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 The heart sound coming from the patient is observed using a stethoscope, which is a medical 

tool to determine the patient's condition. The technique for this observation is called 

auscultation. This sound describes the condition of a person's heart. Because auscultation 

relies on the experience and knowledge of doctors, various methods for analyzing heart 

sounds are automatically developed by researchers. In this study, a method for classifying 

normal heart sounds and murmurs is proposed using the grey-level difference matrix 

(GLDM) feature taken from the short-time Fourier transform (STFT) plot. The STFT plot 

is converted into an image then the GLDM characteristics are calculated as input for the 

support vector machine as a classification. The experimental result shows that the highest 

accuracy of 83% is achieved using STFT 200-100 in four directions of GLDM. Even though 

this accuracy is not as high as the previous research, the proposed method is still open for 

exploration, such as distance selection in GLDM or other image analysis methods. 
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1. INTRODUCTION 

 

Stethoscope is used by medical personnel to listen to 

acoustic signals from inside the human organs [1]. When 

diagnosing, the body parts that are examined are the lungs, 

heart, and intestines. The type and intensity of the acoustic 

signal produced help medical personnel to diagnose of the 

patient's condition [2]. A stethoscope is a must-have tool 

because of its essential role in diagnosing a patient's disease. 

In the current observation process, the technique for listening 

to the sounds from inside the patient's body is called 

auscultation [3]. This process uses a stethoscope to get a more 

precise sound. However, there are many obstacles due to this 

direct approach. These problems are low frequency, low 

amplitude, environmental noise, hearing sensitivity, and 

sounds with almost identical patterns. 

One of the signals heard using the auscultation technique is 

heart sound. By listening to this sound, doctors diagnose 

abnormalities in the heart. Considering these subjective factors, 

many methods have been developed to classify heart sounds 

automatically using digital signal processing method [4]. 

In general, heart sound signal processing can be divided 

based on the signal domain: time domain, frequency domain, 

and time-frequency domain [5]. Signal processing in the time-

domain, for example, calculating statistical features on heart 

sounds, empirical mode decomposition (EMD), and fractal 

dimensions [6]. Meanwhile, heart sound signal processing in 

the frequency domain includes filter bank, mean-power of 

frequency band, MFCC, quartile frequency, and zero-crossing 

analysis [7]. Signal processing in the frequency domain mainly 

involves Fourier transforms to convert the signal from the time 

domain to the frequency domain. Heart sound signal 

processing in the time-frequency domain, such as short-time 

Fourier transform (STFT), Wigner-Ville distribution (WVD), 

Stockwell transform (S-Transform), Hilbert-Huang Transform 

(HHT), or wavelet transforms [5]. The use of the time-

frequency domain is quite widespread because this method 

provides information about the frequency component of the 

signal at each time. 

Because the previously mentioned time-frequency domain 

method only changes the signal from the time domain to the 

time-frequency domain, it is still necessary to use a feature 

extraction method to obtain the characteristics of the signal. 

One of the methods is signal complexity. Wang et al. used 

wavelet-time entropy to separate normal and abnormal heart 

sound signals [8]. Other researchers have used the fractal 

dimension to distinguish normal heart sounds and murmurs 

[9]. Short-time Fourier transform (STFT) as a method for 

transforming 1D signals to the time-frequency domain was 

also used in previous studies. STFT and tensor decomposition 

were proposed by Zhang et al. as characteristics of normal and 

abnormal heart sounds [10]. Meanwhile, wavelet entropy is 

used as a feature of STFT from unsegmented signals from 

heart sounds [11]. From all previous studies, characteristics 

were calculated directly on the STFT; no analysis was carried 

out on the distribution of information on the STFT. 

This study proposes a novel method for classifying normal 

and abnormal heart sounds using STFT and Gray level 

difference method (GLDM) as feature extraction method. 

