
Cryptography and Reference Sequence Based DNA/RNA Sequence Compression

Algorithms

Siva Phanindra Daggubati*, Venkata Rao Kasukurthi, Prasad Reddy PVGD

Department of CS & SE, AUCE(A), Andhra University, Visakhapatnam 530003, Andhra Pradesh, India

Corresponding Author Email: daggubatisivaphanindra@gmail.com

https://doi.org/10.18280/isi.270319 ABSTRACT

Received: 1 April 2022

Accepted: 6 June 2022

This paper proposes two methods for the compression of biological sequences like

DNA/RNA. Although many algorithms both lossy and lossless exist in the literature, they

vary by the compression ratio. Moreover, existing algorithms show different compression

ratios for different inputs. Our proposed methods exhibit nearly constant compression ratio

which helps us to know the amount of storage needed in advance. For the first method, we

call it CryptoCompress, we use a blend of Cryptographic hash function and partition theory

to achieve this compression. The second method, we call it RefCompress, uses a reference

DNA for compression. This paper showcases that the proposed methods have constant

compression ratio compared to most of the existing methods.

Keywords:

CryptoCompress, RefCompress, DNA

compression, reference DNA, cryptographic

hash function

1. INTRODUCTION

The field of Genetics has become a branch of extensive

research these days. Owing to its application in different fields,

especially medical field, this has the scope of becoming a

multimillion-dollar industry. This resulted in its success of

attracting huge funding from various government and private

agencies. The data produced in this research is growing at an

exponential rate. High-throughput sequencing techniques like

Pyrosequencing, cPAS, BGI/MGI, SOLID sequencing,

Nanopore sequencing etc. which parallelize the computation

are producing millions of sequences at low cost. This led to the

demand for availability of huge storage capacity.

Although the cost of storage is decreasing, optimum usage

of storage is always expected. For this, a lot of effort was put

forward to compress the biological data that is pouring in at an

exponential rate. Algorithms like Gen compress, Bio compress,

Cfact etc. are published to compress biological data. However,

their compression ratio is not constant. It varies with the input.

Our proposed methods exhibit a nearly constant compression

ratio. Constant compression ratio helps us in calculating the

storage required in advance.

For the first method, CryptoCompress, we use two concepts.

One is Cryptographic hash function and the other is Partition

theory. Cryptographic hash function which is used in

encrypting a message has the property that irrespective of size

of the input, the size of the output is always constant. We use

this property to achieve a constant compression ratio. MD5 is

the function we use in this proposed technique. We use

MD5because, it is easily breakable than the other functions

like SHA. Partition theory that we see in number theory is used

in decompression phase. Partition of a number is the number

of ways a number can be expressed as the sum of other

numbers. For example,

Consider the number ‘6’.6=1+5

=2+4

=1+2+3

=3+3

=1+1+1+1+1+1

=1+1+4

.............

.............

We get ‘11’partitions like this. However, we are interested

in only partitions with distinct parts. In this case, we get only

‘3’partitions. This process of partitioning can be used to

reconstruct the original sequence.

For the second method, RefCompress, we use a Reference

DNA. This method is suitable for effective compression of

human DNA. It can also be used to compress DNA of other

species which have, like humans, low intra-species DNA

variability.

2. LITERATURE REVIEW

Behzadi and Le Fessant [1] proposed DNAPack which can

detect a better set of repeats than DNAC. Instead of greedy

method that is used in DNAC, DNACPack uses dynamic

programming to detect better repeats.

Beck and Alderton [2] describes a strategy for generating

and DNA sequencing Templates.

Chen et al. [3] proposed DNAC algorithm. This is an

improvement over Cfact algorithm. This algorithm works in

four phases. First phase will construct a suffix tree, all exact

repeats are extended into approximate repeats. Third phases

extract optimal non-overlapping repeats and the fourth phase

encodes the repeats.

Chen et al. [4] proposed GenCompress algorithm which

achieves better compression than Biocompress and Cfact by

using the measure of “relatedness” to construct evolutionary

trees and follows the framework of Lempel-ziv. Hutchison [5]

discusses about sequencing methods. Dale and Schantz [6]

lists some of the applications of DNA technology.

Loewenstern & Yianilos [7] presented CDNA, a statistical

Ingénierie des Systèmes d’Information
Vol. 27, No. 3, June, 2022, pp. 509-514

Journal homepage: http://iieta.org/journals/isi

509

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.270319&domain=pdf

based compression algorithm which dependsupon probability

distribution of each symbol.

