

Analysis of Autoencoder Compression Performance in Intrusion Detection System

I Gede Agung Krisna Pamungkas, Tohari Ahmad*, Royyana Muslim Ijtihadie

Department of Informatics, Institut Teknologi Sepuluh Nopember, Kampus ITS, Surabaya 60111, Indonesia

Corresponding Author Email: tohari@if.its.ac.id

https://doi.org/10.18280/ijsse.120314

ABSTRACT

Received: 6 May 2022

Accepted: 12 June 2022

 Exchanging data between devices is getting easier and faster just by using a network.

Nevertheless, many factors threaten this process and the network itself. Implementing an

Intrusion Detection System (IDS) may minimize the risk since it can identify and prevent

attacks on the network. There are many methods to design an IDS to work optimally only

by reducing data dimensions, one of which is by using the Autoencoder. However, its data

dimensions may not have been optimal, which affects the IDS performance. In this study,

we work on this problem. This study shows that one of the dimensional reduction methods

can get optimal results. It indicates that it is implementable to secure the network.

Keywords:

computer network, intrusion detection system,

network infrastructure, network security

1. INTRODUCTION

Currently, most information is obtained from network

technology, from which we can easily access various

information and exchange data. Despite its advantages, a

network is vulnerable to an attack, where illegal parties may

compromise and destroy the data and other resources.

Therefore, systems preventing a network from attacks are

introduced, one of which is an Intrusion Detection System

(IDS) [1, 2] that can identify attack attempts by examining

activities in a network or system.

In general, IDS can be divided into host-based and network-

based IDS, known as HIDS and NIDS, respectively. HIDS

monitors activities where it has been installed. This analysis

includes file integrity and finding malicious activities in log

files. Slightly different, NIDS focuses on evaluating

infrastructure. Analyzing network packets, including headers

and contents, makes it feasible to recognize flows for

identifying an attack in the network [1].

Furthermore, both IDS types evaluate incoming packets

considering either signature-based or anomaly-based

mechanisms. In the first approach, detection is done according

to existing attacks' defined signatures or rules. The system

detects current attacks by comparing their activities with

stored signatures without identifying new attack types. The

second approach searches for deviation from normal behaviors

using machine learning to detect activities [1].

Current IDS is developed using machine learning

algorithms focusing on either feature extraction or type

classification. For example, Megantara and Ahmad [2] employ

feature importance and RFE to extract features, Ahmad and

Aziz [3] implement CFS-PSO feature selection, and Muttaqien

and Ahmad [4] reduce dimension. In this study, we take

Autoencoder to compress data, inspired by Farahnakian and

Heikkonen [5], which implement Autoencoder and the

Softmax classifier to the KDDCup99 dataset. Autoencoder is

a well-known scheme to use in this field [5]. Different from [5]

that implements the system in only one dataset, we evaluate

the method in four datasets. This has made it easier to analyze

the characteristics and environment where the system is more

appropriate to implement. Furthermore, we also evaluate

several compression sizes to improve the performance further.

The remainder of this paper is organized as follows. Section

2 reviews literature relating to Autoencoder-based feature

extraction in IDS. Section 3 explains the method, while

Section 4 analyses and compares the experimental results with

other methods. Finally, we conclude them in Section 5.

2. PREVIOUS WORKS

Autoencoder-based feature extraction in IDS has been

introduced, such as that proposed by Farahnakian and

Heikkonen [5], and Potluri and Diedrich [6]. These two

methods [5, 6] compress data using an encoder and then return

it using a decoder. The encoder produces data with fewer

features than the original one, called code, and the output of

the decoder is made as close as possible to its original.

Autoencoder has three parts, encoder, decoder, and code. The

encoder compresses the input to lower-dimensional output

(code), and the decoder generates input from the lower

dimensional output produced by the encoder [5]. Overall, the

Autoencoder output is not the same as the input because it only

translates data. Therefore, a minimal loss is made.

