each row in RM). 

Step 2. Sort the array in Step 1 in descending order for ASR 

and VSR, or in ascending order for MSR and MedSR. 

Step 3. Number the sorted feature in Step 2 for the smallest 

value as rank 1 to the largest value as the last rank.  

Output. New ranking array: ASR = [a1, a2, … am]/ VSR = 

[b1, b2, … bm] /MedSR = [c1, c2, …cm] / MSR = [d1, d2, …dm] 

 

2.5 Classification 

 

All calculated rankings were classified to assess the 

performance of the selected features. Initially, the 

classification was performed on one feature according to the 

rankings and performance and was then recorded. 

Subsequently, features were added one by one to the classifiers 

until all features were classified according to their ranking. All 

performances were recorded and the highest accuracy from the 

classification was selected as the best subset of features. Seven 

classifiers were used in this work in search of the best 

performance of the selected features.  

The k-Nearest Neighbor (kNN) is a slow classifier that 

classifies an input according to the class of the majority of its 

labelled neighbours' point k. In this study, k was selected to be 

three [61]. Linear Discriminant Analysis (LDA) identifies and 

develops a linear separator between two classes, which assigns 

all labelled data to their classes in such a way that when it is 

plotted on its labelled axis, the samples are separated 

according to their classes [62]. Naïve Bayes (NB) is based on 

the Bayes probability, in which the attribute of each sample is 

independent of the attributes of other samples. The likelihood 

of a sample belonging to a particular class is determined by the 

label assigned to the sample [63]. Decision Tree (DT) 

generates a decision tree for the provided features based on the 

labels that have been assigned to each feature, starting with the 

most significant feature and progressing down to the least 

significant feature [64]. Support Vector Machine (SVM) is 

similar in concept to LDA in that both create a hyperplane 

separating the labelled data according to their classes. The 

difference is that the LDA hyperplane maximises the classes 

mean, whereas the SVM hyperplane maximises the margin 

between the two classes boundaries with the least amount of 

error [65]. In this study, two kernels were used, namely linear 

SVM-L and radial basis function SVM-RBF. Random Forest 

(RF) trains all features using a decision tree and then classifies 

the samples to minimize the variance [66]. 

Due to the limited number of samples, the k-fold cross-

validation was employed on each classifier model to ensure 

that all features were thoroughly utilised as training and testing 

data. k=10 is selected by dividing the training samples to 90% 

and 10% samples as the test samples for each k-fold. The 

classification process was repeated ten times and the average 

accuracy for each classifier was recorded. All data were 

efficiently used as both test and training data with k-fold cross-

validation. 
 

 

3. RESULTS AND DISCUSSION 
 

3.1 Single feature performance 
 

Features map is a graphical distribution of features to 
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visually predict class separability. Figure 4 presents feature 

maps of two features from the time domain (KURT) and two 

features from the frequency domain (SNR). From these figures, 

it could be predicted graphically that was separable with 

possibilities of two misclassified features. KURT will get one 

misclassified feature and PSR with all correct classification 

results. However, this was only applicable to single feature 

performance prediction. Further investigation on the 

performance of features was required in order to find the best 

subset of features. 

 

 
(a) Kurtosis feature map 

 
(b) SNR feature map 

 

Figure 4. Feature maps 

 

In this section, the performance of the feature data is 

analysed thoroughly. The performance of every single feature, 

the frequency-domain versus time-domain features, and 

finally, the analysis of the performance of all rankings 

calculated in this work were compared. Initially, the 

performance of every single feature for all samples was 

calculated. For the single time-domain feature, the best 

performing feature was the TM5 with 80% accuracy using the 

RF classifier. Eight time-domain features that acquired 75% 

accuracy and their corresponding classifiers were as follows: 

EWL (SVML), EMAV (LDA), WL (SVML), TM4 (DT), 

TM6 (NB), CC2 (SVM-RBF), KURT (SVM-RBF) and 

V4(DT). Eleven time-domain features that had achieved 70% 

classification accuracy were ZC, SSC, DASDV, LD, MYOP, 

SSI, MFL, AMAVS, TM3, IEMG, and V3. The remaining 

fifteen time-domain features scored between 60 and 65%. 

The best single frequency-domain features were SNR and 

PSR, with an 80% accuracy using the LDA and DT classifiers. 

Seven frequency-domain features had acquired 70% accuracy. 