Edwards et al. [8] discussess Matrix-assisted laser

desorption ionization time-of-flight mass spectrometry

(MALDI-TOF MS). Rivals et al. [9] proposed Cfact algorithm

which constructs a suffix tree to find the longest matching

exact repeat. This is a two pass version of BioCompress2

algorithm. Ziv [10] proposed two algorithms to compress

anydata sequences. These are dictionary based compression

algorithms which rely on exact repeats. Kaipa et al. [11]

proposes an algorithm for DN A sequence compression based

on Mismatch bases and repeat location. Misra et al. [12]

proposes a DNA compression method based on horizontal and

vertical compression. Franca et al. [13] reviews some of the

sequencing techniques. Benchmark data used in this paper can

be retrieved from ref. [14].

Rivest [15] proposed MD5, a Cryptographic hash function

producing 128-bit hash value. Although it is intended to be

used in compression, due to its vulnerabilities, it is regarded as

unsafe to be used as a security tool. However, its breakable

property helps us in using it in the proposed algorithm of this

paper.

Grumbach and Tahi [16, 17] proposed two lossless

compression algorithms Biocompress and Biocompress2

which uses the idea of Ziv [10]. They use complimentary and

exact repeats in the compression process. BioCompress2

improves BioCompress by using Arithmetic encoding to

improve the compression. Srinivasa et al. [18] proposes a

dynamic programming approach for D NA compression.

Human Genome can be downloaded from ref. [19].

In this paper, we propose two algorithms Cryptocompress

and RefCompress which achieves, unlike the other algorithms,

a constant compression ratio irrespective of the input apart

from achieving better compression in some of the cases. We

compare Cryptocompress with Cfact, GenCompress and

GenCompress2 algorithms. Regarding RefCompress, it is a

proposal which was not implemented. However, its theoretical

concept gives us the confidence to believe in its proposed

ability.

3. TOOLS AND RESOURCES

The aim of this paper is to propose Biological sequence,

especially DNA sequence compression algorithms that can

achieve constant compression ratio irrespective of the size of

the input. This constant compression ratio helps us in

predicting the amount of space needed to store the sequences.

The method we adopted is Experimental in nature. We used

standard benchmark sequences used in ref. [9] to apply for

CryptoCompress, one of the proposed algorithms. The MD5

algorithm, an essential part in first method comes as a handy

tool for our approach. Its vulnerability of being easily broken

comes as a boon for our method. The compression ratio that

we use to compare the methods is similar to the one defined in

ref. [16] ie1-(|O|/2|I|), where ‘O’ is the number of bits in output

sequence and ‘I’ is the size of the input. Although many of the

proposed compression methods are influenced by Limpel-Ziv

algorithms, we get our idea from Cryptography and Partition

theory. We use the data in ref. [4] to compare our algorithm

with Cfact, GenComporess, GenCompress2 and other

algorithms. For the second proposed algorithm, RefCompress,

we use Human Reference Genome published in ref. [19]. This

algorithm describes the method of compressing Human DNA

sequences by comparing the input sequence with the reference

sequence. Since it is difficult to get real data about Human

DNA, RefCompress is a theoretical proposal which is not

implemented.

The rest of the paper is organized as follows. ‘4’ gives the

algorithm of CryptoCompress, the first proposed method. ‘5’

explains RefCompress, the second method. In \6\, we analyze

the results of applying CryptoCompress to the data in ref. [4].

Conclusion gives a brief description of what we have done in

this paper.

4. CRYPTOCOMPRESS ALGORITHM

4.1 Compression

First, the input sequence which has a four letter alphabet (A,

G, T, C) is subjected to trivial substitution as follows.

A=10 G=01 T=00 C=11.

Then, it is divided into blocks of 256 bits. For explanation,

we shall take a small sequence. Let’s consider the sequence

ATTCTTAG. It can be written as 1000001100001001.Let us

call it encrypted sequence E.

E=1000001100001001.

Since ‘E’ contains only 16-bits, we consider this as a block.

(However, practically we will consider up to 256 bits as a

block). Now for each block of 256 bits, do the following:

Add the positions of 1’s in ‘É’. We get the sum:

S=1+7+8+13+16=45.

This sum ‘45’ can be represented in 15-bit binary as

000000000101101. We use 15 bits because a 256 bit sequence

can produce a maximum sum of 32896 which can be expressed

with 15 bits.

Now apply MD5[15] hash function on ‘É’. We get:

MD5 (E)=8ea04cb4f49277939ceebc7e551b54f5.

We get 128-bit hash value. For this we augment the sum ‘S’.

The final compressed block is:

C1=MD5(E) ||S= 8ea04cb4f49277939ceebc7e551b54f545.

