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The autonomous mobile robot must be capable of avoiding static and dynamic obstacles 

in the environment and navigating towards the target without any human effort. A valid 

low-cost path from start to goal is obtained by A* algorithm. Neural network used for Zone 

classification. The relative values between mobile robot and obstacle are used for 

classification which are distance, velocity, and angle. Zone1 is very dangerous while zone 

5 is not dangerous. If the neural network classifies the obstacle as a dangerous obstacle 

and activates the controller. The fuzzy logic makes a decision as a reaction of mobile robot 

to prevent collision. There are three inputs to the fuzzy logic (relative velocity, relative 

distance, and relative angle) between mobile robot and obstacle. The outputs of fuzzy logic 

are velocity and steering angle of mobile robot. Static obstacles have been added to the 

environment in addition to dynamic obstacles to make the environment more complex. 

Three dangerous dynamic obstacles to the mobile robot are tested. While mobile robot is 

avoiding one obstacle, another obstacle enters critical zone and becomes dangerous to 

mobile robot. The mobile robot avoids the second obstacle while it is avoiding the first 

obstacle. Then the velocities of mobile robot and obstacles have been increased to prove 

that the proposed system can handle cases with faster velocities. The simulation results for 

the tested cases shows the capability of the proposed method for avoiding static and 

dynamic obstacles in fully known environment.  
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1. INTRODUCTION

Mobile robots these days have been incorporated into 

various applications such as agriculture, military, medicine, 

education, mining, space travel, entertainment, etc. The 

autonomous mobile robot is an artificially intelligent machine 

capable of understanding the environmental situation, self-

path planning by avoiding static and dynamic obstacles, and 

responding quickly to any environmental state without any 

human effort [1, 2]. The goal of navigation is to find an optimal 

or suboptimal path from the starting location to the destination 

point while avoiding obstacles [3, 4]. 

Neural networks (NNs) are a collection of non-linear, multi-

layered, parallel regression techniques that can be used for 

signal processing, forecasting, and grouping [5]. Khanisi et al. 

[6] introduced a neural controller with two inputs representing

the velocities of the right and left wheel, and two outputs

representing the Pulse Width Modulation (PWM) for each

wheel. Li et al. [7] used a neural network data fusion strategy

is presented to reduce the affection induced by inaccuracies in

the environment or measurements in order to enhance the real-

time performance and accuracy of localization for mobile

robots in interior environments. Abagiu et al. [8] developed a

deep neural network for object identification in a mobile robot.

A mobile robot was created and built to work in hazardous

environments.

Fuzzy logic is employed in scenarios involving a lot of 

ambiguity, complexity, and nonlinearity. Batti et al. [9] 

proposed a fuzzy logic controller to reach the target in fully 

static environment, where three distances as inputs were 

entered into the fuzzy controller. The outputs are the right and 

left wheel velocities. Singh et al. [10] introduced a Fuzzy logic 

with two inputs to reach target in static environment. The 

inputs are the angle between the robot orientation and the robot 

goal orientation (i.e., robot rotation angle), and the distance 

between the obstacle and the robot which were determined by 

the ultrasonic sensor. The outputs are the angular velocities of 

the mobile robot's two wheels. Liu et al. [11] proposed an 

obstacle avoidance system based on fuzzy logic. The robot 

selects between increasing speed, lowering speed, or stopping 

to wait for the obstacle to pass based on the obstacle's 

movement trend. The robot avoided the obstruction simply by 

modifying the speed ahead of time, without changing the 

planed path. 

The neural network and fuzzy logic are integrated with 

specific methods to create a new technology structure known 

as neural-fuzzy technology. To complete the fuzzy inference 

function, it can be handled in parallel as a neural network, self-

learning, and fuzzy information can be processed as fuzzy 

theory [12]. Buduanto et al. [13] compared two artificial 

intelligence algorithms used in the wall following autonomous 

mobile robot: Neural Network Backpropagation and Fuzzy 

Logic. The distance between the robot and the wall is the input. 

