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DNA technology has shown to be a valuable investigative tool in the release of innocent 

people and the identification of those responsible for serious crimes. In the battle against 

illegal immigration, cross-border crime, and terrorism, the transnational DNA data 

interchange from national DNA databanks has become a current trend. The data types that 

can be shared and the system is managed by a national authority are governed by individual 

national legislation, which determines the scope of the data exchange. Furthermore, one of 

the most difficult problems in forensic science is DNA profiling, and it is a hotly debated 

topic. The number of unknowns in a combination raises the computational difficulty of 

DNA profiling dramatically. To overcome this issue, various approaches have been 

designed and implemented. As a result, we examine DNA profiling methodologies and 

tools in this study, focusing on their computational accuracy and performance. Furthermore, 

this research examines the available data on DNA exchange and comparison across borders. 

We hope this review provides more ideas for future research to choose efficient profiling 

techniques. 
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1. INTRODUCTION

Among multiple forensic laboratories, DNA profiling or 

typing is a popular approach, for example, when it comes to 

sexual assault cases, The DNA mixture's source can include 

the victim, the criminal, and the victim's partner [1]. One of 

the most difficult challenges to solve is DNA profiling in 

forensic science, and it is a hotly debated topic. 

The requirement, construction, validation, and standards 

dissemination have shaped databases and forensic DNA 

profiling's history [2, 3]. Since the beginning of its usage for 

person identification, DNA profiling technologies have 

incorporated a variety of conventional laboratory procedures 

that have gradually developed into workable and established 

techniques [4]. 

The process of identifying and documenting specific parts 

of a DNA molecule's structure is defined by DNA profiling, 

per the medical dictionary of the American Heritage. DNA 

sample source and paternity of a child are determined by the 

DNA profiling technique also genetic disorders are diagnosed 

and crime suspects are incriminated and exonerated with the 

help of DNA profiling [5, 6]. DNA profiling was first 

established in 1985 by Alec Jeffreys, and has had a tremendous 

impact on the field of forensic research. Dr. Jeffreys 

discovered that repetitive DNA sequences can be found in 

numerous locations of human DNA. And these DNA 

Sequence regions can vary from individual to individual, the 

problem is effectively addressed by Dr. Jeffreys.  

DNA profiling is now widely recognized as a powerful 

instrument in law enforcement's inventory. Furthermore, 

criminal DNA data contained in computer databases obtained 

from crime scenes aided in the identification of a criminal. 

Because these huge databases already contain Short Tandem 

Repeat (STR) regions in a certain set, a novel DNA marker 

collection is unlikely to be developed anytime soon [7]. 

The transmission of DNA data across international borders 

has been recognized as an increasingly significant component 

of attempts to develop innovative kinds of the judiciary and 

police cooperation, specifically, assisting with organized 

crime investigations, techniques of counter-terrorism, and 

efforts under control. It's not a novel thing for people to 

exchange their DNA information informally, and it has 

frequently occurred in an ad hoc manner. Following the entry 

into force of Prüm Decision 2008/615/JHA in August 2008, 

the reciprocal automated searching implementation on a 

technical level, as well as the DNA data exchange and 

comparison among the EU member countries, has been 

required since August 2011 [8]. According to the most recent 

report on the Prüm analysis, published in September 2019, 

Data on DNA is being exchanged between 25 EU countries. 

The Prüm system is unavailable in Italy, Ireland, and Greece. 

When victims physically fought attacks or had evidence of 

injuries, DNA profiling is used to find sexual assault instances 

and identify acquaintances raping criminals [9]. Investigation 

evaluating the influences of factors on case outcomes provides 

more direct evidence about the relevance of forensic evidence 

in sexual assault cases including deciding to close a case and 

make an arrest [10]. 

In DNA analysis implementation and establishment of 

uniform norms, methods, and laboratory practices, forensic 

specialists and European scientists have a track record of 

agency with the forensic use of DNA technologies from a 

technical perspective. The European Network of Forensic 

Science Institutes (ENFSI) was founded in 1995 as a result of 

a conference of experts in Western European countries from 

eleven state forensic laboratories, together with intention of 
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having discussions on successful intervention. Since then, 

ENFSI has brought together several professional groups in 

many fields of forensic science. The DNA Working Group is 

one of these groups, aimed at the creation and regulation of 

evaluative methodologies as well as the standard markers for 

use in the EU. For forensic sciences in 2009, the European 

Commission recognized ENFSI's exclusive position in Europe 

for forensic sciences 2009. By the evaluation of ISO/IEC 

17025 standards, proficiency testing, training, and analytical 

methods validation, actions for forensic laboratory 

accreditation have been created with ENFSI as part of its 

capabilities. 