By implementing their method in the KDDCup99 dataset,

Farahnakian and Heikkonen [5] transform categorical data

using One-Hot Encoding, so the number of features has

become more than the original. One-Hot Encoding is a type of

mapping converting categorical features into numerical

features with binary coding. For example, TCP, UDP, and

ICMP are mapped to (1,0,0), (0,1,0), and (0,0,1) [5]. They

consider four layers of Autoencoder architecture for feature

extraction with (32, 32, 32, 32). They take Softmax by

calculating the multiclass and binary classification. Potluri and

Diedrich [6] transform categorical data using label encoding

in the NSL dataset, where the number of features is the same

as the original. Label encoding converting categorical to

numerical values. For example, TCP, UDP, and ICMP are

converted to 1, 2, and 3, respectively. They also use two layers

Autoencoder architecture for feature extraction with (20, 10).

International Journal of Safety and Security Engineering
Vol. 12, No. 3, June, 2022, pp. 395-401

Journal homepage: http://iieta.org/journals/ijsse

395

https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.120314&domain=pdf

Furthermore, Softmax is also implemented by calculating four

types of classification. The first is binary classification; the

second has three classes with one normal, a type of attacks (i.e.,

DoS), and one remaining total attack type; the third has three

classes with one normal, two types of attacks (i.e., DoS, Probe),

and one remaining total attack types; the last comprises one

normal and four types of attacks.

By taking the NSL-KDD dataset, Al-Qatf et al. [7]

transform categorical data using One-Hot Encoding. They also

implement Autoencoder architecture as feature extraction with

only one layer. The SVM classifier is implemented by

calculating the binary and multiclass classification. The model

is evaluated based on training and testing data, and various

compression amounts from 10 to 120 are considered. Several

Autoencoder-based methods for feature extraction are also

proposed, such as [8] using Autoencoder as data compression

in the NSL-KDD dataset; [9] using Autoencoder as feature

extraction in CICIDS 2017 dataset; and [10] using CNN and

LSTM as layer autoencoder for feature extraction. In general,

the best architecture is Autoencoder using architecture

Stacked-CNN-LSTM-SAE-NN.

Based on those previous studies, it is found that there are

many variants of the Autoencoder implementation based on

the number of layers, the type of classification, and the used

dataset. However, previous research still needs to be evaluated

using different parameters to improve its performance.

Furthermore, some metrics should also be implemented to

measure that performance further.

3. METHODS

Figure 1. Stages of the proposed method

In this research, the Autoencoder reduces the number of

features by 75%, 50%, and 25%. Those percentages are chosen

because these values represent various data sizes with

reasonable differences. The main process flow is described as

follows:

(1) Pre-processing: We use One-Hot-Encoder to convert

categorical data into numerical data for preprocessing.

Then, data are normalized using MinMaxScaler.

(2) Autoencoder Process: The Autoencoder model is trained

to produce this model. The next is to compress data

training and testing with that Autoencoder.

(3) Evaluation Process: The data evaluation uses Softmax, k-

NN, and Naïve Bayes classification.

Each stage of this scheme is illustrated in Figure 1. The

focus of this experiment is the Autoencoder process, where we

compress the data in different amounts, namely 25%, 50%,

and 75% for each dataset, whose process is described as

follows.

3.1 Preprocessing

In this stage, first, we convert categorical data using One-

Hot-Encoder, a method to transform categorical data to

numerical with binary coding. It results in 0 or 1, representing

"not in this category" and "in a category", respectively. After

converting to numerical features, all datasets have more

features. The NSL-KDD dataset is from 41 to 122, UNSW-

NB15 is from 42 to 196, KDDCup99 is from 41 to 119, and

Kyoto is from 23 to 46. Next, all datasets are normalized with

MinMaxScaler to make 0 to 1.

3.2 Autoencoder process

After preprocessing data, we create an Autoencoder model

by compressing all features to 75%, 50%, and 25%. Each

compressed ratio creates a different layer, so we have nine

models consisting of 75% one-layer, two-layer, three-layer;

50% one-layer, two-layer, three-layer; 25% one-layer, two-

layer, three-layer

The process starts by training the first Autoencoder with

training data and compressing. Then, training the second

Autoencoder with compressed data in the first Autoencoder

creates the compression. Last, train the third Autoencoder with

compressed data in the second Autoencoder.