The two wheels' speeds are the output variables. In a wall-

following robot, the study discovered that NN is faster than 

Fuzzy Logic. Tan Ai and Dadios [14] discussed a neural 
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network and fuzzy logic combination. A neural network is 

utilized to learn both goal seeking and obstacle avoidance 

using a dataset created by two different fuzzy logic navigation 

algorithms. Table 1 shows the comparisons between methods.  

 

Table 1. Methods comparisons  

 

 NN Fuzzy logic 

NN and 

Fuzzy 

combination 

Path 

planning 

types 

Dynamic and 

static path 

planning 

Dynamic 

path 

planning 

Dynamic and 

static path 

planning 

Environment 

types 

Dynamic and 

static 

Dynamic 

and static 

Dynamic and 

static 

Training 

data 
Yes No 

Depend on 

NN 

Memory 

usage 
High Low 

Depend on 

NN 

Applications 

Velocity 

controlling, 

path planning, 

object 

identifications 

Controlling 

robot 

motors, 

suggest 

steering 

angle, path 

planning 

Velocity 

controlling, 

path planning, 

suggest 

steering angle, 

obstacle 

avoidance.  

 

From the above comparison, it is clear that fuzzy logic 

effective for motion control due to its fast response and low 

memory and calculations requirements. The neural network 

with its training provides classifications for different situations 

that might be happened.  

Various mobile robot navigation techniques have been 

applied by the researchers to achieve collision free path 

planning. Many papers tried to make a combination between 

two algorithms or more to increase the efficiency. The reactive 

approach can handle the problem of dynamic environment 

more that static environment. This paper concerns with 

reactive algorithms to handle problem of dynamic obstacle 

avoidance by finding initial path using A* algorithm. Then a 

combination between neural network and fuzzy logic have 

been done to achieve obstacle avoidance. The neural network 

classifies the zone; while fuzzy logic controls the speed and 

orientation of the robot so as to avoid the static and dynamic 

obstacles for mobile robot travelling on indoor environment. 

This paper is organized as follows: In section 2 path planning 

is presented. Section 3 presents zone classification using 

neural network. In section 4, the fuzzy logic input – outputs 

and rules are introduced. Result and discussion have been 

presented in section 5. The conclusion and suggestion are 

given in section 6. 

 

 

2. PATH PLANNING  
 

The A-star algorithm, often known as A*, is a heuristic 

search method whose goal is to identify the shortest path in an 

environment from a start point to a goal point as shown in 

Figure 1. The A* algorithm is a modification of the Dijkstra 

algorithm. A-star is considered the most representative 

algorithm [15]. The task of determining a valid low-cost path 

from start to goal locations in an environmental map is referred 

to as path planning. The basic method starts with the shortest 

path and then expands it with the function indicated below [16]. 

 

f (n) = g(n) + h(n) (1) 

where, 

g(n): the cost of getting path from the starting point to node 

(n). 

h(n): denotes a heuristic estimate, cost, or path from node n to 

a target. 

 

 
Figure 1. A* path planning 

 

Search-based planning, which includes A* search algorithm, 

is a prominent solution to path planning issues that has been 

applied in a variety of applications including autonomous 

vehicle navigation, robot arm manipulation, and gaming AI 

[17]. If the environment has previously been completely 

mapped, A* can be employed in almost every scenario [18]. 

The A* search Algorithm can be used to find the shortest route 

to a robot's final point [19, 20]. 

 

 

3. ZONE CLASSIFICATION  
 

In depending on distance between mobile robot and obstacle, 

relative velocity between mobile robot and obstacle, and angle 

between mobile robot and obstacle, this work proposes five 

zones. Zone 1 is very dangerous while zone 5 is not dangerous. 

If the obstacle is close to the robot, it will be considered as a 

dangerous. Also if the relative velocity is high, the obstacle 

can be classified as dangerous. On other hand; if the obstacle 

is far from mobile robot, it can be classified as not dangerous. 

