
Online Path Planning of Mobile Robots Based on African Vultures Optimization Algorithm 

in Unknown Environments 

Mustafa S. Abed*, Omar F. Lutfy, Qusay F. Al-Doori 

Control and Systems Engineering Department, University of Technology-Iraq, Baghdad 10002, Iraq 

Corresponding Author Email: cse.19.07@grad.uotechnology.edu.iq

https://doi.org/10.18280/jesa.550313 ABSTRACT 

Received: 15 March 2022 

Accepted: 20 April 2022 

Autonomous mobile robots developed using metaheuristic algorithms are increasingly 

becoming a hot topic in control and computer sciences. Specifically, finding the shortest 

root to the goal and avoiding hurdles are current subjects of autonomous mobile robots. 

The main drawbacks of classic methods are the incapacity to move the robot in a dynamic 

and unknown environment, deadlock in a local minimum and complicated environments, 

and incapacity to foretell the speed vector of obstacles and non-optimality of the route. 

This article exhibits a recent path planning approach that utilizes the African Vultures 

Optimization (AVOA) for navigation of the mobile robot in static and dynamic unknown 

environments with a dynamic target. The proposed online optimization approach is used 

in three different environments including an environment with unknown static obstacles, 

an environment with unknown dynamic obstacles, and an environment with a dynamic 

target. The proposed approach can solve a local minima problem in the environment with 

static obstacles. The online optimization method is performed using two phases which are 

the sensors’ reading phase and the path calculation phase and the results are given based 

on computer simulation in different unknown environments. A comparative study was 

conducted between the suggested algorithm and two other algorithms and the results 

showed that the AVOA algorithm was better in avoiding obstacles successfully including 

the local minima situation. Finally, the average enhancement rates in the path length 

compared with the Adaptive Particle Swarm Optimization (APSO) and the Hybrid Fuzzy-

Wind Driven Optimization (WDO) are 2.21% and 1.02207%, respectively. 
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1. INTRODUCTION

Recently, the motion planning issue of a mobile robot is an 

important topic of study in the area of mobile robots in current 

research [1, 2]. Route planning is a process to obtain a sensible 

and collision-free path between the beginning point and the 

destination, where the need to plan the route becomes 

important for a fully or partly automated process [3, 4]. 

Generally, planning the movement of a mobile robot in an 

unfamiliar environment has been divided into three categories. 

The first one is based on information about the obstacles that 

might be known or unknown [5]. The second category is 

according to time, including online and offline planning [6]. 

The third category depends on the nature of obstacles inside 

the environment, where the obstacles might be stationary or 

moving [7, 8]. Many researchers have used different 

approaches in the navigation of Differential Wheel Mobile 

Robot (DWMR). For instance, Wang et al. [9] utilized a 

dynamic pathway designing method for mobile robots based 

on an improved genetic algorithm in an unknown environment, 

using a serial number coding method and chromosome length 

shortening. However, the drawback of this method is that the 

time taken for processing was high. Akka and Farid [10] 

compared the performance of a modified ant colony algorithm 

and the classic ant colony algorithm in grid maps for optimal 

static navigation paths. This improves the algorithm's 

convergence speed and search efficiency, but the drawback is 

a lack of initial pheromone and a weakening of guidance in a 

complex environment. Rao et al. [11] employed a hybrid 

method of Intelligent Water Droplet (IWD) and Differential 

Evolution (DE) technology for multi-robot navigation in static 

and dynamic environments. The authors indicated that there 

was a problem with deadlock situations for the robots and that 

this algorithm needs to be improved to avoid this problem. 

Chhillar and Choudhary [12] improved the whale optimization 

algorithm, which was used to find a collision-free path. The 

proposed process has been tested in various search spaces. 

However, the algorithm does not guarantee a collision-free 

path in crowded environments. Oleiwi et al. [13] applied fuzzy 

logic control for collision avoidance using only dynamic 

obstacles in partially unknown and known environments and 

they used the A-star algorithm to find the route in an offline 

manner. The drawback of this method is that it cannot work in 

fully unknown or maze environments. In another work in Ref. 