This ‘C’ is stored as 143-bit (128+15) binary string. After

completing this process for every block, the final compressed

string can be made by augmenting all the compressed blocks.

Compressed string C=C1||C2||C3||....Cn.

Thus each block of 256 bits is compressed to 143 bits. 256

bits binary string represents 1024-bit original sequence. Thus

the original sequence is compressed by 86.3%.

The Compression is summarized as follows (Figure 1).

Figure 1. Compression stage in CryptoCompress

510

4.1.1 Compression algorithm

Input: DNA/RNA sequence.

Output: Compressed sequence.

Step1: Trivial step. Let A=00, G=01, T=10, C=11. Replace

the bases in the input sequence with the corresponding binary

encoding. Call this Encoded sequence “E”.

Step 2: Initialize the compressed sequence “C” to null.

Step 3: Consider 256 bits of Encoded sequence “E” as a

block. Divide “E” into blocks.

Step 4: For each block, Iterate step 5 and step 6.

Step 5: Calculate the message digest of the block using

MD5 algorithm.

Step 6: Add the positions of 1’s in the input block and

append the resulting sum (15 bit) to the message digest. The

resultant 143(128+15) bit sequence is appended to the

compressed sequence “C”.

Step 7: The resultant “C” is the compressed sequence.

4.2 Decompression

In decompression phase, we divide the compressed

sequence into blocks of 143 bits. Now for each block, do the

following.

Consider the last 15-bits as sum ‘S’.

In the given example:

S=45= 000000000101101 in binary.

Now find all the partitions of 45 with distinct parts. For each

partition, construct the corresponding binary sequence by

placing 1’s in the positions of parts of the partition and 0’s in

other places.

For Ex, 45=1+44.So corresponding binary sequence is

M=100010

000upto 256bits.

Apply MD5 cryptographic hash function on the generated

sequence ieMD5 (M). This is compared with the first 128-bits.

If they both are equal, we consider ‘M’ as the sequence ‘É1’

produced after trivial encryption of a block of the original

sequence. In this example, we get the equality for the partition.

45= 1+7+8+13+16.

The corresponding binary sequence is:

E1=1000001100001001

After applying the above process for every block, we

construct the original trivially encoded sequence by

augmenting the result of all blocks.

E=E1||E2||E3||E4....

Now the original sequence can be retrieved by replacing bits

as follows.

10=A 01=G 00=T 11=C.

In our example, if we apply this for ‘E’, we get ATTCTTAG

which is the original sequence.

4.2.1 Decompression algorithm

Input: Compressed sequence “C”.

Output: Original Sequence.

Step 1: Consider the size of a block as 143 bits. Divide the

input into blocks.

Step 2: initialize the Encoded sequence “E” to null.

Step 3: Generate the next block. If no block can be

generated, go to step 10.

Step 4: Consider the last 15 bits as the sum “S” of positions

of 1’s in the encoded sequence “E”.

Step 5: Find the number of partitions of ’S’ with distinct

parts that uses integers from 1 to 256 only.

Step 6: Generate the next partition.

Step 7: Generate the binary sequence for the partition.

Step 8: Apply MD5 algorithm for this sequence and

compare it with the remaining 128 bits in the block.

Step 9: If the two matches, append the binary sequence to

the Encoded sequence “E” and goto step 3,

 Else goto step6

Step 10: Let 00=A, 01=G, 10=T, 11=C. Substitute the

corresponding characters in the Encoded sequence.

 “E”

Step 11: The resultant sequence is the decompressed

original sequence.

5. REFCOMPRESS ALGORITHM

This method is highly useful in compressing DNA of human

like species which have low intra species DNA variability. As

per the data available, any two humans differ in their

chromosomal DNA by almost 0.6%. We use this property to

compress the sequence. Our human DNA is 3 billion bases

long. To store it we need 3GB space. To compress it, we can

use Human reference DNA sequence readily available in

public databases like NCBI.

5.1 Compression

We shall explain the method with an example. Since we

cannot take a 3 billion long sequence here, we will explain the

method by taking the Reference sequence and the

uncompressed sequence as 10 bases long.

Reference Sequence: GTCCTAGCTA

Uncompressed Sequence: GTCCGAGCTA

We have taken one base difference between the two

sequences. Practically, in a ten base sequence, the difference

should be less than one base. However, to facilitate the

explanation, we take it to be one base.

We compare each base in uncompressed string to each base

in Reference string. If both of them match, we add a “0” to

output string. If they don’t match, we add a ‘1’ in the output

sequence followed by “00” for the base ‘A’ in uncompressed

string, “01” for ‘G’, “11” for ‘T’, “10” for ‘C’.