Table 2 shows zone's classifications depending on self-

experience. The velocity and distance between the obstacle 

and the mobile robot are more important than the angle 

between them. Velocity and distance pose the greatest danger 

to the robot and to the possibility of collision. High speed and 

the closest distance between the mobile robot and the obstacle 

increase the possibility of collision. Thus, these two 

parameters are included in the Table 2, and that each field of 

the table includes angles from 90 to - 90 degrees. 

 

Table 2. Zone's classifications 

 
 Distance (cm) 

 

Velocity (cm/s) 

30 60 90 120 and more 

4 Zone3 Zone4 Zone5 Zone5 

6 Zone2 Zone3 Zone4 Zone5 

8 Zone1 Zone2 Zone3 Zone4 

10 Zone1 Zone1 Zone3 Zone3 

 

As an example, obstacle 1 (Obs1) has velocity = 5 cm/sec, 

distance = 120 cm, and angle = 0o. Obstacle 2 (Obs2) has 

velocity = 5 cm/sec, distance = 60 cm, and angle = 0o. These 

information will be arranged in the following form [distance, 
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velocity, angle] input vector. for Obs1 and Obs2 will be as 

flowing form [120,15,0], [80,15,0]; respectively as shown in 

Figure 2. Obstacle 1 and obstacle 2 have same velocity and 

angle but the distance between mobile robot and obstacles are 

different. At the output side there is a vector of five elements. 

The output is five coded number in which each digit may be 0 

or 1 because there are five suggested zones. The suggested 

zone equals to 1. For example, if the vector is [0,1,0,0,0] this 

means that zone two is activated. Obstacle 2 is more dangerous 

than obstacle 1. Therefore; it should have zone classification 

highest than obstacle 1.  

 

 
 

Figure 2. Robot's zones example 

 

3.1 Data collection  

 

 
(a) 

 
(b) 

 

Figure 3. Spectrum of path's angle 

 

For each zone of velocity and distance seven angles are 

included that start from 0o- 90o degrees that are located in the 

right side of robot, and also 0o to – 90odegrees that are located 

in the left side of robot as it clear in Figure 3. For zones in 

Table 1, ten readings are recorded along the radial path from 

obstacle to mobile robot. Also for zone 1 where the velocity= 

10 cm/sec, and distance = 60 cm it needs to cover a degrees (-

90)-(-75)-(-60)-(-45)-(-30)-(-15)-0-15-30-45-60-75-90. 

Therefore; a 130 readings are obtained. The total readings will 

be 16·130= 2080. The radial reading for each angle will start 

from distance 60 cm until 30 cm. Matlab and robot simulator 

CoppeliaSim are used to record these readings. Reading steps 

and resolution are represented in dotted line in the red color 

that cover form -90o to 90o as shown in Figure 3. 

 

3.2 CoppeliaSim and data collection  

 

The Virtual Robot Experimentation Platform (V-REP) 

(now called CoppeliaSim) is the premier robotics and 

simulation automation software platform in the world. 

Through a rich application programming interface (API), V-

REP allows the user to model the entire robotic system or its 

subsystems (such as sensors or actuators), as well as simply 

integrate the robot's operations. Each simulated object or 

model can be individually controlled using embedded scripts 

or a remote API client using the V-REP integrated 

development environment and distributed control architecture 

[21]. It has the ability to add objects and sensors. In order to 

collect data, a distance senor has been mounted on the rotary 

desk. An object with specified velocity toward the sensor is 

sensed. The moving object is moved in directly forward line 

toward the sensor with certain angle. The angle distribution is 

shown in Figure 3. The zero angle is in the centre. The right 

side range goes to positive angle until reach +90 degree, while 

the left side range goes to negative angle until reach to – 90 

degree. For certain angle there are ten reading have been 

acquired. The reading resolution is as referred between B and 

A points. The distance between each point is 3 cm in a total 

distance of 30 cm between two areas. The data used in the 

research was obtained and generated based on personal 

experiences and self-experience. 