[14], the authors proposed an intelligent Adaptive Particle 

Swarm Optimization (APSO) algorithm for robot path 

planning in uncertain environments. The drawback of this 

method is that it needs to be modified to work in dynamic or 

multi-robot systems and to avoid the early convergence in 

local minima. 

The main drawbacks to previous studies of the methods are 

the inability to plan movement in a dynamic and unknown 

environment, failure in crowded and complex environments, 

the unpredictability of the velocity vector of obstacles, and 

non-optimization of the complex path. 

From previous studies, it was seen that many optimization 

methods produce low-quality solutions or suffer from an early 

convergence in the primary stages. These issues are observed 
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in PSO [14], Ant colony [7], GWO [15]. etc., therefore there 

is a need to study and improve these methods to overcome 

their limitations.  

This article exhibits a recent path planning approach that 

utilizes the African Vultures Optimization Algorithm (AVOA) 

for navigation of the mobile robot in static and dynamic 

unknown environments with a dynamic target. The proposed 

online optimization approach is used in three different 

environments including an environment with unknown static 

obstacles, unknown dynamic obstacles, and a dynamic target. 

The proposed approach can solve a local minima problem in 

the environment with static obstacles and has fast convergence 

in finding the shortest path taking less time compared with 

other methods. 

 

 

2. PROBLEM STATEMENT  

 

Finding the best route between the starting position of the 

robot and the goal is one of the most important topics in the 

field of search and rescue applications that use robots or 

quadcopters. In this work, the African Vultures Optimization 

Algorithm (AVOA) is employed in an online procedure to 

adaptively handle three different environments that include 

unknown static obstacles, unknown dynamic obstacles, and a 

dynamic target.  

 

 

3. METHODOLOGY AND MODELLING  

 

In this section, the methodology of the work and the 

modeling of environments are described considering a two-

dimensional (X, Y) square map. In particular, the modeling 

stage includes the following parts. 

 

3.1 Obstacles 

 

This section describes the architecture of the obstacles. 

There are N obstacles in the environment, O1, O2,..., ON. The 

obstacles’ coordinates are shown as (XO1, YO1), (XO2, YO2), ..., 

(Xein, Yein) and this presentation includes static and dynamic 

obstacles. In particular, when the obstacle is stationary, its 

speed is zero, and when it moves, its velocity (v) is along the 

X and Y axes. Each obstacle's speed is determined at random 

and can be greater than, less than, or equal to the speed of the 

robot. The robot is unaware of the obstacle vectors' speed and 

position (velocity and direction). 

 

3.2 Robot and sensing 

 

In general, in the case of local path planning problems, the 

robot gradually tries to set the next collision-free position in 

an indefinite environment from the start location to the end 

location in steps. The robot location which is used in this work 

is based on a relative location, where each robot calculates its 

next place based on its current position, corner, and speed over 

an interval of time, as shown in Figure 1. In particular, the next 

position of the robot is formulated in Eqns. (1) and (2) [16-18]. 

 

𝑋𝑛𝑒𝑥𝑡 = 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑉𝑙𝑛 ∗ 𝐶𝑜𝑠 (𝜃𝑖) (1) 

 

𝑌𝑛𝑒𝑥𝑡 = 𝑌𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑉𝑙𝑛 ∗ 𝑠𝑖𝑛 (𝜃𝑖), (2) 

 

where, 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡  𝑎𝑛𝑑 𝑌𝑐𝑢𝑟𝑟𝑒𝑛𝑡  are the coordinates of the 

current position and 𝑋𝑛𝑒𝑥𝑡  𝑎𝑛𝑑 𝑌𝑛𝑒𝑥𝑡 are the coordinates of the 

next position to the nth robot in the Cartesian coordinate 

system. Furthermore, the speed of the robot is specified by Vln 

and 𝜃𝑖 that indicates the corner to direct the nth robot. 

The robot, which recognizes the obstacle within its range, 

determines the space between the obstacle and the robot and 

estimates the direction of the moving obstacle [19, 20]. If the 

position of the obstacle does not change, the obstacle is static. 