This review concentrates on establishing a decentralized 

network for the transnational DNA data exchange, which is a 

comparatively new advancement in the use of DNA profiling 

and databases in forensics. This phenomenon brings together 

various connections among sciences, culture, law, and history, 

however, it's also a place where we can examine how standards 

work in a variety of contexts [11, 12]. For understanding the 

decisions and priorities that shape the standards and regulation 

of the DNA data exchange network, this paper briefly explains 

the evolution of DNA profiling and data basing [13]. A second 

section is based on interviews with key informants, and it 

provides significant information on the specific obstacles and 

difficulties associated with the system's deployment and 

operation [14, 15]. 

 

 

2. ETHICAL CHALLENGES OF TRANSNATIONAL 

DNA DATA EXCHANGE 

 

Researchers in Science and Technology Studies (STS) have 

contributed significantly to important analysis regarding the 

forensic DNA databases' construction and development used 

to assist the criminal justice system and the prosecution of 

criminals over the last two decades [16]. Two key 

contributions are extremely valuable for this paper among the 

alternative methods of investigation [17, 18]. Firstly, research 

on the challenges and uncertainties regarding the use of the 

criminal justice system's DNA [19]. Second, analytical 

viewpoints on DNA databases' enhancement and extension as 

features of criminal identification technology's history [20, 21]. 

Similar contributions, in particular, have examined how 

forensic genetics' original difficulties developed, eventually, a 

complicated set of methodologies were used to resolve the 

issue that focuses on ensuring the forensic DNA evidence's 

reliability and credibility [22]. Moreover, the transnational 

DNA data exchange provides ethical challenges that have 

received limited attention in STS contributions thus far [23, 

24]. 

 

 

3. DNA PROFILING: GENERAL METHODS 

 

Different techniques for statistically evaluating a DNA 

mixture have been proposed [25]. These methods include the 

modified random match probability (mRMP), the combined 

probability of inclusion/exclusion (CPI/CPE), and a 

Likelihood ratio [26]. The first two approaches were strongly 

approved by the FBI's DNA Advisory Board in February 2000. 

Furthermore, the International Society of Forensic Genetics 

(ISFG) emphasized the importance of likelihood ratios in 2006 

[27]. Tim Clayton defined six methods for analyzing a DNA 

mixture for the first time in 1998. Firstly, we must determine 

whether or not a mixture exists. Selection of Allele peaks 

second. The maximum number of contributions is determined 

in the third step.  

When dealing with only one sample, the Random Match 

Probability (RMP) is commonly utilized, therefore, when the 

method is employed with more than one sample from a single 

source, it is referred to as a modified random match probability 

(mRMP). With exception of CPI in the mixture, this method 

necessitates a previous understanding of the number of 

contributors and is ineffective with low-level profiles. The use 

of mRMP to calculate two- and three-person mixtures was 

demonstrated [28, 29]. 

Accessible DNA is preferred for enzymatic modification or 

digestion over DNA secured through transcription factors or 

bound histone proteins and has historically been employed in 

genomic DNA profiling approaches to investigate chromatin 

accessibility [30]. The nucleosome positioning and chromatin 

accessibility are captured in various but consistent snapshots 

using DNA profiling approaches, and each methodology has 

its own set of benefits and drawbacks (Appendix). By using 

orthogonal approaches, such technologies have revealed and 

demonstrated the genome's accessibility, resulting in the 

discovery of about the human genome contains 3 million 

potential regulatory regions [31]. 

When selecting a profiling technique, there are a few 

important factors to consider. Although multiple approaches 

were fine-tuned for single-cell input in this review, the input 

from a typical cell is substantially higher. Each technique's 

benefits and drawbacks have been listed, along with references 

to works that have had a significant impact on the development 

of the technique and improvement. 

 

 

4. DNA EVIDENCE AND FORENSIC SCIENCE 

 

Locard's exchange principle that expresses that "every touch 

leaves a trace," explains a criminal forensic investigation. It 

maintains that when two objects come into contact, they 

exchange substance and leave a trace [32]. Although multiple 

evidence is frequently detected in traces discovered at a crime 

scene, extreme fragmentation, or intermixing of the victim 

remains, this makes traditional recognition regarding the 

victim's physical and anthropological traits ineffective and 

inconclusive. Moreover, DNA profiling is the best method for 

the determination of forensic investigations and suspects in 

some circumstances and also giving specific victims 

identification, remains a valuable technique in multiple 

evidence situations [33]. Human DNA sequences are reported 

to be nearly identical in 99.9% of cases, only with a 0.1 percent 

difference, the chances of two people who are not related by 

blood having the same DNA sequence are around 1 in 594.1 

trillion [34]. By using this DNA profiling, innocent people are 

released and condemned the guilty. More than half of all DNA 

profiling samples processed in various countries represented 

the samples taken from touched objects [35]. This is due in 

part to the discovery that DNA may be identified from the 

biological substance that has been left on a surface but is not 

visible just by touching it with one's hand, and that a single 

contact event can contain both direct and indirect transfer 

events at the same time [36]. A direct deposit of self DNA 

within the handprint could be considered, a non-self-

component, on the other hand, is considered an indirect deposit 

[37]. Blood, teeth, hair strand, nails, and saliva are all common 

biological materials for DNA profiling and extraction analysis. 
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The term low copy number (LCN) was first used to describe 