Applying this method for the above string, we get the output

sequence as

Output Sequence: 000011000000

The original string in our example is 10bytes long. Our

compressed string is 1.5 bytes long. Applying the same to

Human DNA, the original DNA of 3GB will be reduced to a

minimum of 388 MB, i.e., we can expect a minimum

compression of 87%.

5.1.1 Compression algorithm

Input: Reference Genome Ref, DNA Sequence to be

compressed Gen.

Output: Compressed Sequence Com.

511

For each base Gen[i],

 if Gen[i]=Ref[i], then

 Com +=0.

 else

 Com +=1

 if(Gen[i]=’A’)

 Com+=00

 if(Gen[i]=’G’)

 Com+=01

 if(Gen[i]=’T’)

 Com+=11

 if(Gen[i]=’C’)

 Com+=10

5.2 Decompression

Decompression is straight forward. The compressed

sequence, which is converted to binary is analysed one bit at a

time. If the bit is ‘0’, the corresponding base in the Reference

DNA is substituted in the output. If it is ‘1’, the next two bits

give the base to be substituted.

5.2.1 Decompression algorithm

Input: Compressed Sequence Com

Output: Original Sequence Gen

For each bit ‘i’ in Com

 if(Com[i]=0)

 Gen+=Ref[i]

 else

if(Com[i+1]=0 and Com[i+2]=0)

 Gen+=’A’

 if(Com [i]=0 and Com[i+2]=1)

 Gen +=’G’

 if(Com [i]=1 and Com[i+2]=1)

 Gen +=’T’

 if(Com [i]=1 and Com[i+2==0)

 Gen +=’C’

i+=2

5.2.2 Algorithm analysis

RefCompress described above is most suitable for human

like creatures. It relies on the fact that humans have very low

variance in their DNA. Although this method doesn’t give us

a constant compression ratio, it provides us nearly constant

compression due to the fact that we don’t vary much in our

DNA. Since, it compares every base in the given sequence, it

has a time-complexity of O(n).

6. RESULTS

The following section discusses the results obtained by

implementing CryptoCompress algorithm. Regarding

RefCompress algorithm, as mentioned earlier, lack of real data

constraints it to proposal. CryptoCompress is applied to

standard benchmark data taken from [9]. Results of applying

algorithms like LZW, Arith2, Cfact, GenCompress1 and

GenCompress2 is directly taken from [4]. The following

graphs Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure

7, Figure 8 and Figure 9 show the compression obtained by

our CryptoCompress algorithm when compared to other

algorithms listed above. In the following graphs, X-axis

denotes various compression algorithms and Y-axis denotes

the compression ratio expressed as percentage.

Figure 2. Compression ratios of atatsgs

Figure 3. Compression ratios of atefla23

Figure 4. Compression ratios of atrdnaf

512

Figure 5. Compression ratios of atrdnai

Figure 6. Compression ratios of hsg6pdgen

Figure 7. Compression ratios of xlxfg512

Figure 8.Compression ratios of mmzp3g

Figure 9. Compression ratios of celk07e12

We can clearly observe that although our algorithm, Crypto

Compress, doesn’t show better compression in all the cases, it

did achieve a constant compression (86.3%). This optimizes

the cost of storage as the needed storage can be easily

calculated. However, the time complexity is the problem. The

comparisons needed in the decompression phase cannot be

predicted. This makes the algorithm compromise the time in

place of space. This could be decreased by choosing the initial

encryption wisely. Suppose, if the input sequence contains

more ‘Á’ alphabet, it could be substituted with ‘00’. Thus by

precalculating the frequency of the four bases in the input

sequence, we could wisely choose the substitution so that the

bases with high frequencies is replaced with more 0’s. This

may decrease (not in all cases) the time taken by

decompression phase. Using parallel processing to generate all

the partitions would be another solution.

7. CONCLUSION

This paper discussed two methods, one cryptographic based

513

(CryptoCompress) and the other based on Reference DNA

(RefCompress). We established that these techniques can

achieve a nearly constant compression ratio irrespective of the

input sequence. We also discussed their drawback of having

high time complexity. Further research can be made to reduce

this time complexity of the algorithms proposed.

REFERENCES

[1] Behzadi, B., Le Fessant, F. (2005). DNA Compression

Challenge Revisited: A Dynamic Programming

Approach.

http://www.cs.ucr.edu/~stelo/cpm/cpm05/cpm05_5_2_

Behzadi.pdf.