Figure 2. Autoencoder model

After Autoencoder was trained, we have 3 Autoencoders:

the first Autoencoder is one layer, the first to second

Autoencoder is a two-layer, and the first to third Autoencoder

is a three-layer. Those are trained again with different

compressed ratios. Compressing data training and testing with

trained Autoencoder, which is used for classification, produces

fewer features than the original. Figure 2 shows an

autoencoder model consisting of 3 layers, each of which is

trained with a different autoencoder.

396

3.3 Evaluation process

The compressed data are evaluated using Softmax, k-NN,

and Naïve Bayes Classification. Softmax classifier expands

the Logistic Regression (LR) method that LR only categories

two labels. On the other hand, Softmax extends it into multi-

category labels; this characteristic is more appropriate to

implement for multiclass environments. Furthermore,

Softmax can be applied to map N-dimensional vectors into

categories [11]. For Softmax classification, we use 100

batches for training with Binary Crossentropy loss and Adam

Optimizer, whose architecture contains two layers. In the first

layer, the number of neurons is the same as the number of

compressed features, and in the output layer, the number of

neurons is the same as the number of classifications. After the

first layer, we perform the dropout layer for combat overfitting.

The classification architecture is shown in Figure 3.

Figure 3. Softmax classification model

The k-NN algorithm is a supervised learning method by

storing previous data and classifying incoming data according

to its distance to those previous ones, and the close

neighborhood of 𝑘 is checked. The incoming data are included

in their closest class by measuring the Euclidean, Minkowski,

or Manhattan to find the distance [12]. On the other hand,

Naïve Bayes classifies data according to the probabilistic

values in the Bayes theorem and the naïve independence

assumptions. The algorithm consolidates the existence of a

specific feature that is irrelevant to the current environment.

As a supervised learning method, it is trained for small data

sets to detect many attributes later [13]. This environment has

been considered based on the previous supervised and

unsupervised learning comparison [14].

4. EXPERIMENTAL RESULTS

In the experiment, we used four datasets, namely NSL-KDD,

UNSW-NB15, Kyoto, and KDDCup99, to get diverse

comparisons. Furthermore, multiclass and binary

classifications are performed whenever the dataset supports it

(e.g., the Kyoto dataset is binary only). Like other research, we

generate a confusion matrix containing True Positive (TP),

True Negative (TN), False Positive (FP), and False Negative

(FN) to find the True Positive Rate (TPR) and the False

Negative Rate (FPN) of the experimental results. TP is the

number of correctly detected attacks, TN is the number of

correctly detected normal, FP is the number of normal detected

as an attack, and FN is attack detected as normal.

For the NSL-KDD dataset, we use KDDTrain+.txt as

training and KDDTest+.txt as testing with 125973 and 22544

data, respectively. NSL-KDD has 23 classes and is reduced to

5 classes with one normal and four attacks (Denial of Service

(DoS), Use to Root (U2R), Remote to Local (R2L), and Probe.

As for the Kyoto dataset, we use 20151231.txt as the dataset

with a total data size of 309068 data. It has two classes with a

value of 1 as normal and a -1 as an attack. For the UNSW-

NB15 dataset, we use UNSW_NB15_training-set.csv for

training, and UNSW_NB15_testing-set.csv for testing with a

total of 82332 and 175341 data, respectively. The UNSW-

NB15 dataset has ten classes with one normal and nine attacks

(Analysis, Backdoor, DoS, Exploits, Fuzzers, Generic,

Reconnaissance, Shellcode, and Worms). In the KDDCup99

Dataset, kddcup.data_10_percent_corrected is taken for

training and corrected for data testing containing 494021 and

311029 for data training and testing, respectively. This dataset

has redundant data; we reduced it to 145586 and 77291 data.

4.1 Difference number of hidden layers and hidden units

We use an Autoencoder with three amounts of compression,

namely 25%, 50%, and 75%. Furthermore, we also implement

several layers, from one to three, as described in the following

scenarios.