the study of trace DNA evidence. This has caused confusion, 

and a certain 34-cycle technology uses the LCN reservation, it 

is the more reasonable set of terms and any low-level profiles 

use the LTDNA (‘low template DNA’). 

The PCR-based STR analysis for forensic DNA profiling is 

given in Figure 1. The more effective technique in forensic 

DNA evaluation is multiplex PCR-based STR analysis [38]. 

From a wide range of biological sources, the multiple STR loci 

are amplified commonly by using these multiplex PCR 

systems in DNA. 

 

 

 
 

Figure 1. OSIRIS analysis of a male individual's PowerPlex 21short tandem repeat profile. Fluorescein is the dye in the top pane 

(blue), the second (green), the third TMR-ET (yellow), and the fourth pane CXR (red) 

 

 

5. TRANSNATIONAL EXCHANGE OF DNA DATA 

 

In the fight against illegal immigration, terrorism, and cross-

border crime, the forensic DNA data transnational exchange 

across national borders has become a current trend. Police can 

use forensic DNA data to identify, exclude, or connect people 

who have been involved in a crime. Furthermore, serial 

criminals are identified and crime patterns are detected by 

using the DNA profile by correlating multiple crime scenes. 

There are four types of analysis of the transnational exchange 

of DNA data: (1) global DNA database establishment (2) 

National DNA databases that are connected, (3) data exchange 

based on requests, and (4) a combination of these [39]. The 

majority of countries use a hybrid data-exchange system. 

 

5.1 International DNA databases 

 

There are two types of international DNA databases: 

"regional" and "global". The INTERPOL DNA Gateway 

platform is an example of a global system. The 173 000 DNA 

profiles held by the Interpol DNA Database (IDD) had over 84 

countries contributing as of December 2017. In IDD, the UK 

is one of the members and sends a significant DNA profile 

range to the Interpol database. The crime scenes, unidentified 

human remains, missing persons, suspects, and DNA profiles 

from murderers and rapists are kept at the IDD. The reporting 

law enforcement agency's national laws control the profiles 

[40].  

Personal data or user information is not included in the IDD. 

For criminal investigations, there are few DNA databases 

regional international. The Europol Information System (EIS) 

has been a well regional information database for crime 

surveillance. The profiles of the European Union (EU) and the 

Member States are presented in EIS [41]. The EIS is also the 

same as the Interpol database because the profiles are 

subjected to the reporting agency's national legislation. Per 

Europol, as of 2017, the EIS had about 147 096 personal data 

records. The range and functionality of the biometric 

exchanging systems and DNA databases are enhanced through 

a relationship with the EU Pr€um mechanism is being 

considered by the agency of Europol Programming Document 

[42]. 

Multiple countries worldwide use a request-based system 

for exchanging DNA data. For public security considerations, 

limited automated database searches are enabled by countries 

with bilateral agreements [43]. The need that the transmission 
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of DNA information to be "appropriate, relevant, and 

necessary" for policing purposes, as well as the priority of 

significant offenses, are among the elements of this system. 

 

5.2 DNA databases 

 

The development of highly powerful and reliable methods 

for building appropriate and beneficial DNA databases 

resulted from the establishment of amplification technology 

for STR analysis. The creation and growth of centralized 

national criminal DNA databases was a major step forward in 

forensic DNA profiling. Since 1995, when the complete 

legislation was established. The UK's first national DNA 

database was established by forensic scientists, which will 

store both personal DNA profiles and crime scene results. The 

STR sequence hits generation is a primary goal of a criminal 

DNA database among victims, convicted offenders, suspects' 

DNA profiles, and DNA evidence at the crime scene, as 

permitted by national legislation. There are currently 69 

national forensic DNA databases in operation, according to 

reports; others are expanding or establishing operations in at 

least 34 new countries. 