 

3.3 Neural network  

 

An ANN is a bio-inspired artificial brain model capable of 

mimicking behavior-based learning. The basic computing unit 

of an ANN is a neuron, which has the ability to store and 

replicate experiential information in a manner comparable to 

the human brain. These have been widely employed in 

numerous search optimization, learning, and pattern 

recognition problems due to their ability to produce simple and 

optimal solutions in complex scenarios while maintaining the 

integrity of the specifications [22]. A feedforward net is one 

that was trained using the backpropagation training algorithm. 

To obtain the error signal, the backpropagation training 

algorithm subtracts the training output from the goal (desired 

response). The weights and biases in the input and hidden 

layers are then adjusted to minimize the error [23]. A feed 

forward neural network trained to be used in zone 

classification. There are three inputs (velocity, distance and 

angle), ten neurons in the hidden layer, and five neurons in the 

output (five zones) as it shown in Table 3. 

 

Table 3. Zone output codes 

 
Zone name Neural output 

Zone 1 00001 

Zone 2 00010 

Zone 3 00100 

Zone 4 01000 

Zone 5 10000 
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The mathematical equations are listed as below: 
 

Ew= 
1

2
∑ (𝑡𝑘 − 𝑂𝑘)2𝑘

𝑘=0  (2) 

 

The hidden layer's weights are updated using the equation: 
 

𝑉𝑗𝑖 (𝑛 +  1) =  𝑉𝑗𝑖 (𝑛) +  𝜂 × 𝛿𝑗 (𝑛) × 𝑥𝑖 (𝑛) (3) 
 

δj is the error signal produced by the j th hidden neuron. 

The weights of the output layer are updated using the 

equation: 
 

Wk j (n + 1) = Wk j (n) + η×δk (n) ×y j (n) (4) 

 

δk is the error signal produced by the kth output neuron. 
 

𝛿𝑘 (𝑛 +  1)  =  (𝑡𝑘 − 𝑂𝑘 )  × (1 − 𝑂𝑘 )  × 𝑂𝑘 (5) 
 

Using δk, we can calculate δj as follows: 
 

𝛿𝑗 =  (1 − 𝑦 𝑗 )  × 𝑦 𝑗 × 𝛴𝑘 (6) 
 

where, 

xi: The ith input. 

y j: The output of the j th hidden neuron. 

Ok: The output of the kth output neuron. 

tk: The desired output. 

Vji: The weight from the ith input to the jth hidden neuron. 

Wk j: The weight from the ith hidden neuron to the kth output 

neuron. 

: The learning rate. 

i: index for input neurons. 
 

In order to train and test the network, a data base is 

considered for such that about 70% of the data for training, 

15% of the data are used for validation and 15% are used for 

testing using 1000 epochs. The training accuracy was found 

about 93.5% and the validation accuracy at one-layer neural 

network is 92.6%. In a neural network, the number of neurons 

and hidden layers to be correctly guessed is determined by 

training database samples [24]. Therefore; the number of 

hidden layers is increased to a two hidden layers instead one 

hidden layer as shown in Figure 4. The accuracy is increased 

to 98% and validation accuracy is 97.2 as it is clear from Table 

4. The confusion matrices for the two networks are shown in 

Figure 5. 
 