4.1.1 Scenario 1

We compress data using Autoencoder to 25% for each

dataset. In the NSL-KDD, the number of features reduces from

122 to 30; in the UNSW-NB15, it is from 196 to 49; the Kyoto

dataset is from 46 to 11; lastly, for KDDCup99, the number

goes down from 119 to 30. In this scenario, the highest

accuracy on multiclass classification is 93.40% in 3 layers

with Softmax and KDDCup99 datasets, while that in binary is

98.79% in 3 layers with k-NN and Kyoto datasets. The results

are provided in Table 1, where B, M, and k are the binary

classification, multiclass classification, and the number of

nearest neighbors in k-NN, respectively. The sensitivity (SE)

and specificity (SP) in binary and multiclass classification are

shown in Table 2 and Table 3, respectively. It is shown that,

overall, in terms of SE, Softmax and Naive Bayes are more

appropriate to the multiclass environment. However, their SP

values are comparable, depending on the dataset. In the binary

classification, k-NN applied to the Kyoto and KDDCup99

dataset has the highest SE and SP values, respectively. For the

multiclass, Softmax applied to UNSW-NB15 and k-NN with

KDDCup99 datasets have the best SE and SP values,

respectively.

4.1.2 Scenario 2

Unlike scenario 1, in scenario 2, we make the Autoencoder

compression of 50% for each dataset. Here, the highest

accuracy on multiclass is 93.16% in 3 layers with Softmax and

KDDCup99 datasets, and that of binary is 99.00% in 1 layer

with Softmax and Kyoto datasets. In this scenario, the

experimental results are provided in Tables 4, 5, and 6. In

general, this scenario produces similar patterns to the previous

scenario 1.

4.1.3 Scenario 3

In the last scenario, we make the Autoencoder compression

amount of 75% for each dataset. In scenario 3, the highest

accuracy on multiclass classification is obtained using one

layer with Softmax and KDDCup99 datasets, 93.55%; and that

of binary is in 1 layer with Softmax and Kyoto datasets, which

is 99.42%. Tables 7, 8, and 9 show the detail of the results.

Same as scenario 2, this experiment shows similar patterns to

scenario 1.

397

Table 1. The accuracy using 25% compression (B=binary, M=multiclass, k=nearest neighbors)

Layer
Softmax Layer (%) k-NN Classification (%) for specified k Naïve Bayes Classification (%)

B M k B k M B M

NSL-KDD Dataset

1 75.16 78.15 37 79.78 37 78.19 75.12 62.49

2 79.36 82.78 29 80.05 29 78.60 75.20 61.40

3 75.23 80.69 23 80.12 29 78.50 76.50 63.52

UNSW-NB15 Dataset

1 85.99 67.21 3 88.31 5 72.02 73.81 58.75

2 90.20 67.35 3 88.17 7 71.93 73.92 55.26

3 86.05 66.89 3 88.06 13 71.31 74.07 58.47

Kyoto Dataset

1 98.53 - 5 98.60 - - 85.06 -

2 97.14 - 5 98.66 - - 92.35 -

3 97.52 - 5 98.79 - - 96.09 -

KDDCup99 Dataset

1 94.27 92.37 41 94.38 3 9265.00 91.03 87.35

2 94.31 92.50 41 94.57 3 92.95 90.68 86.53

3 94.25 93.40 41 94.61 3 92.86 90.36 77.82

Table 2. Sensitivity (SE) and specificity (SP) of binary

classification using 25% compression

Layer

Softmax

Layer

k-NN

Classification

Naïve Bayes

Classification

SE

(%)

SP

(%)

SE

(%)

SP

(%)

SE

(%)
SP (%)

NSL-KDD Dataset

1 62.06 92.48 70.34 92.25 63.04 91,09.

