
Artificial Techniques Based on Neural Network and Fuzzy Logic Combination Approach for

Avoiding Dynamic Obstacles

Zead Mohammed Yosif1*, Basil Shukr Mahmood2, Saad Zaghlul Saeed1

1 Mechatronics Engineering Department, Collage of Engineering, University of Mosul, Mosul 41002, Iraq
2 Computer Engineering Department, Collage of Engineering, University of Mosul, Mosul 41002, Iraq

Corresponding Author Email: zmyousif@uomosul.edu.iq

https://doi.org/10.18280/jesa.550306 ABSTRACT

Received: 5 May 2022

Accepted: 7 June 2022

The autonomous mobile robot must be capable of avoiding static and dynamic obstacles

in the environment and navigating towards the target without any human effort. A valid

low-cost path from start to goal is obtained by A* algorithm. Neural network used for Zone

classification. The relative values between mobile robot and obstacle are used for

classification which are distance, velocity, and angle. Zone1 is very dangerous while zone

5 is not dangerous. If the neural network classifies the obstacle as a dangerous obstacle

and activates the controller. The fuzzy logic makes a decision as a reaction of mobile robot

to prevent collision. There are three inputs to the fuzzy logic (relative velocity, relative

distance, and relative angle) between mobile robot and obstacle. The outputs of fuzzy logic

are velocity and steering angle of mobile robot. Static obstacles have been added to the

environment in addition to dynamic obstacles to make the environment more complex.

Three dangerous dynamic obstacles to the mobile robot are tested. While mobile robot is

avoiding one obstacle, another obstacle enters critical zone and becomes dangerous to

mobile robot. The mobile robot avoids the second obstacle while it is avoiding the first

obstacle. Then the velocities of mobile robot and obstacles have been increased to prove

that the proposed system can handle cases with faster velocities. The simulation results for

the tested cases shows the capability of the proposed method for avoiding static and

dynamic obstacles in fully known environment.

Keywords:

dynamic obstacle avoidance, fuzzy logic,

neural network, mobile robot navigation, path

planning

1. INTRODUCTION

Mobile robots these days have been incorporated into

various applications such as agriculture, military, medicine,

education, mining, space travel, entertainment, etc. The

autonomous mobile robot is an artificially intelligent machine

capable of understanding the environmental situation, self-

path planning by avoiding static and dynamic obstacles, and

responding quickly to any environmental state without any

human effort [1, 2]. The goal of navigation is to find an optimal

or suboptimal path from the starting location to the destination

point while avoiding obstacles [3, 4].

Neural networks (NNs) are a collection of non-linear, multi-

layered, parallel regression techniques that can be used for

signal processing, forecasting, and grouping [5]. Khanisi et al.

[6] introduced a neural controller with two inputs representing

the velocities of the right and left wheel, and two outputs

representing the Pulse Width Modulation (PWM) for each

wheel. Li et al. [7] used a neural network data fusion strategy

is presented to reduce the affection induced by inaccuracies in

the environment or measurements in order to enhance the real-

time performance and accuracy of localization for mobile

robots in interior environments. Abagiu et al. [8] developed a

deep neural network for object identification in a mobile robot.

A mobile robot was created and built to work in hazardous

environments.

Fuzzy logic is employed in scenarios involving a lot of

ambiguity, complexity, and nonlinearity. Batti et al. [9]

proposed a fuzzy logic controller to reach the target in fully

static environment, where three distances as inputs were

entered into the fuzzy controller. The outputs are the right and

left wheel velocities. Singh et al. [10] introduced a Fuzzy logic

with two inputs to reach target in static environment. The

inputs are the angle between the robot orientation and the robot

goal orientation (i.e., robot rotation angle), and the distance

between the obstacle and the robot which were determined by

the ultrasonic sensor. The outputs are the angular velocities of

the mobile robot's two wheels. Liu et al. [11] proposed an

obstacle avoidance system based on fuzzy logic. The robot

selects between increasing speed, lowering speed, or stopping

to wait for the obstacle to pass based on the obstacle's

movement trend. The robot avoided the obstruction simply by

modifying the speed ahead of time, without changing the

planed path.