Table 4. Specification of the used network 
 

 Characteristics 
Neural network 

1 

Neural network 

2 

1 
Number of input 

layer neurons 
3 3 

2 
Number of hidden 

layer neurons 
10 10 , 10 

3 
Number of output 

layer neurons 
5 5 

5 
Hidden layer 

activation function 

Bayesian 

Regularization 

Bayesian 

Regularization 

6 
Output layer 

activation function 
Linear Linear 

7 Learning rate 0.05 0.05 

8 
Maximum number 

of epoch 
1000 1000 

 Accuracy 93.5% 98% 

 
Validation 

accuracy  
92.6% 97.2% 

 
 

Figure 4. The structure of the used NN 

 

 
(a) Confusion matrix for one hidden layer  

 
(b) Confusion matrix for two hidden layer 

 

Figure 5. Confusion matrix for the two networks 

 

 

4. FUZZY LOGIC  
 

A fuzzy system is a collection of fuzzy expert knowledge 

that can reason about facts in general terms rather than using 

strict Boolean logic. It was first established by Lotfi Zadeh in 

the 1960s, has become a prominent technique for control 

applications. A basic fuzzy system has four key components: 

a fuzzifier, a knowledge base, an inference engine, and a 

defuzzifier. The fuzzifier converts a real crisp input into a 

fuzzy function, identifying the input's 'degree of membership' 

to a vague idea. The controller's decision-making logic is 

provided by the Inference Engine. It uses fuzzy implications 
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and fuzzy inference procedures to deduce the fuzzy control 

actions. Defuzzification turns fuzzy control values into crisp 

numbers, i.e., it connects a single point to a fuzzy set if the 

point is part of the fuzzy set's support [25]. 

There are three inputs to the fuzzy logic system which are 

(relative velocity, relative distance, and relative angle) 

between the mobile robot and the obstacle. The output of the 

fuzzy logic system (in other word the decision of fuzzy logic) 

is velocity and steering angle of the mobile robot as shown in 

Figure 6. When mobile robot enters a dangerous zone that is 

classified by NN, the fuzzy system decides if the velocity of 

the robot must be changed or not and if the robot steering angle 

will be changed or not. 

 

 
 

Figure 6. Suggested fuzzy logic system 

 

Each fuzzy input has five memberships. The velocity 

memberships are considered as: very slow, slow, med, fast, 

very fast. The distance memberships are: very near, near, med, 

far, very far. The steering angle memberships are: sharp left, 

left, forward, right, sharp right. Each fuzzy output has five 

memberships. The steering angle memberships are: left, fine 

left, forward, fine right, and right. The velocity memberships 

are: very slow, slow, med, fast, very fast. The memberships of 

fuzzy inputs and outputs shown are shown in Figure 7. There 

are five memberships for each input, Therefore the number of 

the required rules become 5*5*5= 125 rules that control, the 

fuzzy system. Figure 8 displays part of the rules viewer. Figure 

8, a sample of the 125 rules that were written in fuzzy logic, 

where Figure 8-a shows the IF-THEN rules that used in the 

controller which consists of three inputs: relative velocity, 

distance, and angle between the robot and the obstacle, while 

at the output end are: the speed and the angle of rotation of the 

robot so that it can avoid collision. The rules are constructed 

based on following pattern: 

Rule i: If velocity is (Vi) and distance is (Di) and angle is 

(Ai) then the velocity is Vo and steering angle is Ao. 

Where as Vi, Di, and Ai the input parameters. Vo and Ao 

output parameters.  

In Figure 8-b shows the rule-view and the memberships 

graphs that formed for all IF-THEN rules based on the input 

parameters of fuzzy system. 
 

 
(a) Input velocity membership 

 
(b) Input velocity membership 

 
(c) Input distance membership 

 
(d) Output velocity 

 
(e) Output angle 

 

Figure 7. Fuzzy logic memberships 

 

 
(a) IF-THEN rules of the Fuzzy logic components  

 
(b) Rule – view of the Fuzzy logic component  

 

Figure 8. Fuzzy logic rules viewer 
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5. RESULTS AND DISCUSSION 

 

An environment with 500 * 500 cm2 is suggested in order 

to test the NN and fuzzy logic system that have been designed. 

The start point is (200, 100) and the goal point is (200, 400). 

As the mobile robot enters a dangerous region, the neural 

network classifies the obstacle as a dangerous obstacle which 

may collide the robot. After this classification the fuzzy logic 

makes a decision as a reaction of mobile robot to prevent 

collision. The proposed algorithm is presented in Figure 9.  