2 67.26 95.36 70.78 92.30 62.97 91.36

3 61.90 92.84 70.86 92.36 65.38 91.20

UNSW-NB15 Dataset

1 80.62 97.43 85.02 95.31 63.99 94.72

2 88.6 93.60 84.94 95.06 64.16 94.71

3 80.67 97.51 84.83 94.94 64.45 94.58

Kyoto Dataset

1 99.88 74.41 99.43 80.77 85.27 80.50

2 97.89 81.09 99.40 82.62 92.93 79.64

3 98.34 79.77 99.52 82.94 96.9 78.6

KDDCup99 Dataset

1 87.84 98.20 86.55 99.18 79.37 98.17

2 88.58 97.83 87.02 99.20 78.12 98.38

3 88.01 98.07 87.10 99.22 75.79 99.29

Table 3. Sensitivity (SE) and specificity (SP) of multiclass

classification using 25% compression

Layer

Softmax

Layer

k-NN

Classification

Naïve Bayes

Classification

SE

(%)

SP

(%)

SE

(%)

SP

(%)

SE

(%)

SP

(%)

NSL-KDD Dataset

1 77.32 91.16 70.18 92.26 67.79 87.92

2 80.02 94.77 70.67 92.33 69.54 90.64

3 77.13 95.43 70.57 92.37 70.86 86.86

UNSW-NB15 Dataset

1 98.95 80.23 83.96 96.15 96.73 77.03

2 99.16 80.36 82.67 96.61 97.55 78.92

3 99.01 80.25 80.46 97.47 96.33 78.68

KDDCup99 Dataset

1 91.40 97.33 85.92 98.36 86.04 95.16

2 91.85 96.99 85.73 99.13 87.98 93.86

3 92.82 97.31 86.11 99.11 86.33 96.17

Table 4. The accuracy using 50% compression (B=binary, M=multiclass, k=nearest neighbors)

Layer
Softmax Layer (%) k-NN Classification (%)for specified k Naïve Bayes Classification (%)

B M k B k M B M

NSL-KDD Dataset

1 76.58 78.19 21 77.47 37 75.98 77.76 66.57

2 78.03 79.05 21 77.45 21 76.11 78.72 62.81

3 77.10 80.86 23 78.93 23 77.63 76.61 76.40

UNSW-NB15 Dataset

1 89.42 68.40 3 88.46 5 72.44 74.36 55.09

2 89.26 68.18 3 88.27 7 72.20 73.89 55.38

3 89.11 67.99 3 88.22 13 72.14 74.00 54.25

Kyoto Dataset

1 99.00 - 3 98.47 - - 84.27 -

2 98.84 - 3 98.25 - - 84.79 -

3 98.29 - 3 98.08 - - 86.06 -

KDDCup99 Dataset

1 93.76 92.21 41 93.95 3 93.11 90.78 87.10

2 92.41 92.69 41 93.56 3 93.13 90.75 86.29

3 92.78 93.16 41 93.81 3 93.39 90.42 86.71

398

Table 5. Sensitivity (SE) and specificity (SP) of binary classification using 50% compression

Layer
Softmax Layer k-NN Classification Naïve Bayes Classification

SE (%) SP (%) SE (%) SP (%) SE (%) SP (%)

NSL-KDD Dataset

1 64.88 92.05 66.00 92.63 67.89 90.80

2 63.67 97.01 65.92 92.68 69.47 90.95

3 64.02 94.39 65.85 96.23 65.36 91.48

UNSW-NB15 Dataset

1 85.97 96.77 85.24 95.31 64.81 94.71

2 85.79 96.64 85.11 94.99 64.10 94.72

3 85.64 96.50 85.05 94.96 64.28 94.70

Kyoto Dataset

1 99.49 88.50 99.12 84.25 84.30 83.57

2 99.27 89.59 98.89 84.48 84.76 85.43

3 98.76 88.10 98.69 84.93 86.16 83.71

KDDCup99 Dataset

1 84.90 99.20 85.28 99.26 77.78 98.76

2 82.71 98.36 85.01 98.80 77.80 98.69

3 84.32 97.96 85.49 98.90 77.14 98.56

Table 6. Sensitivity (SE) and specificity (SP) of multiclass classification using 50% compression

Layer
Softmax Layer k-NN Classification Naïve Bayes Classification

SE (%) SE (%) SE (%)