For prosecution activities and criminal investigation, the 

DNA database's significant contribution to the criminal justice 

system as an important resource all over the world [61], some 

concerns managing forensic DNA databases poses a risk to a 

variety of human rights, including informed consent, moral 

integrity, privacy, the presumption of innocence, autonomy, 

and liberty [44]. A suitable compromise between these 

perspectives is established by recommending that a 

responsible forensic DNA database policy be implemented, 

and a moral and ethical spectrum is created by including both 

forensics professionals, the public, law enforcement, and, 

specifically, less genetically involved social. 

Furthermore, a forensic DNA database is a computer 

database that contains DNA profile records and is a valuable 

investigative tool in today's criminal justice systems. 

Identification tool is an extraordinary ability of DNA 

technology has resulted in a significant shift in the criminal 

justice system and forensic DNA databases are operated by 

many countries for crime-related stains to identify the owners. 

Individual profiles and crime scene samples are compared and 

matched in an automated and systematic manner and are 

enabled by the DNA profiles stored in a database that is 

computerized and centralized. DNA profiling is used to 

identify the persons who are committed serious crimes was a 

significant step forward in policing and when DNA profiling 

is effectively used for convicting the persons who have 

committed serious crimes or exonerating those who are 

innocent [45]. Forensic DNA typing continues to depend on 

the DNA database as a source of information, and the role of 

STR DNA markers is still important. The NDIS's significance 

and scope are growing after more than a decade of operation, 

coupled with STR DNA technology. 

As described by the 'DNA project, the DNA databases are 

created with the requirement of more effort, time, and expense. 

Fighting crime with science, is justified by the facts that: 

 

• Criminals tend to re-offend. For example, 50% of armed 

robbers and 90% of rapists have a criminal record. 

• Repeat offenders' offenses frequently get more serious 

crimes over time, with criminals between the ages of 16 and 

19 committing their first offense. 

 

6. NUMBER OF CONTRIBUTORS FOR DNA 

PROFILING ESTIMATING 

 

The number of contributors in a DNA mixture can be 

calculated using three different methods. The machine 

learning-based methods, HPC methods, and basic methods are 

all included. The following are some of the most fundamental 

techniques and software tools, among others, Maximum Allele 

Count (MAC) MLE, DNA MIX, DNA Mixtures, Lab 

Retriever and Total Allele Count. The parallel or HPC 

methods include NOCIt, Euroformix and LikeLTD. The 

number of contributors is determined by only three machine 

learning studies in a DNA profile to our knowledge. 

MLE and MAC were compared by. Two to five-person 

mixtures are identified by analyzing and comparing the 

performance of both techniques. Both methods are tested by 

using three alternative scenarios. Firstly, when all contributors 

are members of the same population and allele frequencies are 

known. Then, population subdivision is occurred by allele 

occurrences that are not known. Lastly, a partial profile 

condition and how it may influence estimation accuracy. A 

lower bound is calculated by using the MAC approach [46]. 

define the masking effect, i.e., The MAC protocol is insecure 

because people can share alleles. When there are more than 

three contributors in a mixture, the comparison's findings 

justify the use of MLE. Moreover, MAC performs best for 

three or two people contributing to a mixture. 

Five machine algorithms are evaluated by Adelman and 

Marciano finally selected on the SVM, which had a training 

accuracy of 98 percent and a testing accuracy of 97 percent for 

four contributors. The 97 percent accuracy was achieved using 

a dataset with up to four contributors rather than five because 

there are more classifications, so the accuracy will usually be 

lower. They employed 1405 profiles from 20 people in their 

research. Ten machine learning algorithms are examined by, 

and finally, 19 features in the RFC model were selected. 590 

profiles were used, ranging from single individuals to five-

person mixtures, and both Y-chromosomal and amelogenin 

markers were eliminated. For each profile, it consists of over 

250 features but only the best 50 features were chosen. It 

performed well in terms of accuracy (83 percent). Decision 

trees are used by in their research. From Global filer multiplex, 

they used 766 profiles with a 25-second injection. They 

achieved between (77.9% and 85.2%) in terms of accuracy. 

The most recent developments in predicting the NOC 

focused on machine learning algorithms that make the best use 

of the profile data provided. There have only been a few 

models produced so far for use in forensic DNA cases. 

Because algorithms are developed on a different dataset of 

ground truth, these models utilize more information than 

previously proposed techniques. The NOC estimations can be 

done in seconds using machine learning algorithms, which is 

important in circumstances when the rapid analysis is required. 