[2] Beck, S., Alderton, R.P. (1993). A strategy for

amplification, purification, and selection of M13

templates for large-scale DNA sequencing. Anal

Biochem., 212(2): 498-505.

https://doi.org/10.1006/abio.1993.1359

[3] Chen, X., Li, M., Ma, B., Tromp, J. (2002).

DNACompress: Fast and effective DNA sequence

compression. Bioinformatics, 18(12): 1696-1698.

https://doi.org/10.1093/bioinformatics/18.12.1696

[4] Chen, X., Kwong, S., Li, M. (1999). A compression

algorithm for DNA sequences and its applications in

genome comparison. Genome informatics. International

Conference on Genome Informatics, 10: 51-61.

http://dx.doi.org/10.1145/332306.332352

[5] Hutchison, C.A. (2007). DNA sequencing: bench to

bedside and beyond. Nucleic Acids Res., 35(18): 6227-

6237. https://doi.org/10.1093/nar/gkm688

[6] Dale, J.W., Schantz, M.V. (2008). From Genes to

Genomes Concepts and Applications of DNA

Technology. 2nd Edition, Wiley.

[7] Loewenstern, D., Yianilos, P.N. (1997). Significantly

lower entropy estimates for natural DNA sequences. In

Proc. of the Data Compression Conf., (DCC '97), pp.

151-160. https://doi.org/10.1109/DCC.1997.581998

[8] Edwards, J.R., Ruparel, H., Ju, J.Y. (2005). Mass-

spectrometry DNA sequencing. Mutation

Research/Fundamental and Molecular Mechanisms of

Mutagenesis, 573(1-2): 3-12.

http://dx.doi.org/10.1016/j.mrfmmm.2004.07.021

[9] Rivals, E., Delahaye, J.P., Dauchet, M., Delgrange, O.

(1996). A guaranteed compression scheme for repetitive

DNA sequences. Data Compression Conference.

https://doi.ieeecomputersociety.org/10.1109/DCC.1996.

488385

[10] Ziv, J. (1977). A universal algorithm for sequential data

compression. IEEE Trans. Inform. Theory, 23(3): 337-

343.

[11] Kaipa, K.K., Bopardikar, A.S., Abhilash, S.,

Venkataraman, P., Lee, K., Ahn, T., Narayanan, R.

(2010). Algorithm for DNA sequence compression based

on prediction of mismatch bases and repeat location.

IEEE Conference on Bioinformatics and Biomedicine

Workshop (BIBMW), pp. 851-852.

https://doi.org/10.1109/BIBMW.2010.5703941

[12] Misra, K.N., Aaggarwal, A., Abdelhadi, E., Srivastava,

P. (2010). An efficient horizontal and vertical method for

online DNA sequence compression. International

Journal of Computer Applications, 3(1).

http://dx.doi.org/10.5120/757-954

[13] Franca, L.T.C., Carrilho, E., Kist, T.B.L. (2002). A

review of DNA sequencing techniques. Quarterly

Reviews of Biophysics, 35(2): 169-200.

https://doi.org/10.1017/S0033583502003797

[14] National Center for Bio Technology Information.

https://www.ncbi.nlm.nih.gov/htbin-

post/Entrenz/query?db=n_s.

[15] Rivest, R. (1992). Step 4. Process Message in 16-Word

Blocks. The MD5 Message-Digest Algorithm.

https://doi.org/10.17487/RFC1321

[16] Grumbach, S., Tahi, F. (1994). A new challenge for

compression algorithms: Genetic sequences. Journal of

Information Processing and Management, 30(6): 875-

866. https://doi.org/10.1016/0306-4573(94)90014-0

[17] Grumbach, S., Tahi, F. (1993). Compression of DNA

sequences. In Proc. IEEE Symp. On Data Compression,

Snowbird, UT, USA, pp. 340-350.

https://doi.org/10.1109/DCC.1993.253115

[18] Srinivasa, K.G., Jagadish, M., Venugopal, K.R., Patnaik,

L.M. (2006). Efficient compression of non repetitive

DNA sequences using dynamic programming. 2006

International Conference on Advanced Computing and

Communications, pp. 569-574.

https://doi.org/10.1109/ADCOM.2006.4289956

[19] Homo sapiens (human).

https://www.ncbi.nlm.nih.gov/genome/?term=human,

accessed on 18 April 2022.

514

https://www.ncbi.nlm.nih.gov/pubmed/?term=Chen%20X%5BAuthor%5D&cauthor=true&cauthor_uid=11072342
https://www.ncbi.nlm.nih.gov/pubmed/?term=Li%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11072342
https://en.wikipedia.org/wiki/Partition_(number_theory)
https://doi.org/10.17487%2FRFC1321