These features and their corresponding classifiers were as 

follows: PKF (NB), MNP (kNN), TTP (kNN), SM1, SM2, 

SM3, SM4 (NB). The MDF (kNN) and VCF (LDA) had 

achieved a 65% accuracy. The lowest accuracy was 55%, 

which was acquired by MNF using the kNN classifier. Single 

feature classification for drowsiness detection could only 

achieve the highest accuracy of 80%, regardless of the type of 

the features, which seemed to be fairly low in detecting driver 

fatigue for EMG signal. 

 

3.2 First layer feature selection 

 

In the first layer feature selection method, 21 filter 

algorithms were calculated to acquire a ranking matrix (RM). 

In search of the best subset of features, for each rank, the 

features were added iteratively and classified to calculate their 

accuracy performance. All performance was recorded and the 

highest accuracy was selected for all filters. Table 4 lists down 

the performance of the ranking groups, namely RTDF, RFDF 

and RCF, for all filter rankings as well as the accuracy results 

for each filter. 

 

Table 4. Classification performance for all rankings 
 

Filter Rank 
RFDF RTDF RCF 

Accuracy NOF Classifier Accuracy NOF Classifier Accuracy NOF Classifier 

ECFS 70 1 kNN 85 16 LDA 70 2 NB 

Chi-Square 70 1 kNN 75 11 LDA 85 4 NB 

DGUFS 70 1 NB 75 1 SVM-L 75 2 SVM-L 

Fisher 75 2 NB 85 15 LDA 80 12 LDA 

FSASL 75 4 NB 75 2 DT 70 4 kNN 

FSCM 75 5 NB 75 6 NB 70 8 LDA 

F-Value 70 8 NB 85 19 LDA 70 1 SVM-L 

ILFS 70 1 NB 75 1 NB 80 3 DT 

InFS 75 2 NB 75 8 NB 75 2 SVM-L 

Laplacian 75 2 LDA 80 7 LDA 85 15 LDA 

LLCFS 75 8 kNN 75 1 SVM-L 75 5 SVM-L 

MCFS 75 4 NB 75 4 NB 95 16 LDA 

MRMR 75 5 NB 85 15 LDA 85 15 LDA 

MIFS 75 8 kNN 80 4 LDA 80 15 LDA 

NCA 80 1 LDA 75 1 SVM-RBF 85 15 LDA 

Pearson 70 1 kNN 85 5 NB 80 2 LDA 

Relieff 75 2 NB 75 2 DT 75 1 SVM-RBF 

Spearman 80 1 LDA 85 13 LDA 70 2 NB 

T-test 75 2 NB 85 3 NB 80 2 NB 

UDFS 75 2 NB 75 3 SVM-RBF 65 1 SVM-L 

UFSOL 70 1 NB 90 8 LDA 85 13 LDA 
*Note - NOF: number of features 
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For the RFDF ranking group, two filter methods—NCA and 

Spearman—yielded 80% accuracy with one frequency-

domain feature using the LDA classifier. The feature with the 

highest accuracy for both filters was the SNR feature. This was 

in agreement with the single frequency-domain feature 

performance, where the SNR feature had acquired 80% 

accuracy. The rest of the filter rankings achieved either 75 or 

75% accuracy. It was observed that the frequency-domain 

features alone could not achieve higher than 80% 

classification accuracy. 

The highest accuracy for the RTDF ranking group was 

achieved by the UFSOL filter, with 90% accuracy for eight 

time-domain features—SSC, ZC, KURT, EWL, TM3, TM5, 

AR2, WL, and TM4—using the LDA classifier. Meanwhile, 

the least number of time-domain features with the highest 

classification accuracy was three (LD, EWL and AMAVS), 

which had acquired 85% accuracy using T-test filter ranking. 

The lowest classification accuracy for eleven time-domain 

features was acquired by the Chi-Square filter ranking with 

70% accuracy using the LDA classifier. 

For the combined time-domain and frequency-domain 

features ranking (RCF), the best classification accuracy 

achieved was 95% using the MCFS filter method with LDA 

classifier for sixteen features. These sixteen features included 

six frequency-domain features and ten time-domain features 

(AR3, SM2, KURT, CC3, MDF, AR2, CC1, TTP, PKF, AR4, 

SKEW, AR1, LD, SM1, SM3, and EMAV). The combination 

of time-domain and frequency-domain features increased the 

classification accuracy performance by 5%. This classification 

accuracy was better than that of the previous study that had 

used the same data, which was only 80% for time-domain 

features only [18]. 

For the overall best-performing ranking groups, no one 

filter method repeatedly stood out as the best FS method for 

the data. MCFS rank performed the best for combined features, 

acquiring the highest classification accuracy for all features. 