Otherwise, the obstacle is dynamic. Figure 2 shows the path-

finding procedure of the mobile robot. 

 

 
 

Figure 1. The current and the next positions of the mobile 

robot 

 

 
 

 

Figure 2. Path planning model of the mobile robot 

 

3.3 Target- pursuing behavior 

 

This section explains how the mobile robot detects the 

position of the goal, as illustrated in Figure 3. We can calculate 

the minimum distance between the robot and the goal (dRG) 

which is defined by Eq. (3). Specifically, if the robot reaches 

the target, this means the distance (dRG) is equal to or near to 

zero, in which case the robot must be stopped [14]. 

 

𝑑𝑅𝐺 = √(𝑋𝑔 − 𝑋𝑟)2 + (𝑌𝑔 − 𝑌𝑟)2 (3) 

 

where, Xg and Yg are the coordinates of the goal in the 

environment, and Xr and Yr are the current robot's coordinates 

in the environment. 
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Figure 3. Distance between the robot and the goal 

 

3.4 Obstacle- pursuing behavior 

 

When an obstacle is found using the sensors, as depicted in 

Figure 4, the online optimization method can calculate the 

maximum distance between the robot and the goal (dRo), 

which is defined by Eq. (4). Particularly, if the robot detects 

an obstacle, it tries to avoid it and then continues to reach the 

target [14]. 

 

𝑑𝑅𝑜 = √(𝑋𝑜 − 𝑋𝑟)2 + (𝑌𝑜 − 𝑌𝑟)2 (4) 

 

where, Xo and Yo are the obstacle’s coordinates in the 

environment, and Xr and Yr are the coordinates of the current 

robot’s position in the environment. 

 

 
 

Figure 4. Distance between the robot and the obstacle 

 

3.5 Objective function (cost function)  

 

For robot safety reasons, the space between the robot and 

the obstacle should be maximum, but to achieve the shortest 

route, the space from the robot to the target should be 

minimized, which is based on the two perspectives, the cost 

function needs to guarantee the optimal route. In particular, the 

cost function of Eq. (5) is utilized in this thesis [14]: 

 

Cost Function=[𝛼1 × 𝑑𝑅𝐺 + 𝛼2 ÷ 𝑑𝑅𝑂 + 𝛼3 × 𝜃] (5) 

 

Here, the parameter α1 is set so that the robot covers the 

minimum distance and reaches the target point as possible 

[14].  Similarly, α2 controls the space between the robot and 

obstacles [14]. α3 is the path smoothing parameter to avoid 

sharp turning [14]. 

dRO and dRG are used to calculate the space between the 

robot and the obstacle, and the space between the robot and the 

target point, respectively using the Euclidean distance formula 

(4) and (5). Moreover, θ in the corner of the difference is 

required by the robot to detect the next iteration location in the 

environment. Specifically, θ is given by Eq. (6). 

 

𝜃 = tan−1
𝑌𝑔 − 𝑌𝑟

𝑋𝑔 − 𝑋𝑟
 (6) 

 

4. THE PROPOSED PATH PLANNING ALGORITHMS 

 

This section explained the detail of the African Vultures 

Optimization Algorithm (AVOA). The AVOA is a news 

algorithm presented by Abdollahzadeh et al. [16] in 2021. To 

explain the works: Vulture refers to two types of hunting birds. 

The majority of vultures have no regular feathers and are bald. 

Vultures do not exist in Australia or Antarctica. Unlike most 

other birds, they do not build nests and prefer to live on the 

ground [16]. The algorithm work by calculating the suitability 

function of all initial population to be divided the best solution 

is chosen as the best and first vulture, while the second 

solution is chosen as the second-best vulture. Another form of 

the population is either replacing or moving one of the top two 

vultures in each iteration. The standard AVOA is described 

below with necessary conditions and points [16]. 

 

STEP ONE: DETERMINING THE BEST VULTURE  

The best solution is chosen by using Eq. (7), and After each 

capability repetition, the population is recalculated [16]. 