The neural network and fuzzy logic are integrated with

specific methods to create a new technology structure known

as neural-fuzzy technology. To complete the fuzzy inference

function, it can be handled in parallel as a neural network, self-

learning, and fuzzy information can be processed as fuzzy

theory [12]. Buduanto et al. [13] compared two artificial

intelligence algorithms used in the wall following autonomous

mobile robot: Neural Network Backpropagation and Fuzzy

Logic. The distance between the robot and the wall is the input.

The two wheels' speeds are the output variables. In a wall-

following robot, the study discovered that NN is faster than

Fuzzy Logic. Tan Ai and Dadios [14] discussed a neural

Journal Européen des Systèmes Automatisés
Vol. 55, No. 3, June, 2022, pp. 339-348

Journal homepage: http://iieta.org/journals/jesa

339

https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.550306&domain=pdf

network and fuzzy logic combination. A neural network is

utilized to learn both goal seeking and obstacle avoidance

using a dataset created by two different fuzzy logic navigation

algorithms. Table 1 shows the comparisons between methods.

Table 1. Methods comparisons

 NN Fuzzy logic

NN and

Fuzzy

combination

Path

planning

types

Dynamic and

static path

planning

Dynamic

path

planning

Dynamic and

static path

planning

Environment

types

Dynamic and

static

Dynamic

and static

Dynamic and

static

Training

data
Yes No

Depend on

NN

Memory

usage
High Low

Depend on

NN

Applications

Velocity

controlling,

path planning,

object

identifications

Controlling

robot

motors,

suggest

steering

angle, path

planning

Velocity

controlling,

path planning,

suggest

steering angle,

obstacle

avoidance.

From the above comparison, it is clear that fuzzy logic

effective for motion control due to its fast response and low

memory and calculations requirements. The neural network

with its training provides classifications for different situations

that might be happened.

Various mobile robot navigation techniques have been

applied by the researchers to achieve collision free path

planning. Many papers tried to make a combination between

two algorithms or more to increase the efficiency. The reactive

approach can handle the problem of dynamic environment

more that static environment. This paper concerns with

reactive algorithms to handle problem of dynamic obstacle

avoidance by finding initial path using A* algorithm. Then a

combination between neural network and fuzzy logic have

been done to achieve obstacle avoidance. The neural network

classifies the zone; while fuzzy logic controls the speed and

orientation of the robot so as to avoid the static and dynamic

obstacles for mobile robot travelling on indoor environment.

This paper is organized as follows: In section 2 path planning

is presented. Section 3 presents zone classification using

neural network. In section 4, the fuzzy logic input – outputs

and rules are introduced. Result and discussion have been

presented in section 5. The conclusion and suggestion are

given in section 6.

2. PATH PLANNING

The A-star algorithm, often known as A*, is a heuristic

search method whose goal is to identify the shortest path in an

environment from a start point to a goal point as shown in

Figure 1. The A* algorithm is a modification of the Dijkstra

algorithm. A-star is considered the most representative

algorithm [15]. The task of determining a valid low-cost path

from start to goal locations in an environmental map is referred

to as path planning. The basic method starts with the shortest

path and then expands it with the function indicated below [16].

f (n) = g(n) + h(n) (1)

where,

g(n): the cost of getting path from the starting point to node

(n).

h(n): denotes a heuristic estimate, cost, or path from node n to

a target.

Figure 1. A* path planning

Search-based planning, which includes A* search algorithm,

is a prominent solution to path planning issues that has been

applied in a variety of applications including autonomous

vehicle navigation, robot arm manipulation, and gaming AI

[17]. If the environment has previously been completely

mapped, A* can be employed in almost every scenario [18].

The A* search Algorithm can be used to find the shortest route

to a robot's final point [19, 20].

3. ZONE CLASSIFICATION

In depending on distance between mobile robot and obstacle,

relative velocity between mobile robot and obstacle, and angle

between mobile robot and obstacle, this work proposes five

zones. Zone 1 is very dangerous while zone 5 is not dangerous.

If the obstacle is close to the robot, it will be considered as a

dangerous. Also if the relative velocity is high, the obstacle

can be classified as dangerous. On other hand; if the obstacle

is far from mobile robot, it can be classified as not dangerous.