NSL-KDD Dataset

1 77.05 90.99 65.92 92.66 74.92 90.51

2 74.41 95.37 65.87 92.68 71.85 88.52

3 76.22 95.59 65.82 96.24 72.94 93.37

UNSW-NB15 Dataset

1 99.24 80.22 84.32 96.03 96.34 72.13

2 99.02 80.46 83.10 96.52 97.79 76.00

3 98.95 80.47 81.20 97.33 94.95 75.31

KDDCup99 Dataset

1 88.58 97.17 85.37 99.16 87.73 95.01

2 89.82 97.22 84.91 99.15 87.57 93.87

3 91.49 97.24 85.80 99.16 86.72 95.09

Table 7. The accuracy using 75% compression (B=binary, M=multiclass, k=nearest neighbors)

Layer
Softmax Layer (%) k-NN Classification (%)for specified k Naïve Bayes Classification (%)

B M k B k M B M

NSL-KDD Dataset

1 78.24 79.80 9 76.93 9 75.70 80.20 66.19

2 79.32 78.72 37 78.11 37 76.73 79.64 70.48

3 77.67 79.46 39 78.18 37 76.82 80.64 72.46

UNSW-NB15 Dataset

1 87.97 67.52 3 88.64 5 72.60 73.93 55.13

2 89.19 68.19 3 88.48 7 72.60 73.78 56.01

3 88.41 69.24 3 88.38 13 72.22 73.66 56.75

Kyoto Dataset

1 99.42 - 3 98.69 - - 84.24 -

2 99.12 - 3 98.60 - - 83.55 -

3 98.78 - 3 97.87 - - 84.96 -

KDDCup99 Dataset

1 92.81 93.55 41 93.95 3 92.76 91.37 87.13

2 93.05 93.13 41 93.99 3 93.05 91.68 86.54

3 92.65 92.97 41 93.87 3 93.39 90.26 87.66

Table 8. Sensitivity (SE) and specificity (SP) of binary classification using 75% compression

Layer
Softmax Layer k-NN Classification Naïve Bayes Classification

SE (%) SP (%) SE (%) SP (%) SE (%) SP (%)

NSL-KDD Dataset

1 65.84 94.63 64.94 92.78 69.04 94.94

2 66.14 96.74 67.07 92.69 71.34 90.62

3 66.35 92.63 67.28 92.60 73.75 89.74

399

UNSW-NB15 Dataset

1 83.55 97.40 85.47 95.40 64.37 94.29

2 85.63 96.78 85.43 94.99 63.94 94.74

3 84.23 97.30 85.30 94.94 63.77 94.73

Kyoto Dataset

1 99.95 89.86 99.36 84.30 84.27 83.66

2 99.61 88.50 99.28 83.85 83.54 83.66

3 99.27 88.10 98.54 83.35 85.01 83.94

KDDCup99 Dataset

1 83.86 98.30 85.26 99.28 77.94 99.60

2 84.41 98.35 85.38 99.27 80.87 98.31

3 83.39 98.32 85.28 99.40 74.95 99.64

Table 9. Sensitivity (SE) and specificity (SP) of multiclass classification using 75% compression

Layer
Softmax Layer k-NN Classification Naïve Bayes Classification

SE (%) SE (%) SE (%)

NSL-KDD Dataset

1 76.08 95.03 64.81 92.79 74.02 90.81

2 78.63 95.37 67.05 92.69 75.90 88.78

3 77.03 95.51 67.26 92.63 75.33 87.32

UNSW-NB15 Dataset

1 98.95 80.40 84.54 96.06 97.13 70.10

2 99.04 80.57 83.58 96.47 96.64 79.13

3 99.14 80.50 81.80 97.37 97.31 76.13

KDDCup99 Dataset

1 90.60 97.82 85.28 98.41 87.56 95.12

2 90.99 97.60 85.60 98.59 89.19 93.62

3 87.26 98.28 85.80 99.22 86.72 95.09

4.2 Analysis of 3 scenarios

Generally, the increasing the compression proportionally

increases the performance. This specifically works on the

accuracy of using Softmax and Naïve Bayes classifiers, for

both binary and multiclass classification in NSL-KDD dataset.