 

𝐶(𝑖) = {
𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1𝑖𝑓 𝑝𝑖 = 𝐿1
𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2𝑖𝑓 𝑝𝑖 = 𝐿2

 (7) 

 

where, L1 and L2 are the parameters that have to be measured 

before the search operation and have values between (0 and 1) 

and the summation of both parameters is 1. 

 

STEP TWO: THE RATE OF STARVATION OF 

VULTURES  

Eq. (8) is used to model this behavior mathematically, 

which shows that vultures become aggressive towards one 

another if they are hungry or have less energy to fly for long 

distances [16]. 

 

𝐹𝑜 = (2 ∗ 𝑟𝑎𝑛𝑑1 + 1) ∗ 𝑧 ∗ (1 −
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖 

𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
) + 𝑡 (8) 

 

where, F indicates to the vultures are satiated, iteration is the 

current repetition number, max iterations are the total number 

of repetitions, and z is a random number between -1 and 1. 

rand1 is a variable with a value ranging from 0 to 1.  

 

STEP THREE: EXPLORATION 

In the exploration phase, it is done by the Eqns. (9)-(12) 

[16]. 

 

𝑃𝑜(𝑖 + 1) = {
𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (10)𝑖𝑓 𝑃𝑜1 ≥ randPo1

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (12)𝑖𝑓 𝑃𝑜1 < randPo1
 (9) 

 

𝑃𝑜(𝑖 + 1) = 𝐶(𝑖) − 𝐷(𝑖) ∗ 𝐹𝑜 (10) 

 

𝐷(𝑖) = |𝑋 ∗ 𝐶(𝑖) − 𝑃𝑜(𝑖)| (11) 

 

𝑃𝑜(𝑖 + 1) = 𝐶(𝑖) − 𝐹𝑜 + 𝑟𝑎𝑛𝑑2 ∗ ((𝑢𝑏 − 𝑙𝑏)
∗ 𝑟𝑎𝑛𝑑3 + 𝑙𝑏) 

(12) 

 

where, Po(i+1) is the position vulture in the next repetition, 

and Fo is the saturation rate of the vulture calculated using Eq. 

(8). C(i) is one of the best vultures, and X is where the vultures 

are moving randomly to protect food from other vultures by 

using the formula X = 2× rand, and the random value in rand, 

randp1, rand2, rand3 is a random number between (0) and 

(1). Po(i) is the existing vector position of the vulture. lb and 

407



 

ub demonstrate the higher and the lesser bound of the variables 

[16]. 
 

STEP FOUR: EXPLOITATION (FIRST PHASE) 

The AVOA is entering the first stage in the utilization stage 

when the value |Fo| is in the middle of (1) and (0.5). 
 

𝑃𝑜(𝑖 + 1) = {
𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (14) 𝑖𝑓 𝑃𝑜2 ≥ randPo2

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (16) 𝑖𝑓 𝑃𝑜2 < randPo2
 (13) 

 

Po(i+1)=D(i)*(F+rand4)-d(t) (14) 

 

d(t)=C(i)-Po(i) (15) 

 

Po(i+1)=C(i)-(S1+S2) (16) 

 
𝑆1 = 𝐶(𝑖) ∗ ((𝑟𝑎𝑛𝑑5 + 𝑃𝑜(𝑖))/2𝜋) ∗ 𝑐𝑜𝑠 (𝑃𝑜(𝑖))
𝑆2 = 𝐶(𝑖) ∗ ((𝑟𝑎𝑛𝑑6 + 𝑃𝑜(𝑖))/2𝜋) ∗ 𝑠𝑖𝑛 (𝑃𝑜(𝑖))

} (17) 

 

where, rand4 is a random number between 0 and 1. 

 

EXPLOITATION: (SECOND PHASE)  

The AVOA enters the second stage in the utilization stage 

when the value |Fo| is smaller than 0.5 [16]. 