Table 2 shows zone's classifications depending on self-

experience. The velocity and distance between the obstacle

and the mobile robot are more important than the angle

between them. Velocity and distance pose the greatest danger

to the robot and to the possibility of collision. High speed and

the closest distance between the mobile robot and the obstacle

increase the possibility of collision. Thus, these two

parameters are included in the Table 2, and that each field of

the table includes angles from 90 to - 90 degrees.

Table 2. Zone's classifications

 Distance (cm)

Velocity (cm/s)

30 60 90 120 and more

4 Zone3 Zone4 Zone5 Zone5

6 Zone2 Zone3 Zone4 Zone5

8 Zone1 Zone2 Zone3 Zone4

10 Zone1 Zone1 Zone3 Zone3

As an example, obstacle 1 (Obs1) has velocity = 5 cm/sec,

distance = 120 cm, and angle = 0o. Obstacle 2 (Obs2) has

velocity = 5 cm/sec, distance = 60 cm, and angle = 0o. These

information will be arranged in the following form [distance,

340

velocity, angle] input vector. for Obs1 and Obs2 will be as

flowing form [120,15,0], [80,15,0]; respectively as shown in

Figure 2. Obstacle 1 and obstacle 2 have same velocity and

angle but the distance between mobile robot and obstacles are

different. At the output side there is a vector of five elements.

The output is five coded number in which each digit may be 0

or 1 because there are five suggested zones. The suggested

zone equals to 1. For example, if the vector is [0,1,0,0,0] this

means that zone two is activated. Obstacle 2 is more dangerous

than obstacle 1. Therefore; it should have zone classification

highest than obstacle 1.

Figure 2. Robot's zones example

3.1 Data collection

(a)

(b)

Figure 3. Spectrum of path's angle

For each zone of velocity and distance seven angles are

included that start from 0o- 90o degrees that are located in the

right side of robot, and also 0o to – 90odegrees that are located

in the left side of robot as it clear in Figure 3. For zones in

Table 1, ten readings are recorded along the radial path from

obstacle to mobile robot. Also for zone 1 where the velocity=

10 cm/sec, and distance = 60 cm it needs to cover a degrees (-

90)-(-75)-(-60)-(-45)-(-30)-(-15)-0-15-30-45-60-75-90.

Therefore; a 130 readings are obtained. The total readings will

be 16·130= 2080. The radial reading for each angle will start

from distance 60 cm until 30 cm. Matlab and robot simulator

CoppeliaSim are used to record these readings. Reading steps

and resolution are represented in dotted line in the red color

that cover form -90o to 90o as shown in Figure 3.

3.2 CoppeliaSim and data collection

The Virtual Robot Experimentation Platform (V-REP)

(now called CoppeliaSim) is the premier robotics and

simulation automation software platform in the world.

Through a rich application programming interface (API), V-

REP allows the user to model the entire robotic system or its

subsystems (such as sensors or actuators), as well as simply

integrate the robot's operations. Each simulated object or

model can be individually controlled using embedded scripts

or a remote API client using the V-REP integrated

development environment and distributed control architecture

[21]. It has the ability to add objects and sensors. In order to

collect data, a distance senor has been mounted on the rotary

desk. An object with specified velocity toward the sensor is

sensed. The moving object is moved in directly forward line

toward the sensor with certain angle. The angle distribution is

shown in Figure 3. The zero angle is in the centre. The right

side range goes to positive angle until reach +90 degree, while

the left side range goes to negative angle until reach to – 90

degree. For certain angle there are ten reading have been

acquired. The reading resolution is as referred between B and

A points. The distance between each point is 3 cm in a total

distance of 30 cm between two areas. The data used in the

research was obtained and generated based on personal

experiences and self-experience.

3.3 Neural network

An ANN is a bio-inspired artificial brain model capable of

mimicking behavior-based learning. The basic computing unit

of an ANN is a neuron, which has the ability to store and

replicate experiential information in a manner comparable to

the human brain. These have been widely employed in

numerous search optimization, learning, and pattern

recognition problems due to their ability to produce simple and

optimal solutions in complex scenarios while maintaining the

integrity of the specifications [22]. A feedforward net is one

that was trained using the backpropagation training algorithm.