 

 

7. SOFTWARE TOOLS FOR DNA PROFILING 

 

Multiple DNA profiling techniques can be implemented 

using a variety of technologies. These include DNA MIX, 

Euroformix, LRmix, LRmix Studio, TrueAllele, LikeLTD, 

Lab Retriever, CeesIt, NOCIt, DNAMixture, Forensic, 

MixtureCalc, Mixture Analysis, FamLink kinship, DNA 

Mixture Separator, and STRmix. We will review the recent 

most notable tools in this section. 
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7.1 1RFC 19 

 

RFC19 [47] was chosen for analysis and validation because 

of its overall performance on the test set (Table 1). Evidence 

on allele frequencies, peak heights, and allele counts is among 

the 19 features employed in this model. Five different locus 

features among 11 and eight sample features among 25 were 

used, from the total features. At various locus in dye channels, 

the locus features are detected with different fragment lengths 

(Figure 2). This model has lower discriminatory power of 

several loci (e.g. Penta D, TH01, Penta E, and TPOX) while 

the high-discriminatory-power locus SE33 hasn't been 

included. The NOC is represented by low discriminating 

power loci that are affected by the data delivered by other 

features, as shown by the partial correlation technique using a 

high ranking. 

 

 
 

Figure 2. An exemplar 3p PPF6C profile depicting the RFC19 machine learning model employs 19 features. The 

electropherogram (EPG) is accompanied by a set of sample features. At specific loci, locus features are displayed within the EPG 

 

Table 1. Accuracy is acquired through Training and Testing 

for Each Model, and it ranked the Models from best to worst 

in terms of overall performance. only the most effective 

number of features for each algorithm is displayed 

 

Model 
Number of 

features 

Training set 

Accuracy 

Test set 

Accuracy 

GaussianNB 4 0.794 0.792 

LSVC 4 0.803 0.808 

DTC 14 0.843 0.800 

MLPC 8 0.842 0.798 

LDA 40 0.888 0.838 

RFC 19 0.874 0.833 

k-NN 3 0.834 0.800 

GBC 11 0.886 0.817 

LRC 8 0.823 0.825 

SVC 5 0.811 0.808 

 

PPF6C profiles in 1p-5p autosomal chromosomes, the 

RFC19 machine learning model was developed and tested to 

allow for rapid, automatic, and effective classification of the 

NOC. Allele frequencies, peak heights, and allele counts are 

included in this model among other profile parameters. Even 

for highly complex samples, the NOC is classified effectively 

by combining the classification algorithm with a significant 

model evaluation method. Moreover, while comparing the nC-

tool and MAC approach, the RFC19 model performed more 

efficiently. 

The RFC19 limitations are examined by using three extreme 

type samples, 6p mixtures were the initial type. The NOC 

results of six are not possible because the 1p-5p mixtures are 

used to develop the NOC machine learning model. Low-

template 2p, 3p, and 4p mixtures are the second extreme 

sample type and it is made from the DNA of 2 or 3 brothers. 

NOC machine learning models are used to observe under-

estimates because the model was not trained using samples 

from relatives. Severely degraded and showed 3p, 4p and 5p 

mixtures are included in the third extreme type sample with 

seven to 22 locus drop-outs per DNA profile. The NOC model 

produced primarily inaccurate predictions for these highly 

complicated samples, as expected. An over-estimated NOC 

(3p) result is obtained from one low-template 2p mixture of 

DNA. The two contributors are used to explain this profile 

according to the manual EPG analysis. The first contribution 

is Three or four alleles with three loci were found in the profile 

and the second one is one or two alleles with 17 loci. As a 

result, the sample's overestimated NOC was unexpected, such 

profiles are probably to be mischaracterized. 

 

7.2 NOCIt 

 

Table 2. Multiple numbers of contributors use a different 

runtime 

 
Contributors' number Time range (mode) 

5 5 h–20 h (14 h) 

4 1 h–5 h (4 h) 

3 30 min–1.5 h (1 h) 

2 15 min–30 min (17 min) 

1 <1 min (0.2 min) 

 

The number of contributors is calculated by analyzing DNA 

samples in a mixture using NOCIt [48] model. The software 

was created using the Java programming language. The total 

number of contributors (from 1 to 5) is established by this 
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model. Data on autosomal STRs is only can be interpreted by 

NOCIt that are unrelated to one another. To handle stuttering, 

the software has no design improvement. The number of 

loci/alleles, maximum number of contributors, and computer 

processing speed are used to determine the execution time of 

this model [49]. It also depends on whether several NOCIt 

processes are happening simultaneously, that is multiple 

NOCIt interfaces are active at the same time, and each 

executing different samples. NOCIt's runtime is shown in 

Table 2. The number of contributions is provided in the first 

column, while the time it has taken to analyze that number is 

described in the second column. 

 

7.3 STRmix 

 

A DNA profile is evaluated by using this STRmix model 

with a continuous model and it is statistical genotyping 

software. The single and mixed DNA profiles are also 

analyzed by using this software, and also SWGDAM standards 

are followed by using STRmix. Overall potential genotype 

configurations and the DNA profile probability are calculated 

by using the data extracted from a DNA sample, like peak 

height. Stuttering, allele drop-out, and drop-in are all factors 

considered by the software. 