 

𝑃𝑜(𝑖 + 1) = {
𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (19) 𝑖𝑓 𝑃𝑜3 ≥ randPo3

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (21) 𝑖𝑓 𝑃𝑜3 < randPo3
 (18) 

 

𝑃𝑜(𝑖 + 1) =
𝐴𝑆1 + 𝐴𝑆2

2
 (19) 

 

𝐴𝑆1 = 𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1(𝑖) −
𝐵𝑉1(𝑖) ∗ 𝑃𝑜(𝑖)

𝐵𝑉1(𝑖) − 𝑃𝑜(𝑖)
∗ 𝐹𝑜

𝐴𝑆2 = 𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2(𝑖) −
𝐵𝑉2(𝑖) ∗ 𝑃𝑜(𝑖)

𝐵𝑉2(𝑖) − 𝑃𝑜(𝑖)
∗ 𝐹𝑜

}
 
 

 
 

 (20) 

 

𝑃𝑜(𝑖 + 1) = 𝐶(𝑖) − |𝑑(𝑡)| ∗ 𝐹𝑜 ∗ 𝐿𝑒𝑣𝑦(𝑑) (21) 

 

BV1(i) and BV2(i) are the best vultures of the first and 

second groups in the current iteration. AS1 and AS2 are The 

accumulation of several. d(t) is representing the space between 

the vulture and one of the best vultures in the two groups. 

Levy(d) was the mean Levy Flight (LF) calculated using Eq. 

(22) [16]. 
 

Levy(d)=0.01 ∗
𝑟2∗𝜎

|𝑟1|
1
𝛽

, 𝜎 = (
⌈(1+𝛽)∗sin (

𝜋𝛽

2
)

⌈(1+𝛽2)∗𝛽∗2 (
𝛽−1

2
)
)

1

𝛽

 (22) 

 

r1 and r2 are random numbers in the middle of (0) and (1), 

and β is a fixed and default number of (1.5). 

The algorithmic flowchart of the proposed algorithm 

navigation algorithm in an unknown environment is illustrated 

in Figure 5. 

In this context, the steps involved in the AVOA for mobile 

robot navigation are explained below: 

1. Build the robot, target, and obstacle position. 

2. If the sensor does not detect any obstacles in the detection 

area, the robot will move directly to the target position, 

otherwise, the proposed AVOA algorithm starts working to 

avoid obstacles, and calculate a new trajectory toward the 

target.  

3. If the robot reaches a target, the program stops and 

calculates the distance and time taken, otherwise, the program 

decides that the target is a dynamic one, and the algorithm 

should search for it. 

4. The best trajectory calculated for the robot is based on 

Eq. (5).  

5. Repeat steps 2 to 4 until the robot avoids all the obstacles 

and reaches its target. 

 

 
 

Figure 5. The flowchart of the proposed navigation 

algorithm in an unknown environment 

 

 

5. SIMULATION RESULTS AND DISCUSSIONS 

 

Using MATLAB R2016 b, the simulation tests were 

performed on PC, Windows 10 OS, Intel(R) Core (TM) i7-

8550 U processor, 1.80 GHz CPU, and 20 GB RAM. The 

simulation parameters considered for the proposed algorithm 

are listed in Table 1. In particular, these parameters were 

selected to obtain the best optimization performance and they 

were sufficient in achieving the desired path planning 

objective. 

 

Table 1. Parameter settings for the simulation 

 
Parameters used in the simulation 

Number of search agents 10 

Maximum number of iterations 10 

Dimension 1 

Lower bound -5 

Upper bound 5 

 

For more tests on the performance of the AVOA algorithm 

on specific problems, we use three cases to test without 

obstacle, and (obstacle static, dynamic) unknown environment, 

the last case for the dynamic target. Comparing the proposed 

method with previous works. The simulation results for the 

static unknown map are summarized in Table 1, and the 

Enhancement rates in the path lengths of the objective function 
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for the utilized techniques are explained in Table 2.  

Table 3 illustrates the enhancement rates in the path length 

for the modified algorithms compared to the APSO  and 

Hybrid Fuzzy-WDO.  