To obtain the error signal, the backpropagation training

algorithm subtracts the training output from the goal (desired

response). The weights and biases in the input and hidden

layers are then adjusted to minimize the error [23]. A feed

forward neural network trained to be used in zone

classification. There are three inputs (velocity, distance and

angle), ten neurons in the hidden layer, and five neurons in the

output (five zones) as it shown in Table 3.

Table 3. Zone output codes

Zone name Neural output

Zone 1 00001

Zone 2 00010

Zone 3 00100

Zone 4 01000

Zone 5 10000

341

The mathematical equations are listed as below:

Ew=
1

2
∑ (𝑡𝑘 − 𝑂𝑘)2𝑘

𝑘=0 (2)

The hidden layer's weights are updated using the equation:

𝑉𝑗𝑖 (𝑛 + 1) = 𝑉𝑗𝑖 (𝑛) + 𝜂 × 𝛿𝑗 (𝑛) × 𝑥𝑖 (𝑛) (3)

δj is the error signal produced by the j th hidden neuron.

The weights of the output layer are updated using the

equation:

Wk j (n + 1) = Wk j (n) + η×δk (n) ×y j (n) (4)

δk is the error signal produced by the kth output neuron.

𝛿𝑘 (𝑛 + 1) = (𝑡𝑘 − 𝑂𝑘) × (1 − 𝑂𝑘) × 𝑂𝑘 (5)

Using δk, we can calculate δj as follows:

𝛿𝑗 = (1 − 𝑦 𝑗) × 𝑦 𝑗 × 𝛴𝑘 (6)

where,

xi: The ith input.

y j: The output of the j th hidden neuron.

Ok: The output of the kth output neuron.

tk: The desired output.

Vji: The weight from the ith input to the jth hidden neuron.

Wk j: The weight from the ith hidden neuron to the kth output

neuron.

: The learning rate.

i: index for input neurons.

In order to train and test the network, a data base is

considered for such that about 70% of the data for training,

15% of the data are used for validation and 15% are used for

testing using 1000 epochs. The training accuracy was found

about 93.5% and the validation accuracy at one-layer neural

network is 92.6%. In a neural network, the number of neurons

and hidden layers to be correctly guessed is determined by

training database samples [24]. Therefore; the number of

hidden layers is increased to a two hidden layers instead one

hidden layer as shown in Figure 4. The accuracy is increased

to 98% and validation accuracy is 97.2 as it is clear from Table

4. The confusion matrices for the two networks are shown in

Figure 5.

Table 4. Specification of the used network

 Characteristics
Neural network

1

Neural network

2

1
Number of input

layer neurons
3 3

2
Number of hidden

layer neurons
10 10 , 10

3
Number of output

layer neurons
5 5

5
Hidden layer

activation function

Bayesian

Regularization

Bayesian

Regularization

6
Output layer

activation function
Linear Linear

7 Learning rate 0.05 0.05

8
Maximum number

of epoch
1000 1000

 Accuracy 93.5% 98%

Validation

accuracy
92.6% 97.2%

Figure 4. The structure of the used NN

(a) Confusion matrix for one hidden layer

(b) Confusion matrix for two hidden layer

Figure 5. Confusion matrix for the two networks

4. FUZZY LOGIC

A fuzzy system is a collection of fuzzy expert knowledge

that can reason about facts in general terms rather than using

strict Boolean logic. It was first established by Lotfi Zadeh in

the 1960s, has become a prominent technique for control

applications. A basic fuzzy system has four key components:

a fuzzifier, a knowledge base, an inference engine, and a

defuzzifier. The fuzzifier converts a real crisp input into a

fuzzy function, identifying the input's 'degree of membership'

to a vague idea. The controller's decision-making logic is

provided by the Inference Engine. It uses fuzzy implications

342

and fuzzy inference procedures to deduce the fuzzy control

actions. Defuzzification turns fuzzy control values into crisp

numbers, i.e., it connects a single point to a fuzzy set if the

point is part of the fuzzy set's support [25].