A plot of the average allelic mass (ma) vs best-fit peak 

height at each locus for the contributor's genotype at that locus 

was used to run exponential regression analysis in Excel® for 

each contributor. As a result, each contributor had an 

exponential curve similar to the curves in Figure 3 but based 

on known mixture composition data. The ground truth values 

are calculated by using the regression analysis results for each 

contributor. The STRmix™ distribution is given in Figure 4. 

 

 
 

Figure 3. A simulation of a two-person mixture with the 

STRmiXTM degradation model superimposed. During the 

MCMC process, the exponential model is used by this 

software for degradation (lower curve in each pair), but the 

users can be analyzed easily by reporting a linear estimation 

(each pair's upper line) 

 

 
 

Figure 4. STRmix™ progress use over eight years 

 

7.4 EuroForMix 

 

The STR DNA profiles estimation is done by using 

EuroForMix software from a complicated DNA sample 

including artifacts, this estimation is performed by a 

continuous approach [50]. Only when there are at least three 

unknowns will parallel implementation be considered (non-

contributor simulation and database searching have yet to be 

completed). The optimization requires the number of possible 

starting points and the number of processes will be the same. 

When there are four or more unknown contributors, 

Euroformix demands a significant processing time. From 

every unknown contributor, the approximation time 

complexity is shown in Table 4. Since we had four unknown 

contributions, it was evident that the amount of time consumed 

was excessive from the table. The time is reduced by 

parallelizing the code through a distributed memory system is 

the best option. Table 3 shows the running time. The number 

of contributors is shown in row 1, and the time taken is shown 

in row 2. The EuroFormix distribution is given in Figure 5. 

 

Table 3. The number of unknown contributors affects the 

time it takes to calculate the Lr 

 
Number of unknown 

contributors 
1 2 3 4 

Run time 
~ 1 

min 

~ 1 

min 

~ 30 

min 

24 

h 

 

 
 

Figure 5. In a simple case of EuroFormix distribution, the 

scale parameter is 86.2, where shape parameters = 8.381, and 

3.312, respectively. Each contributor's Mx and peak height 

expectation (m) are displayed. These curves are used to 

derive the individual peak height's probability density 

function contributions 

 

7.5 Statistefix 4.0 

 

The DNA profiles are deduced by DNA experts using this 

software for database queries. And it is also used for 

preselecting the DNA samples with advanced probabilistic 

search engines. The statistical model is used to analyze allelic 

drop-in/-out, stuttering [51], degradation, and peak height 

occurrences. The mixture samples and references are 

evaluated with the help of this tool. 

Among the analogously tested and implemented software, 

data show that Statistefix 4.0 is a more effective tool for DNA 

profiling. The potential advantage in ordinary casework is 

highlighted by DNA profiles deduced from casework samples. 

Statistefix 4.0 is a free program that allows you to process bulk 

samples and operates using replicates of multiple DNA tests. 

 

7.6 TAWSEEM 

 

The number of contributors is determined by using the 

TAWSEEM [52] tool in DNA mixture profiles with a 

multilayer perceptron (MLP) neural network model. The 

observations were achieved utilizing the largest dataset, which 
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consisted of four multiplex profiles with a total of 6000 

characteristics. This model had an accuracy of 0.97. All of the 

works that considered up to five contributors had the highest 

accuracy. Three alternative scenarios can be created using this 

approach having various locus numbers; 22 loci in single 

multiplex profiles, 15 loci in three multiplex profiles, and 13 

loci in four multiplex profiles. The deep learning model and 

software tool created in this research can be implemented in 

hardware [53]. For the development of effective and faster 

stand-alone devices, the field-programmable gate arrays 

(FPGA) device is used for DNA profiling [54]. 

For both the training and testing set, the prediction errors 

are depicted in Figure 6. It's possible to misclassify the 5-

contributor group as a 4-contributor sample and also 

misclassify the single-contributor group as a 2-contributor 

group, as seen in both figures. It's difficult to recognize the two, 

three, and four-contributor groups for higher or lower 

contributors. 

 

 
(a) Training 

 
(b) Testing 

 

Figure 6. Prediction errors of TAWSEEM (single multiplex 

profiles) 

 

7.7 A Comparison of the DNA profiling tools 

 

The model performance is measured and evaluated by using 

the Receiver Operator Characteristics (ROC) plots [55, 56]. 

These graphs illustrate the rates of false-negative and false-

positive support with the observed LR (Figure 7). A better 

model reduces the rate of false-negative and positive support 

at the same time [57]. The conservative and MLE of the 

EuroForMix model [58] have higher true positive support rates 

than the conservative and MLE of the LRmix model are shown 

in Figure 8, while the rates of false-positive support are equal. 