At first (test 1), a free environment with only one dynamic 

obstacle has been tested. The obstacle is moving in front of the 

mobile robot with heading angle equals to zero degree. As the 

obstacle gets into dangerous zone, the mobile robot velocity 

and steering angle will be changed according to the fuzzy rules. 

Another case (Test 2) has been tested that it is similar to the 

first case but both mobile robot and obstacle are moving faster 

than that in the first case. At (Test 3 and Test 4) the obstacle 

moves in front of mobile robot but with angle about 45 degree 

to the right and to the left of the mobile robot; respectively. 

For all previous cases (Test 1-Test 4) zones are classified as 

dangerous zones. For the next two testes (Test 5 & Test 6) the 

obstacle is moving in front of the mobile robot but it is parallel 

to robot. The obstacle is classified as not dangerous to the 

robot. Table 5 shows the initial path length that have been 

found by A-star algorithm, the path after avoiding obstacles, 

velocity of both obstacle and mobile robot, and the relative 

velocity. Figure 10 shows the tested cases. 

 

 
 

Figure 9. Algorithm flowchart for proposed neural fuzzy 

combination 

Table 5. Results and tests (Test 1 – Test 6) 

 
Test6 Test5 Test4 Test3 Test2 Test1  

300 300 cm 300 300 300 300 

Initial path 

length using 

A* 

0.681 0.681 0.651 0.651 0.651 0.651 

Time 

required for 

initial path 

(sec) 

300 cm 300 cm 300 300 300 300 

direct length 

from start to 

end points 

300 

parallel to 

robot 

300 cm 

Parallel to 

robot 

319 319 316 315 

Path length 

after 

avoidance 

(cm) 

10 10 10 10 15 10 

Obstacle 

velocity 

(cm/s) 

10 10 11 11 15 10 

Robot 

velocity 

(cm /s) 

20 20 19 19 30 20 

Relative 

velocity 

(cm /s) 

No 

collision 

No 

collision – 

parallel 

From 

right 

Form 

left 
Direct Direct 

Notes on 

path 

0 0 6.3 6.3 5.3 5 

Increased 

path length 

ratio 

% 

 

In the second scenario of tests another obstacle has been 

added to the environment. Thus two obstacles may collide the 

robot. In test 07, obstacle 1 is moving straight forward to the 

mobile robot which may collide the mobile robot. The mobile 

robot must avoid it. The Obstacle 2 is moving in front of 

mobile robot but has no chance of colliding the mobile robot. 

In Test 8 both obstacles move in front of mobile robot but in 

parallel to the robot path therefore the mobile robot does not 

change initial path. In Test 9 and Test 10, one obstacle is 

chosen to be dangerous and the other is not. For this reason, 

the mobile robot avoids the obstacle and returns to its initial 

path. In test 11 both obstacles enter critical zone. The mobile 

robot avoids the first obstacle and returns to its initial path. 

After that, it then avoids the second obstacle and returns to the 

initial path again. The results of the tested cases are presented 

in Table 6 and Figure 11. 

 

 
Test 01 
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Teas 02 

 
Test 03 

 
Test 04 

 
Test 05 

 
Test 06 

 

Figure 10. Test scenario for one moving obstacle 
 

 
Test 7 

 
Test 8 

 
Test 9 
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Test 10                                                                                       Test 11 

 

Figure 11. Scenario test for two moving obstacles 

 

Table 6. Results and tests (Test7-Test 11) 

 
Test11 Test10 Test9 Test8 Test7  

300 300 300 300 300 Initial path length using A* 

0.651 0.651 0.651 0.651 0.681 Time required for initial path (sec) 

300 300 300 300 300 cm  direct length from start to end points 

304 300 364.4322 353 360 Path length after avoidance (cm) 

6 10 11 11 11 Obstacle 1 velocity (cm/s) 

14 14 6 6 10 Obstacle 2 velocity (cm/s) 