There are three inputs to the fuzzy logic system which are

(relative velocity, relative distance, and relative angle)

between the mobile robot and the obstacle. The output of the

fuzzy logic system (in other word the decision of fuzzy logic)

is velocity and steering angle of the mobile robot as shown in

Figure 6. When mobile robot enters a dangerous zone that is

classified by NN, the fuzzy system decides if the velocity of

the robot must be changed or not and if the robot steering angle

will be changed or not.

Figure 6. Suggested fuzzy logic system

Each fuzzy input has five memberships. The velocity

memberships are considered as: very slow, slow, med, fast,

very fast. The distance memberships are: very near, near, med,

far, very far. The steering angle memberships are: sharp left,

left, forward, right, sharp right. Each fuzzy output has five

memberships. The steering angle memberships are: left, fine

left, forward, fine right, and right. The velocity memberships

are: very slow, slow, med, fast, very fast. The memberships of

fuzzy inputs and outputs shown are shown in Figure 7. There

are five memberships for each input, Therefore the number of

the required rules become 5*5*5= 125 rules that control, the

fuzzy system. Figure 8 displays part of the rules viewer. Figure

8, a sample of the 125 rules that were written in fuzzy logic,

where Figure 8-a shows the IF-THEN rules that used in the

controller which consists of three inputs: relative velocity,

distance, and angle between the robot and the obstacle, while

at the output end are: the speed and the angle of rotation of the

robot so that it can avoid collision. The rules are constructed

based on following pattern:

Rule i: If velocity is (Vi) and distance is (Di) and angle is

(Ai) then the velocity is Vo and steering angle is Ao.

Where as Vi, Di, and Ai the input parameters. Vo and Ao

output parameters.

In Figure 8-b shows the rule-view and the memberships

graphs that formed for all IF-THEN rules based on the input

parameters of fuzzy system.

(a) Input velocity membership

(b) Input velocity membership

(c) Input distance membership

(d) Output velocity

(e) Output angle

Figure 7. Fuzzy logic memberships

(a) IF-THEN rules of the Fuzzy logic components

(b) Rule – view of the Fuzzy logic component

Figure 8. Fuzzy logic rules viewer

343

5. RESULTS AND DISCUSSION

An environment with 500 * 500 cm2 is suggested in order

to test the NN and fuzzy logic system that have been designed.

The start point is (200, 100) and the goal point is (200, 400).

As the mobile robot enters a dangerous region, the neural

network classifies the obstacle as a dangerous obstacle which

may collide the robot. After this classification the fuzzy logic

makes a decision as a reaction of mobile robot to prevent

collision. The proposed algorithm is presented in Figure 9.

At first (test 1), a free environment with only one dynamic

obstacle has been tested. The obstacle is moving in front of the

mobile robot with heading angle equals to zero degree. As the

obstacle gets into dangerous zone, the mobile robot velocity

and steering angle will be changed according to the fuzzy rules.

Another case (Test 2) has been tested that it is similar to the

first case but both mobile robot and obstacle are moving faster

than that in the first case. At (Test 3 and Test 4) the obstacle

moves in front of mobile robot but with angle about 45 degree

to the right and to the left of the mobile robot; respectively.

For all previous cases (Test 1-Test 4) zones are classified as

dangerous zones. For the next two testes (Test 5 & Test 6) the

obstacle is moving in front of the mobile robot but it is parallel

to robot. The obstacle is classified as not dangerous to the

robot. Table 5 shows the initial path length that have been

found by A-star algorithm, the path after avoiding obstacles,

velocity of both obstacle and mobile robot, and the relative

velocity. Figure 10 shows the tested cases.

Figure 9. Algorithm flowchart for proposed neural fuzzy

combination

Table 5. Results and tests (Test 1 – Test 6)

Test6 Test5 Test4 Test3 Test2 Test1

300 300 cm 300 300 300 300

Initial path

length using

A*

0.681 0.681 0.651 0.651 0.651 0.651

Time

required for

initial path

(sec)

300 cm 300 cm 300 300 300 300

direct length

from start to

end points

300

parallel to

robot

300 cm

Parallel to

robot

319 319 316 315

Path length

after

avoidance

(cm)

10 10 10 10 15 10

Obstacle

velocity

(cm/s)

10 10 11 11 15 10

Robot

velocity

(cm /s)

20 20 19 19 30 20

Relative

velocity

(cm /s)

No

collision

No

collision –

parallel

From

right

Form

left
Direct Direct

Notes on

path

0 0 6.3 6.3 5.3 5

Increased

path length

ratio

%

In the second scenario of tests another obstacle has been

added to the environment. Thus two obstacles may collide the

robot. In test 07, obstacle 1 is moving straight forward to the

mobile robot which may collide the mobile robot. The mobile

robot must avoid it. The Obstacle 2 is moving in front of

mobile robot but has no chance of colliding the mobile robot.