The multiple model performance is compared with the help of 

ROC plots [59, 60]. 

 
 

Figure 7. TAWSEEM: execution times 

 

 
 

Figure 8. The true positive support rate (TP) (vertical axis) 

and false-positive support rate (FP) are represented as a 

function of LR thresholds in a receiver operating 

characteristic (ROC) plot. For both LRmix and EuroForMix, 

the results for the conservative method (CONS) and 

maximum likelihood estimate approach (MLE) are plotted. 

The FP and TP rates are represented by the points on the 

curves for various LR thresholds. The MLE approach does 

not achieve a real positive rate of 1.0 

 

EuroForMix and LikeLTD were also compared using ROC 

analysis by [61]. The overall results of both models are the 

same but have different modeling assumptions. Advanced n + 

1 and complicated n - 2 stutters were simulated using LikeLTD 

[62, 63], and certain low template samples showed 

improvement (because the version of EuroForMix utilized at 

the time didn't allow for these stutter types). EuroForMix and 

Kongoh tools were compared by [64] and found some 

similarities between this software. 

Figure 9 shows the ROC graphs of STRmix and EFM. 

When each software interprets the same profile, the STRmix 

and EFM do not produce the same LR values or agree. ROC 

plots are created for different NOCs and applications. Each 

NOC dataset is made up of profiles with variable mixture 

proportions, DNA quantity, and quality [65]. Using unknown 

and known contributors' LR values in 4P, 3P, and 2P mixtures, 

the ROC plots of the red, green, and blue curves were created. 

ROC plots with EFM-assigned LR values are presented in 

magenta (4P), cyan (3P), and orange (2P). The area under the 

ROC curve was used to measure discrimination performance 
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(AUC) [66, 67]. In Figure 9, the table shows the results of 

analytical techniques (p-values) performed on the AUCs. 

Figure 10 reveals the DNA mixture analysis methods have 

been shown over time. Table 4 shows a basic comparison of 

the tools that were selected. The names of the software are 

listed in the first column [68]. The software's characteristics 

are described in columns 2-8. The model that was utilized to 

determine LR is described in Column 2. Whether or not the 

software has a GUI is indicated by the third column [69]. 

Columns 4 and 5 show whether the chosen software takes 

stuttering and drop-in into consideration when interpreting 

data. The programming language is described in the fifth 

column and the selected software is created by using this. The 

source code availability is indicated in column 6. The parallel 

structure utilized is described in the last column. Due to a lack 

of resources for some software [70] or a lack of access to the 

software's source code, observe that certain data is missing 

from the table. 

 

 
 

Figure 9. Examining LR systems' discrimination 

performance using empirical ROC plots 

Table 4. The Overall DNA Software Tools Comparison 

 
Software tools Calculation model Stutter Drop-in GUI Language Source Code Parallelism 

DNAMixtures Continuous Yes Yes No R Yes No 

LikeLTD Continuous Yes Yes No R, C Yes OpenMP 

NOCIt Continuous Yes Yes Yes Java Yes Java multithreading 

DNAMIX V.3 - - - Yes Java Yes No 

Lab Retriever Semi-continuous - Yes Yes C++ Yes No 

TrueAllele Continuous Yes Yes Yes Matlab No - 

Euroformix Continuous Yes Yes Yes R, C++ Yes Snow package 

Kongoh Continuous Yes No Yes R Yes Snow package 

CeesIt Continuous Yes Yes Yes Java Yes Java multithreading 

LRmix studio Semi-continuous - Yes Yes Java Yes Java multithreading 

STRmix Continuous Yes Yes Yes Java No - 

Kongoh Continuous Yes Yes Yes R No No 

RFC19 Continuous - No Yes Java Yes Java multithreading 

Statistefix 4.0 Continuous Yes Yes Yes Java Yes No 

TAWSEEM Continuous - No Yes R, C++ Yes No 

 

 
 

Figure 10. DNA mixture analysis methods have been developed over time. This Y-axis describes the year of introduction of each 

tool and the X-axis shows the software tools 

 

 

8. CONCLUSION 

 