MCFS, which analysed the relationship of features in its 

spectrum domain, had shown that the spectral analysis of the 

features was more useful than the true values of the features. 

UFSOL, which had performed with the least subset of features 

for RTDF, reduced the number of features to eight.  

The unsupervised filter methods, namely MCFS and 

UFSOL, had achieved higher than 90% classification accuracy, 

which was rarely the case for labelled data. One of the reasons 

for these results was the fact that in the experiment, the 

drowsiness level was assessed over a driving duration of two 

hours. In reality, drowsiness normally occurs within seconds 

while driving and drivers might not be aware of its occurrence. 

Therefore, the drivers did not assess their brief periods of 

drowsiness during the experiment. It was recommended to 

perform a drowsiness validation that can accurately assess the 

real state of drowsiness in a shorter duration during driving. 

 

3.3 Second layer feature selection 

 

The second layer of statistical filters, as listed in Table 5, 

had been applied and the highest accuracy of 95% was 

achieved using the ASR filter with the LDA classifier on 12 

features. The features include SNR, VCF, SM1, PSR, SM3, 

TM4, MYOP, MAV2, SSI, TM6, AAC and SM4, which were 

a combination of six time-domain features and six frequency-

domain features. The frequency-domain features dominated in 

the ASR ranking as they were the first five most significant 

features, followed by six time-domain features and one 

frequency-domain feature in the last subset of features. 

Although the second layer statistical rank produced the same 

accuracy performance, it was better in terms of the least 

number of features. The ASR performed with four fewer 

features compared to the subset of features in the RTC ranking 

group. 

 

Table 5. Statistical rank classification performance 

 
Performance\Rank ASR VSR MSR MedSR 

Accuracy 95 80 85 70 

NOF 12 8 4 1 

Classifier LDA LDA NB DT 

 

As ASR calculated the average value rank for all samples 

and then re-ranked them based on the largest average values, 

the new rank had identified features that did not cluster close 

to each other. This second layer rank searched for features that 

were highly likely to separate well between the two classes. 

Hence, giving a better classification performance. The second-

best performing filter was the MSR rank with 85% accuracy 

for four features using the NB classifier. The mode statistical 

rank performed better than the MedSR since it calculated the 

most repeated ranks of the twenty-one filters. The VSR had 

performed with 80% accuracy for eight features using the 

LDA classifier. The lowest accuracy of 70% was achieved by 

MedSR with one feature using the DT classifier. 

With regards to the classification performance of group 

ranking, the LDA had been consistent in acquiring the highest 

accuracy. This was due to the predicted feature maps of several 

features, as shown in Figure 3, where the feature data were 

almost linearly separable for single feature graphs. Based on 

all classification performances that had been presented in 

Sections 3.1 to 3.3, the SNR continuously appeared as one of 

the best features. However, the ultimate best subset of features 

in this work was the 12 combined features using the ASR rank 

method, which had achieved the highest accuracy. The ASR 

took into account all available rankings for each feature and 

this procedure was statistically proven to be able to find the 

best rank. In the RCF group of feature selection, the best subset 

of features consisted of ten time-domain features and six 

frequency-domain features. This proved that the time-domain 

features dominated the best features. Nevertheless, this was 

not the case when all rankings were taken into account, 

wherein the ASR statistically ranked eight frequency-domain 

features, which outnumbered the time-domain features by half. 

Hence, it is not the case with which features is more 

meaningful for the best performance, it is the search of best 

features in both domains. Overall, the new statistical rank 

produced the best result with the least number of features and 

high classification accuracy. 

 

 

4. CONCLUSION 

 

In this paper, twenty-one filter methods for feature selection 

were applied to the EMG raw data for driver fatigue detection 

and a new statistical rank was proposed. It has been shown that 

the new statistical rank ASR delivered the best performance as 

compared to the single filter rank in terms of the least number 

of the best subset of features. The best subset of features was 

a combination of frequency-domain and time-domain features. 

Concurrently, the best single filter method for the EMG 

signals of driver fatigue, performed with the same 

classification accuracy compared to ASR, but with more 
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features. The number of features was reduced significantly 

from 47 to 12 (75% fewer features), which meant less 

computational time. The proposed model is the potential to the 

development of a more robust feature filter selection method. 

In the future, multi validation procedure is desirable for a more 

accurate drowsiness level validation. Based on the results of 

the single ranking method, combinations of two or three filter 

methods might be a promising new algorithm for feature 

selection. 
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