STFT was used to change the time domain to the time-

frequency domain [12]. Then, the GLDM texture analysis 

method analyzes heart sounds [13]. Heart sound, a 1D signal, 

is transformed into 2D using STFT and then analyzed using 

GLDM. GLDM is a feature extraction method to see an 

image's texture by creating a new image, which is the absolute 

value of the difference between two pixels at a certain distance 

and direction. Because it is calculated from the absolute value 

of the difference between two pixels, GLDM produces a new 
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image whose texture can be observed. Then, some statistical 

parameters are calculated. This is different from other texture 

analysis methods, such as gray-level co-occurrence matrix 

(GLCM) and gray level rung-length (GLRL) [14]. The GLCM 

calculation does not produce a new image but creates a co-

occurrence matrix, which is the result of calculating the 

number of occurrences with a pixel value at a certain distance. 

Meanwhile, GLRL generates a run-length encoding code that 

describes the pixel value and its repetition [15]. The results of 

GLCM and GLRL are not images, so they cannot be assessed 

visually directly. This proposed method hopefully becomes a 

biological signal processing method alternative that will be 

obtained by utilizing spatiotemporal information from the 

signal. 

The remainder of this paper is structured as follows. The 

proposed method is explained in section two. Then, the 

experiment, result, findings, and more profound analysis are 

discussed in section three. At the end of our paper, we present 

the conclusion and future research potential in section four. 

 

 

2. MATERIALS AND METHOD  

 

The proposed method is as shown in Figure 1. The STFT 

process is used for heart sounds to produce a spectrogram. The 

spectrogram is then converted into an image. Then, the GLDM 

process is carried out with a specific distance d. Five features 

of GLDM are calculated from the image and used as input for 

support vector machine (SVM) as classifier to determine 

whether the heart sound is normal or abnormal. The following 

subsections describes detail of each process. 

 

2.1 Heart sound database 

 

The heartbeat makes two separate noises, which are 

commonly referred to as lub-dub. The lub sound is produced 

by the tricuspid and mitral (atrioventricular) valves, which 

prevent backflow of blood from the atria (auricles) to the 

ventricles (heart chambers) (1). The first cardiac sound (S1) is 

a sound that appears practically concurrently with the 

commencement of the QRS complex on an ECG and occurs 

before systole (the period when the heart contracts). The 

second heart sound is referred to as the dub sound (S2). The 

semilunar (aortic and pulmonary) valves that discharge blood 

into the pulmonary and systemic circulation systems close, 

causing it. Before the atrioventricular valve reopens, this valve 

closes at the conclusion of systole. This S2 sound occurs 

practically concurrently with the electrocardiogram's T wave's 

termination. The third heart sound (S3) corresponds to the 

cessation of atrioventricular filling, whereas the fourth heart 

sound (S4) correlates with atrial contraction. This S4 sound 

has a low amplitude and low-frequency component [16]. 

As in earlier studies [9] the heart sound data set is separated 

into two categories: normal and pathological. Physionet.org 

provided 50 normal sounds and 50 murmurs as input data [17-

19]. The image of the heart sound is shown in Figure 2. 

 

 
 

Figure 1. Diagram block of proposed method 

 

 
(a) 

 
(b) 

 

Figure 2. (a) Normal heart sound (b) Murmur 
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The amplitude normalization process is carried out to 

reduce the variation due to the difference in the heart sound 

amplitude. It is formalized as (1) and (2): 

 

𝑦(𝑛) = 𝑥(𝑛) −
1

𝑁
∑ 𝑥(𝑖)

𝑁

𝑖=1

 (1) 

 

𝑦(𝑛) =
𝑥(𝑛)

max|𝑥|
 (2) 

 

where, the input signal is x(n) and the output signal is y(n). 

 

2.2 Short-Time Fourier Transform (STFT) 

 

Signals are transformed from the time domain to the time-

frequency domain using the STFT or spectrogram method. At 

a specific time interval, this algorithm will segment the signal. 

FFT is used to translate the segmented signal into the 

frequency domain. The mathematical expression of STFT is 

shown in Eq. (3) [18]. 

 

𝑋𝑆𝑇𝐹𝑇[𝑚, 𝑛] = ∑ 𝑥[𝑘]𝑔[𝑘 − 𝑚]𝑒−𝑗2𝜋𝑛𝑘/𝐿

𝐿−1

𝑘=0

 (3) 

 

where, x(k) is the signal and g(k) is the L-point window. So 

STFT can be said as a Fourier transform of the x(k) signal 

windowed using g(k). 