In the field of forensic research, interpreting DNA mixtures 

is a regular procedure. It is a time-consuming and difficult 

approach. We provided an introduction to the area of DNA 

profiling. It was discussed in terms of its historical context as 

well as its implementation. Then we'll explain how to sample 

a DNA mixture and DNA profiling technologies. Next, we 

have explained various DNA profiling research depending on 

their classification, and also examined and compared the 

performance and effectiveness of the different tools 

Then, because TAWSEEM and Statistefix 4.0 already 

execute parallelism, we recommend using them for DNA 

profiling. Because the LR value is calculated by employing the 

continuous model for both tools and also by utilizing the entire 

information in the DNA sample. The two software's source 

code is accessible for analysis and modification. While 

comparing TAWSEEM and Statistefix 4.0, TAWSEEM has a 

GUI, which provides it a significant benefit over Statistefix 4.0 

for non-technical users. 
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In addition, the review discovered similar policy rules 

across all of the systems available: Domestic legislation 

controls information management, and the two-stage Prum 

method is implemented. As limiting the complete performance 

of DNA data exchange systems, changes in functional, ethical, 

and legal norms occur among countries, such as privacy 

measures and proportionality interpretation, which have been 

identified in several studies. Both public security and 

individual civil liberties are preserved by harmonizing 

domestic policies legally and operationally, according to the 

present trend. 

The need to apply these tests regularly may necessitate the 

need to reduce the analysis' run time. The area's development 

and applications have been hampered by computational 

complexity. Improvements would allow for the mixture 

interpretations with a greater number of unknown factors in 

less duration of time. The existing methodologies for 

parallelizing DNA profiling depend on shared memory 

parallelization, according to a review of the literature. To 

speed up computations, a distributed implementation is 

required, which allows for the usage of a large number of 

cores/processors. This research is in progress that will be 

presented soon. A faster and more accurate interpretation of 

DNA combined with many unknowns is predicted to broaden 

the scope of DNA profiling.  

An effective relevant DNA profile does not create when the 

database contains poor-quality samples such as PCR inhibitors 

or degraded DNA. From damaged DNA templates, the 

information is recovered by using the Smaller PCR amplicons 

such as SNPs or miniSTRs. The efficient matching K 

reference profile does not produce by the DNA database 

searches, it can be effectively enhanced by lowering the 

specificity of the search. To find close biological relatives of 

the source of the unknown Q profile, genetic inheritance 

principles are applied to create a 'familial' search. 

To lend support to circumstances involving microbial 

transfer, Microbial DNA may also play a role in future 

investigations. In the future, this study will most likely be 

carried out using next-generation sequencing or other elevated 

approaches. 

In the future, investigators' research advances further than 

just comparing evidence from a crime scene to a known 

suspect. Instead, we may use DNA from crime scenes to create 

descriptions of potential suspects or unidentified victims from 

scratch via a method called DNA phenotyping. Hence, 

forensic science in the future will not only focus on crime 

reconstructions and interpreting forensic science evidence 

from a crime scene but will also have the capability to 

“outthink crime” and create a more proactive forensic science. 
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APPENDIX 

Appendix A. Various DNA Profiling Techniques and Their Comparisons 

 

Methods 
Minimal 

cell input 

Typical 

cell input 
Genomic target 

Humans' 

genomes require 

relative 

sequencing 

coverage 

Pros Cons References 

DamID 1 cell 
≥10,000 

cells 

3D genome 

contacts TF 

localization 

 

10–40 M reads Not antibody-dependent 

1. Does not profile 

endogenous protein 

2. Dependent on 

GATC presence 

[41] 

DNase-seq 1 cell 
≥ 1 M 

cells 
Open chromatin 20–50 M reads 

The highest standard for 

identifying regulatory 

regions is the DHS. 

High cell input is 

typically required 
[68] 

FAIRE-seq 
100,000 

cells 

≥100,000 

cells 

Nucleosome 

occupancy 
20–50 M reads Simple and quick protocol 

1. Crosslinking 

efficiency is quite 

important. 

2. Low signal-to-

noise ratio 

[69] 

ChIP-seq 

100–

10,000 

cells 

≥500,000 

cells 

Protein 

localization 
20–40 M reads 

The most widely used 

profiling method, more 

comparative datasets, and 

multiple protocols are 

available 

The effectiveness of 

chromatin shearing 

limits the mapping 

resolution. 

[70] 

MNase-seq 1 cell 
≥ 1 M 

cells 

Positioning and 

occupancy of 

nucleosomes 

and TF 

40–60 M reads 
Information on nucleosome 

and TF binding 

1. High cell input is 

typically required 

2. Active regulatory 

areas are detected 

indirectly. 

[67] 

ATAC-seq 1 cell 
≥ 50,000 

cells 
Open chromatin 40–60 M reads 

Native conditions in a fast 

protocol 

1. The presence of 

mitochondrial read 

contamination is very 

common. 

2. Significant 

sequencing coverage 

is required to 

accurately map 

factors. 

[66] 

CUT&RUN 1 cell 
≥100,000 

cells 

Protein 

localization 
10 M reads 

1. Low cellular input is 

necessary 

2. High signal-to-noise ratio 

Antibody quality is a 

constraint. 
[65] 
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