In Test 8 both obstacles move in front of mobile robot but in

parallel to the robot path therefore the mobile robot does not

change initial path. In Test 9 and Test 10, one obstacle is

chosen to be dangerous and the other is not. For this reason,

the mobile robot avoids the obstacle and returns to its initial

path. In test 11 both obstacles enter critical zone. The mobile

robot avoids the first obstacle and returns to its initial path.

After that, it then avoids the second obstacle and returns to the

initial path again. The results of the tested cases are presented

in Table 6 and Figure 11.

Test 01

344

Teas 02

Test 03

Test 04

Test 05

Test 06

Figure 10. Test scenario for one moving obstacle

Test 7

Test 8

Test 9

345

Test 10 Test 11

Figure 11. Scenario test for two moving obstacles

Table 6. Results and tests (Test7-Test 11)

Test11 Test10 Test9 Test8 Test7

300 300 300 300 300 Initial path length using A*

0.651 0.651 0.651 0.651 0.681 Time required for initial path (sec)

300 300 300 300 300 cm direct length from start to end points

304 300 364.4322 353 360 Path length after avoidance (cm)

6 10 11 11 11 Obstacle 1 velocity (cm/s)

14 14 6 6 10 Obstacle 2 velocity (cm/s)

8 10 10 14 11 Robot velocity (cm /s)

12 20 21 21 20 Relative velocity 1 - (cm /s)

20 24 14 20 Relative velocity 2 - (cm /s)

1.3 0 21.3 17.7 20 Increased path length ratio %

Table 7. Results and tests (test 12- test 17)

Test17 Test16 Test15 Test14 Test13 Test12

300 541 483 541 546 540 Initial path length using A*

0.707 10 3 12 17 9 Time required for initial path (sec)

300 480 480 480 480 480 direct length from start to end points

358 541 483 514 666 652 Path length after avoidance (cm)

9 10 10 10 20 35 Obstacle 1 velocity (cm/s)

8 10 10 10 20 40 Obstacle 2 velocity (cm/s)

5 10 10 10 20 40 Obstacle 3 velocity (cm/s)

10 70 73 70 42 80 Robot velocity (cm /s)

15 62 70 62 61 115 Relative velocity 1 - (cm /s)

15 62 67 62 52 71 Relative velocity 2 - (cm /s)

14 62 65 62 61 105 Relative velocity 3 - (cm /s)

19.30% 0 0 6.40% 37.80% 34.90% Increased path length ratio %

In the third scenario, there are three dynamic obstacles and

all of them are dangerous to the mobile robot. In Test 12, while

mobile robot is avoiding obstacle 2, obstacle 3 enters critical

zone and becomes dangerous to mobile robot. The mobile

robot avoids obstacle 3 while it is avoiding obstacle 2.

In the fourth scenario, static obstacles have been added to

the environment in addition to dynamic obstacles to make the

environment more complex. Test 13 & Test 14 are examples

of moving mobile robot form start position to goal in presence

of static and dynamic obstacle. But in these cases, the dynamic

obstacles are not dangerous to the mobile robot. Thus it

remains moving along the initial path. In test 15, two obstacles

(obstacle 2 &3) are dangerous to the mobile robot. The mobile

robot avoids these obstacles safely. Obstacle 1 exists in the

environment but it is not dangerous to the mobile robot. In

tests 16 and 17, three dynamic obstacles are dangerous to the

mobile robot as it is clear in Table 7 and Figure 12. The mobile

robot avoids them. In test 17 the velocities of mobile robot and

obstacles have been increased to prove that the proposed

system can handle cases with faster velocities.