In this study, several parameters were used in the STFT used 

as in [20] as follows: 

1) Window function: Keiser; 

2) Window and overlap lengths: 25-20, 200-100, and 

500-475; 

3) NFFT: 512. 

 

2.3 Feature extraction using GLDM 

 

Grey-level difference matrix (GLDM) is the difference 

between adjacent pixels proposed by Weszka et al. [13] for the 

characterization of an image. To observe the intensity 

fluctuation in an image, Weszka et al. employed the absolute 

value of the difference between two neighboring pixels in the 

horizontal, vertical, and diagonal axes [13]. 

The number of adjacent pixels in the direction θ is 

represented by H(θ) that has g as absolute difference between 

two pixels. Where it is the probability of adjacent pixels in the 

direction θ to the absolute value of the difference g. GLDM’s 

features of the image is calculated as follows: 

Gradient contrast: 

 

𝐺𝐶 = ∑ 𝑔2ℎ(𝑔l𝜃)
𝑔

 (4) 

 

Gradient second moment: 

 

𝐺𝑆𝑀 = ∑ [ℎ(𝜃)]2

𝑔
 (5) 

 

Gradient entropy: 

 

𝐺𝐸 = − ∑ ℎ(𝑔𝑙𝜃) log ℎ(𝑔l𝜃)
𝑔

 (6) 

 

Gradient mean: 

 

𝐺𝑀 = ∑ ℎ(𝑔l𝜃)𝑔
𝑔

 (7) 

 

Inverse-difference moment: 

 

𝐼𝐷𝑀 = ∑
ℎ(𝑔l𝜃)

(𝑔2 + 1)𝑔
 (8) 

 

In this study, the five features were calculated in the 

directions of 0°, 45°, 90°, and 135°. 

 

2.4 Support Vector Machine (SVM) 

 

SVM is used as a classifier. It uses a hyperplane to divide 

data into two classes. The data nearest to the hyperplane is 

referred to as the support vector. The gap between the 

hyperplane and the super vector is called the margin. The SVM 

algorithm relies on the most significant margin between the 

hyperplane and the super vector. It is dependent on the 

optional hyperplane to get the maximum margin. Finding the 

proper hyperplane is critical for SVM classification accuracy 

[16]. 

The basic classification technique divides heart sound data 

into two classes, normal and murmur, using a linear 

hyperplane. In other cases, it is unable to classify some data 

appropriately. The kernel function is another SVM solution for 

solving distinct data more successfully than linear hyperplane 

[17]. Linear, quadratic, and cubic kernel functions were used 

in this investigation. Linear kernel is used as the kernel 

algorithm because its function is the simplest and is typically 

like a non-kernel counterpart. The inner product (xi, xj) with an 

optional constant c gives it. The linear kernel function is 

formalized in (9): 

 

𝑘(𝑥𝑖  , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 + 𝑐 (9) 

 

 

3. RESULTS AND DISCUSSION 

 

Figure 3 shows a spectrogram of normal heart sounds and 

murmurs using a 500-475 STFT with 512 NFFT. It shows that 

there is a difference between the spectrogram of normal heart 

sounds and heart murmurs. This difference will be quantized 

by GLDM and then classified. In Figure 3, cuts are made at 

high frequencies, assuming that information on heart sounds is 

concentrated at frequencies < 250 Hz. Even though the 

assumption is that the frequency is concentrated below 250, 

the STFT plot is cut at a frequency of 500 Hz; this is to 

anticipate if there is a frequency component above 250. From 

the frequency spectrum of the two types of normal heart 

sounds and murmur, we can see that the dominant frequency 

is below 250 Hz, but there is still some small frequency above 

250 Hz. The method used is not intended to detect the presence 

of frequencies above 500 Hz but to see the pattern of signal 

fluctuations in the time and frequency domains represented by 

the texture of the STFT image. Two images of the heart sound 

spectrum, normal and murmur, are provided in Figure 4. 