Using k-NN in the same dataset causes the accuracy reduces

gradually. Softmax and k-NN can be used for both binary and

multiclass with accuracy around 80% at maximum. On the

contrary, Naïve Bayes has about 14% difference of accuracy

generated by binary and multiclass. So, it may not be

applicable for mutliclass classification at any layer. In this

NSL-KDD dataset, the best accuracy in binary classification is

scenario 3 with three layers, using Naive Bayes reaching

80.64%. In multiclass classification, scenario 1 with two layers

using the Softmax classifier obtains 82.78%. Next, in the

UNSW-NB15 dataset, the best accuracy in binary

classification is scenario 1 with two layers and using Softmax

classification, 90.20%. In comparison, that in multiclass

classification is scenario 3 with 1 and 2 layers, using k-NN

classification, which is 90.20%.

In the UNSW-NB15 dataset, a relatively large difference

between binary and multiclass occurs in all classifiers, where

Naïve Bayes still has the highest difference. Here, multiclass

classification results are lower than that in NSL-KDD.

However, the binary classification results for Softmax and k-

NN go up significantly.

As for the Kyoto dataset, there is only binary data, therefore

multiclass cannot be evaluated. The experimental results show

that the accuracy is higher than that of other datasets.

Moreover, the 75% compression can reach 99.42% of

accuracy in 1 layer of Softmax. The accuracy in KDDCup99

is lower than that of Kyoto but still higher than others. The

change of layer numbers and compression may not much

affect the results. The best binary classification in this Kyoto

dataset is scenario 3 with one layer, using the Softmax

classifier, 99.42%. Lastly, in the KDDCup99 dataset using

binary classification, scenario 1 with three layers with k-NN,

94.61%, while in multi-classification is scenario 3 with one

layer implementing Softmax, 93.55%.

From those three scenarios, the best result in multiclass is

the one layer-Autoencoder on the KDDCup99 dataset,

reducing the features to 75%. In binary class, the best result is

generated by 1 layer-Autoencoder on the Kyoto dataset,

decreasing the features to 75%.

4.3 Comparison with other evaluations

Table 10. Multiclass classification results

Methods Dataset
Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

DAE-IDS [5] KDDCup99 94.71 94.42 -

DNN-IDS [6] NSL-KDD - 97.50 95.00

SAE-SVM [7] NSL-KDD 80.48 68.29 -

Proposed

method
KDDCup99 93.55 90.63 97.82

Table 11. Binary classification results

Methods Dataset
Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

DAE-IDS [5] KDDCup99 96.53 95.65 -

DNN-IDS [6] NSL-KDD - 97.50 96.50

SAE-SVM [7] NSL-KDD 84,.6 76.57 -

Proposed

method
Kyoto 99.42 99.95 89.86

We compare the proposed method [5-7], as shown in Tables

10 and 11 for multiclass and binary classification, respectively.

From those tables, we find that binary classification is the best

among other methods, with an accuracy of 99.42%, sensitivity

of 99.95%, and specificity of 89.86%. However, its specificity

400

is less than that of the study [6]. Imbalanced data likely cause

in the Kyoto dataset that the number of attacks is more than

the normal. In multiclass classification, the study [5] is the best

with accuracy and sensitivity of 94.71% and 94.42% in the

KDDCup99 dataset, where the proposed method has 93.55%

and 90.63%, respectively. It is possible because the normal is

more than the attacks, and the framework neural network is

different from the other research.

5. CONCLUSION

It is found that the proposed method can produce better

results in the Kyoto dataset for binary classification.

Meanwhile, the multiclass classification in KDDCup99 is

considerable, less than that in the study [5]. This research also

shows that the Naive Bayes is less suitable for multiclass

classification than k-NN and Softmax. Adding layers to the

Autoencoder does not significantly improve performance, as

shown by their accuracy. Furthermore, using Autoencoder can

reduce computation because the number of features decreases.

Nevertheless, this study has not been implemented to specific

datasets, which may have different characteristics.

In future research, the performance may be improved by

implementing other classifiers. Moreover, some feature

selection algorithms can be combined to obtain the best

features. To improve the analysis results, differences between

compression sizes should be reduced, for example to 5%, so

more detailed data can be obtained. Nevertheless, this

reduction causes longer time because more data must be

processed. More datasets should be taken to evaluate the

methods, so that the analysis can be done deeper.