Test 12

346

Test 13

Test 14

Test 15

Test 16

Test 17

Figure 12. Scenario tests for three moving obstacles and

static obstacles

6. CONCLUSION

For autonomous mobile robot applications, there are several

situations to be handled due to the presence of static and

dynamic obstacles. The data generated and collected by the

simulator had provided the necessary set to train the neural

network so as to achieve zone's classification. Obstacles are

classified into five zones by using the two hidden layers neural

network. In dangerous zone, fuzzy logic controls the mobile

robot navigation through the changing of velocity and steering

angle of mobile robot. The five memberships for each fuzzy

controller inputs and outputs are sufficient to produce the

reaction so as to avoid dynamic obstacles and continue

navigation towards the goal. Complex situations are tested in

which more than one dynamic obstacles at the same time are

avoided even when the velocities of mobile robot and

obstacles are doubled. The combination between neural

network classification and fuzzy controller is succeeded to

navigate the mobile robot in seventeen tests avoiding static and

dynamic obstacles in fully known environment. The proposed

model succeeded in determining which of the obstacles in the

environment is the most dangerous for the robot when we have

more than one moving obstacle at the same time. The robot

also has the ability of continues checking the obstacles even

during the implementation of the avoidance subprogram. In

the future we propose a fusion between the proposed system

model with prediction strategies to achieve better performance.

ACKNOWLEDGMENT

The authors would like to express their gratitude to the

faculty and staff of the University of Mosul-College of

Engineering, especially the departments of computer

engineering and mechatronics engineering, for their support to

complete this work.

REFERENCES

[1] Siegwart, R., Nourbakhsh, I.R., Scaramuzza, D. (2011).

Introduction to Autonomous Mobile Robots. MIT Press.

347

[2] Patle, B.K. (2016). Intelligent navigational strategies for

multiple wheeled mobile robots using artificial hybrid

methodologies. National Institute of Technology

Rourkela.

[3] Pandey, A., Pandey, S., Parhi, D.R. (2017). Mobile robot

navigation and obstacle avoidance techniques: A review.

Int Rob Auto J, 2(3): 00022.

https://doi.org/10.15406/iratj.2017.02.00023

[4] Hutabarat, D., Rivai, M., Purwanto, D., Hutomo, H.

(2019). Lidar-based obstacle avoidance for the

autonomous mobile robot. 2019 12th International

Conference on Information Communication Technology

and System (ICTS), pp. 197-202.

https://doi.org/10.1109/ICTS.2019.8850952

[5] Shanmuganathan, S. (2016). Artificial neural network

modelling: An introduction. Artificial Neural Network

Modelling, Springer, 2016, pp. 1-14.

https://doi.org/10.1007/978-3-319-28495-8_1

[6] Khnissi, K., Seddik, C., Seddik, H. (2018). Smart

navigation of mobile robot using neural network

controller. in 2018 International Conference on Smart

Communications in Network Technologies (SaCoNeT),

pp. 205-210.

https://doi.org/10.1109/SaCoNeT.2018.8585616

[7] Li, H., Mao, Y., You, W., Ye, B., Zhou, X. (2020). A

neural network approach to indoor mobile robot

localization. 2020 19th International Symposium on

Distributed Computing and Applications for Business

Engineering and Science (DCABES), pp. 66-69.

https://doi.org/10.1109/DCABES50732.2020.00026

[8] Abagiu, M., Popescu, D., Manta, F.L., Popescu, L.C.

(2020). Use of a deep neural network for object detection

in a mobile robot application. 2020 International

Conference and Exposition on Electrical and Power

Engineering (EPE), pp. 221-225.

https://doi.org/10.1109/EPE50722.2020.9305648

[9] Batti, H., Jabeur, C.B., Seddik, H. (2019). Mobile robot

obstacle avoidance in labyrinth environment using fuzzy

logic approach. 2019 International Conference on

Control, Automation and Diagnosis (ICCAD), pp. 1-5.

https://doi.org/10.1109/ICCAD46983.2019.9037873

[10] Singh, N.H., Thongam, K. (2018). Mobile robot

navigation using fuzzy logic in static environments.