Figure 5 shows the converted image from Figure 3. The 

difference can be seen in the distribution of the black color 

obtained. This black and white distribution will be processed 

using GLDM, and the GLDM characteristics will be calculated 

as input from SVM as a classifier. 
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(a) 

 
(b) 

 

Figure 3. (a) Spectrogram of normal heart sound;  

(b) Spectrogram of murmur heart sound 

 

 
(a) 

 
(b) 

 

Figure 4. (a) Frequency spectrum of normal sound;  

(b) Frequency spectrum of murmur sound 

 

 
(a) 

 
(b) 

 

Figure 5. (a) Image of normal heart sound’s spectrogram;  

(b) Image of murmur heart sound’s spectrogram 

Figures 6 to 10 show the calculated GLDM properties at 

distance d = 1 and angle 0°. In general, it is shown that the 

resulting characteristics overlap each other. Thus, it can be 

predicted that the maximum accuracy will not reach 100%. 

After seeing the distribution of the features obtained, the next 

step is testing the accuracy using a combination of all the 

features and characteristics for each GLDM angle. 
 

 
 

Figure 6. Boxplot of gradient contrast for 0° 
 

 
 

Figure 7. Boxplot of gradient ASM for 0° 
 

 
 

Figure 8. Boxplot of gradient entropy for 0° 
 

 
 

Figure 9. Boxplot of gradient mean for 0° 
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Figure 10. Boxplot of IDM for 0° 

 

 
 

Figure 11. Boxplot of gradient contrast for 45° 

 

 
 

Figure 12. Boxplot of gradient ASM for 45° 

 

 
 

Figure 13. Boxplot of gradient entropy for 45° 

 
 

Figure 14. Boxplot of gradient mean for 45° 

 

 
 

Figure 15. Boxplot of IDM for 45° 

 

 
 

Figure 16. Boxplot of gradient contrast for 90° 

 

 
 

Figure 17. Boxplot of gradient ASM for 90° 
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Figure 18. Boxplot of gradient entropy for 90° 

 

 
 

Figure 19. Boxplot of gradient mean for 90° 

 

 
 

Figure 20. Boxplot of IDM for 90° 

 

 
 

Figure 21. Boxplot of gradient contrast for 135° 

 

 
 

Figure 22. Boxplot of gradient ASM for 135° 

 

 
 

Figure 23. Boxplot of gradient entropy for 135° 

 

 
 

Figure 24. Boxplot of gradient mean for 135° 

 

 
 

Figure 25. Boxplot of IDM for 135° 
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Figures 11 – 25 show the 5 GLDM features for angles of 

45°, 90°, and 135° for intuitive comparison. In general, the 

characteristics of the two types of heart sounds overlap. This 

will affect the accuracy to be achieved. Using one feature will 

not produce high accuracy, so a combination of several 

features is needed. 

The accuracy obtained by using 3-fold CV, and 5-fold CV is 

shown in Table 1 and Table 2. Table 1 and Table 2 show the 

accuracy under STFT conditions using three parameters, three 

types of SVM kernel, and GLDM angle. The highest accuracy 

reaches 83% using STFT 200-100 on linear SVM utilizing a 

combination of GLDM features. Meanwhile, the highest 

accuracy in using features in one direction only reaches 74% 

using an angle of 135°, with a resolution of 200-100 STFT and 

Cubic SVM. It is generally seen that the STFT resolution of 

200-100 tends to produce higher accuracy. The STFT 200-100 

provides moderate resolution compared to the 500-475 and 25-

20. Differences in parameter determination on STFT will result 

in different resolutions. As we know, the resolution of the 

STFT is determined by the NFFT and the windowing width 

used. This will affect the texture of the resulting image. 