ACKNOWLEDGMENT

The authors gratefully acknowledge financial support from

the Institut Teknologi Sepuluh Nopember for this work, under

project scheme of the Publication Writing and IPR Incentive

Program (PPHKI) 2022.

REFERENCES

[1] Warzyński, A., Kołaczek, G. (2018). Intrusion detection

systems vulnerability on adversarial examples. In 2018

Innovations in Intelligent Systems and Applications

(INISTA), pp. 1-4.

https://doi.org/10.1109/INISTA.2018.8466271

[2] Megantara, A.A., Ahmad, T. (2020). Feature importance

ranking for increasing performance of intrusion detection

system. In 2020 3rd International Conference on

Computer and Informatics Engineering (IC2IE), pp. 37-

42. https://doi.org/10.1109/IC2IE50715.2020.9274570

[3] Ahmad, T., Aziz, M.N. (2019). Data preprocessing and

feature selection for machine learning intrusion detection

systems. ICIC Express Lett, 13(2): 93-101.

https://doi.org/10.24507/icicel.13.02.93

[4] Muttaqien, I.Z., Ahmad, T. (2016). Increasing

performance of IDS by selecting and transforming

features. In 2016 IEEE International Conference on

Communication, Networks and Satellite

(COMNETSAT), pp. 85-90.

https://doi.org/10.1109/COMNETSAT.2016.7907422

[5] Farahnakian, F., Heikkonen, J. (2018). A deep auto-

encoder based approach for intrusion detection system.

In 2018 20th International Conference on Advanced

Communication Technology (ICACT), pp. 178-183.

https://doi.org/10.23919/ICACT.2018.8323688

[6] Potluri, S., Diedrich, C. (2016). Accelerated deep neural

networks for enhanced intrusion detection system. In

2016 IEEE 21st International Conference on Emerging

Technologies and Factory Automation (ETFA), pp. 1-8.

https://doi.org/10.1109/ETFA.2016.7733515

[7] Al-Qatf, M., Lasheng, Y., Al-Habib, M., Al-Sabahi, K.

(2018). Deep learning approach combining sparse

autoencoder with SVM for network intrusion detection.

IEEE Access, 6: 52843-52856.

https://doi.org/10.1109/ACCESS.2018.2869577

[8] Ieracitano, C., Adeel, A., Morabito, F.C., Hussain, A.

(2020). A novel statistical analysis and autoencoder

driven intelligent intrusion detection approach.

Neurocomputing, 387: 51-62.

https://doi.org/10.1016/j.neucom.2019.11.016

[9] Thakur, S., Chakraborty, A., De, R., Kumar, N., Sarkar,

R. (2021). Intrusion detection in cyber-physical systems

using a generic and domain specific deep autoencoder

model. Computers & Electrical Engineering, 91: 107044.

https://doi.org/10.1016/j.compeleceng.2021.107044

[10] D’Angelo, G., Palmieri, F. (2021). Network traffic

classification using deep convolutional recurrent

autoencoder neural networks for spatial–temporal

features extraction. Journal of Network and Computer

Applications, 173: 102890.

https://doi.org/10.1016/j.jnca.2020.102890

[11] Wang, Z., Liu, Y., He, D., Chan, S. (2021). Intrusion

detection methods based on integrated deep learning

model. Computers & Security, 103: 102177.

https://doi.org/10.1016/j.cose.2021.102177

[12] Kilincer, I.F., Ertam, F., Sengur, A. (2021). Machine

learning methods for cyber security intrusion detection:

Datasets and comparative study. Computer Networks,

188: 107840.

https://doi.org/10.1016/j.comnet.2021.107840

[13] Wang, K. (2019). Network data management model

based on Naïve Bayes classifier and deep neural

networks in heterogeneous wireless networks.

Computers & Electrical Engineering, 75: 135-145.

https://doi.org/10.1016/j.compeleceng.2019.02.015

[14] Sirisha, A., Chaitanya, K., Krishna, K.V.S.S.R.,

Kanumalli, S.S. (2021). Intrusion detection models using

supervised and unsupervised algorithms - a comparative

estimation. International Journal of Safety and Security

Engineering, 11(1): 51-58.

https://doi.org/10.18280/ijsse.110106

401