Procedia Computer Science, 125: 11-17.

https://doi.org/10.1016/j.procs.2017.12.004

[11] Liu, Y., Chen, D., Zhang, S. (2018). Obstacle avoidance

method based on the movement trend of dynamic

obstacles. 2018 3rd International Conference on Control

and Robotics Engineering (ICCRE), Nagoya, pp. 4550.

https://doi.org/10.1109/ICCRE.2018.8376431

[12] Wang, H., Duan, J., Wang, M., Zhao, J., Dong, Z. (2018).

Research on robot path planning based on fuzzy neural

network algorithm. 2018 IEEE 3rd Advanced

Information Technology, Electronic and Automation

Control Conference (IAEAC), pp. 1800-1803.

https://doi.org/10.1109/IAEAC.2018.8577599

[13] Budianto, A., Pangabidin, R., Syai'in, M., et al. (2017).

Analysis of artificial intelligence application using back

propagation neural network and fuzzy logic controller on

wall-following autonomous mobile robot. 2017

International Symposium on Electronics and Smart

Devices (ISESD), pp. 62-66.

https://doi.org/10.1109/ISESD.2017.8253306

[14] Tan, R.J.C., Dadios, E.P. (2018). Neuro-Fuzzy mobile

robot navigation. 2018 IEEE 10th International

Conference on Humanoid, Nanotechnology, Information

Technology, Communication and Control, Environment

and Management (HNICEM), pp. 1-6.

https://doi.org/10.1109/HNICEM.2018.8666348

[15] Tang, Z.Z., Ma, H.Z. (2021). An overview of path

planning algorithms. OP Conf. Ser.: Earth Environ. Sci.,

804: 022024. https://doi.org/10.1088/1755-

1315/804/2/022024

[16] Karur, K., Sharma, N., Dharmatti, C., Siegel, J.E. (2021).

A survey of path planning algorithms for mobile robots.

Vehicles, 3(3): 448-468.

https://doi.org/10.3390/vehicles3030027

[17] Yonetani, R., Taniai, T., Barekatain, M., Nishimura, M.,

Kanezaki, A. (2021). Path planning using neural A*

search. Proceedings of the 38th International Conference

on Machine Learning, pp. 12029-12039.

https://doi.org/10.48550/arXiv.2009.07476

[18] GopiKrishnan, S., Shravan, B.V.S., Gole, H., Barve, P.,

Ravikumar, L. (2011). Path Planning Algorithms: A

comparative study. Space Transportation Systems.

[19] Aprilia, B.S., Kurniawan, E., Ramdhani, M., Rizal, A.

(2019). Design and implementation A* algorithm on

movement system robot in the warehouse. J. Phys.: Conf.

Ser., 1367(1): 012066. https://doi.org/10.1088/1742-

6596/1367/1/012066

[20] Wang, X., Mizukami, Y., Tada, M., Matsuno, F. (2021).

Navigation of a mobile robot in a dynamic environment

using a point cloud map. Artif Life Robotics, 26(1): 10-

20. https://doi.org/10.1007/s10015-020-00617-3

[21] Tursynbek, I., Shintemirov, A. (2020). Modeling and

simulation of spherical parallel manipulators in

CoppeliaSim (V-REP) robot simulator software. 2020

International Conference Nonlinearity, Information and

Robotics (NIR), pp. 1-6.

https://doi.org/10.1109/NIR50484.2020.9290227

[22] Abed, M.S., Lutfy, O.F., Al-Doori, Q. (2021). A review

on path planning algorithms for mobile robots.

Engineering and Technology Journal, 39(5A): 804-820.

http://dx.doi.org/10.30684/etj.v39i5A.1941

[23] Pwasong, A., Sathasivam, S. (2016). A new hybrid

quadratic regression and cascade forward

backpropagation neural network. Neurocomputing, 182:

197-209.

http://dx.doi.org/10.1016/j.neucom.2015.12.034

[24] Uzair, M., Jamil, N. (2020). Effects of hidden layers on

the efficiency of neural networks. 2020 IEEE 23rd

International Multitopic Conference (INMIC), pp. 1-6.

http://dx.doi.org/10.1109/INMIC50486.2020.9318195

[25] De Silva, C.W. (2018). Intelligent Control: Fuzzy Logic

Applications. CRC Press, 2018.

348