 

Table 1. Accuracy (%) using 3-fold cross-validation 

 
GLDM 

features 

Spectrogram 

parameters 

SVM Kernels 

Linear Quadratic Cubic 

Composite 

500-475 71 75 69 

200-100 78 75 74 

25-20 74 74 80 

0° 

500-475 62 65 58 

200-100 63 65 73 

25-20 70 67 66 

45° 

500-475 66 69 55 

200-100 63 67 68 

25-20 68 68 69 

90° 

500-475 67 70 64 

200-100 64 64 61 

25-20 65 59 53 

135° 

500-475 68 72 61 

200-100 63 69 72 

25-20 69 68 69 

 

Table 2. Accuracy (%) using 5-fold cross-validation 

 
GLDM 

features 

Spectrogram 

parameters 

SVM Kernels 

Linear Quadratic Cubic 

Composite 

500-475 72 76 79 

200-100 83 80 82 

25-20 66 77 77 

0° 

500-475 69 69 56 

200-100 69 66 72 

25-20 68 69 68 

45° 

500-475 67 62 63 

200-100 70 67 73 

25-20 68 66 64 

90° 

500-475 65 72 63 

200-100 64 69 59 

25-20 65 60 50 

135° 

500-475 68 66 61 

200-100 65 64 74 

25-20 69 67 70 

 

In this study, GLDM features are used for feature extraction 

from the converted image from STFT. This method is different 

from the previous studies that carried out direct feature 

calculations on STFT [21]. In the case of direct feature 

calculations from STFT, statistical parameters used usually 

such as mean, variance, entropy, skewness, and kurtosis. As 

shown in Table 3 that shows the accuracy of the STFT 

statistical characteristics, which results in a maximum accuracy 

of 72% on the STFT 512-25-20 and 5fold CV. 
 

Table 3. Accuracy (%) using statistical parameter on STFT 

and 5-fold cross-validation 
 

Spectrogram 

parameters 

SVM Kernels 

Linear Quadratic Cubic 

500-475 60 54 51 

200-100 70 68 63 

25-20 72 69 57 

 

Compared with previous studies using fractal dimensions, 

the accuracy in this study is relatively lower [16]. The fractal 

method yielded an accuracy of 86.67% [16]. In this research, 

the PCG signal is filtered, then the wavelet decomposes, and 

then Fourier transform is performed to obtain the signal's 

frequency spectrum. Higuchi fractal dimension (HFD) was 

calculated signal spectrum with various Kmax values. In this 

study, the characteristics were taken in the frequency domain, 

while in our proposed method, heart sound in the time-

frequency domain was converted into a spatial domain. The 

proposed method has the advantage of viewing signals in the 

time-frequency domain, which means that more information 

can be obtained from heart sound signals. 

The proposed method uses a combination of STFT and 

GLDM for feature extraction to classify heart sounds. STFT 

displays the signal in the time-frequency domain. The signal 

distribution in the time and frequency domains is quantized 

using GLDM. With this method, the information in the heart 

sounds obtained is more comprehensive. Another advantage 

of this method is that the number of features produced does 

not depend on the length of the signal, namely five features 

multiplied by the number of angles to be calculated. Although 

the STFT size depends on the signal length, segmentation 

process, windowing, and N-FFT, the GLDM process produces 

a fixed number of features. This research still can be further 

developed, such as exploring the appropriate STFT resolution 

and other image analysis methods. The use of GLDM for 

selecting the optimal pixel distance is also interesting [22]. 
 

 

4. CONCLUSIONS 
 

This study has demonstrated a novel method to classify the 

normal heart sounds and murmurs based on image analyses 

using GLDM. STFT is performed on heart sounds to obtain a 

spectrogram of heart sounds. The spectrogram is treated as an 

image after going through the conversion process. GLDM 

characteristics are calculated at angles of 0°, 45°, 90°, and 

135°. SVM is used as a classifier with three kinds of kernels. 

The highest accuracy is achieved using STFT with a window 

width of 200-100 and a combination of all the features of 

GLDM. GLDM only produces the highest accuracy of 73% 

using features in one direction. This is due to the characteristic 

resulting in the relative overlap between normal heart sounds 

and murmurs. The results obtained provide an opportunity 

further to explore the use of image analysis on 1D signals. The 

use of signal transformation methods to other TF domains is 

one form of development in further research and other image 

analysis methods.
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