8 10 10 14 11 Robot velocity (cm /s) 

12 20 21 21 20 Relative velocity 1 - (cm /s)  

20 24 14   20 Relative velocity 2 - (cm /s) 

1.3 0 21.3 17.7 20 Increased path length ratio % 

 

Table 7. Results and tests (test 12- test 17) 

 
Test17 Test16 Test15 Test14 Test13 Test12  

300 541 483 541 546 540 Initial path length using A* 

0.707 10 3 12 17 9 Time required for initial path (sec) 

300 480 480 480 480 480 direct length from start to end points 

358 541 483 514 666 652 Path length after avoidance (cm) 

9 10 10 10 20 35 Obstacle 1 velocity (cm/s) 

8 10 10 10 20 40 Obstacle 2 velocity (cm/s) 

5 10 10 10 20 40 Obstacle 3 velocity (cm/s) 

10 70 73 70 42 80 Robot velocity (cm /s) 

15 62 70 62 61 115 Relative velocity 1 - (cm /s)  

15 62 67 62 52 71 Relative velocity 2 - (cm /s) 

14 62 65 62 61 105 Relative velocity 3 - (cm /s) 

19.30% 0 0 6.40% 37.80% 34.90% Increased path length ratio % 

 

In the third scenario, there are three dynamic obstacles and 

all of them are dangerous to the mobile robot. In Test 12, while 

mobile robot is avoiding obstacle 2, obstacle 3 enters critical 

zone and becomes dangerous to mobile robot. The mobile 

robot avoids obstacle 3 while it is avoiding obstacle 2.  

In the fourth scenario, static obstacles have been added to 

the environment in addition to dynamic obstacles to make the 

environment more complex. Test 13 & Test 14 are examples 

of moving mobile robot form start position to goal in presence 

of static and dynamic obstacle. But in these cases, the dynamic 

obstacles are not dangerous to the mobile robot. Thus it 

remains moving along the initial path. In test 15, two obstacles 

(obstacle 2 &3) are dangerous to the mobile robot. The mobile 

robot avoids these obstacles safely. Obstacle 1 exists in the 

environment but it is not dangerous to the mobile robot. In 

tests 16 and 17, three dynamic obstacles are dangerous to the 

mobile robot as it is clear in Table 7 and Figure 12. The mobile 

robot avoids them. In test 17 the velocities of mobile robot and 

obstacles have been increased to prove that the proposed 

system can handle cases with faster velocities. 

 

 
Test 12 
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Test 13 

 
Test 14 

 
Test 15 

 
Test 16 

 
Test 17 

 

Figure 12. Scenario tests for three moving obstacles and 

static obstacles 

 

 

6. CONCLUSION 

 
For autonomous mobile robot applications, there are several 

situations to be handled due to the presence of static and 

dynamic obstacles. The data generated and collected by the 

simulator had provided the necessary set to train the neural 

network so as to achieve zone's classification. Obstacles are 

classified into five zones by using the two hidden layers neural 

network. In dangerous zone, fuzzy logic controls the mobile 

robot navigation through the changing of velocity and steering 

angle of mobile robot. The five memberships for each fuzzy 

controller inputs and outputs are sufficient to produce the 

reaction so as to avoid dynamic obstacles and continue 

navigation towards the goal. Complex situations are tested in 

which more than one dynamic obstacles at the same time are 

avoided even when the velocities of mobile robot and 

obstacles are doubled. The combination between neural 

network classification and fuzzy controller is succeeded to 

navigate the mobile robot in seventeen tests avoiding static and 

dynamic obstacles in fully known environment. The proposed 

model succeeded in determining which of the obstacles in the 

environment is the most dangerous for the robot when we have 

more than one moving obstacle at the same time. The robot 

also has the ability of continues checking the obstacles even 

during the implementation of the avoidance subprogram. In 

the future we propose a fusion between the proposed system 

model with prediction strategies to achieve better performance. 
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