 

 
 

Figure 6. Map (1) simulation graph robot path planning with a starting point at (0,0) and an endpoint at (400,150): (A) Fuzzy-

Wind Driven Optimization [21] Vs AVOA 

 

 
 

Figure 7. Map (2) simulation graph robot path planning with a starting point at (0,0) and an endpoint at (45,45): (A) APSO [14] 

Vs AVOA 

 

 
 

Figure 8. Map (3) simulation graph robot path planning with a starting point at (0,0) and an endpoint at (45,45): (A) APSO [14] 

Vs AVOA 
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Figure 9. Map (4) simulation graph robot path planning with a starting point at (0,0) and an endpoint at (45,45): (A) APSO [14] 

Vs AVOA 

 

 
 

Figure 10. Map (5) simulation graph robot path planning with a starting point at (0,0) and an endpoint at (30,20): (A) APSO [14] 

Vs AVOA 

 

Table 2. Results of the average Path length covered by the latest literature and AVOA 

 

No. Map No. Figure Type of  algorithm 
Average path length 

Pixel CM 

MAP 1 Figure 6 
Hybrid Fuzzy-WDO [21] 2237.31 59.19549375 

AVOA 2214.4432 58.590476333 

MAP 2 Figure 7 
APSO [14] 1285.56 34.013775 

AVOA 1247.4514 33.005484958 

MAP 3 Figure 8 
APSO [14] 1784.71 59.19549375 

AVOA 1704.088 45.087328333 

MAP 4 Figure 9 
APSO [14] 2237.31 59.19549375 

AVOA 2226.30095 33.005484958 

MAP5 Figure 10 
APSO [14] 470.45 12.447322917 

AVOA 466.4037 12.340264563 

 

As seen in Figure 6 the simulation results in without 

obstacle environment, and in Figures 7-10 obstacle avoidance 

in (a narrow escaping environment, local minima environment, 

trap condition environment, and a maze environment, 

respectively. Table 2 shows the path length to reach the goal 

of the proposed algorithm in different maps with the latest 

literature on APSO, and Hybrid Fuzzy-WDO. From Table 3, 

it is obvious the enhancement rate in the path length. We can 

notice that the best result algorithm is based on the 

enhancement rate in the route length. The best algorithm result 

was achieved by AVOA. 

By using AVOA which is based on navigational strategy 

mobile robots can easily avoid the two moving obstacles in the 

dynamic environment, as shown in Figure 11, the unbeknown 

environment and the moving goal has been tested successfully 

as shown in Figure 12. 

The results that are shown in Figures 11-12 for the dynamic 

obstacle and the dynamic target the time took were 

8.3775,3.6448 with a path length of 30.427,38.3 cm. 
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Figure 11. Simulation graph robot path planning with dynamic obstacle unknown environment test of proposed AVOA: A) Start 

Move (B) Obstacle near to robot (C) Obstacle far to the robot (D) Robots reach to the goal 

 

 

 
 

Figure 12. Simulation graph robot path planning with dynamic Goal unknown environment test of proposed AVOA 

 

 

Table 3. Enhancement rates in the path lengths of the 

proposed algorithm 

 
Figure 

Number 
Map Enhancement rate 

6 MAP 1 0.364621% 

7 MAP2 0.284221% 

8 MAP3 0.238941% 

9 MAP4 0.294113% 

10 MAP 5 1.10651% 

6. CONCLUSIONS 

 

The route of efficient navigation has been developed using 

an online procedure and employing a recently developed 

approach, which is the AVOA in an unknown environment in 

the presence of a variety of static and dynamic obstacles. The 

proposed work is split into two phases: the sensors’ reading 

phase, and the route calculation phase. This algorithm gives 

the shortest route with a successful obstacle avoidance 
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mechanism for a single mobile robot system within a short 

time. The proposed approach also exhibits the greatest 

performance when the environment consists of moving 

obstacles and goals. The simulational results are compared 

with other intelligent approaches including the APSO with 

average enhancement rates in four maps shown in Figures (6-

10). Specifically, the enhancement rate obtained by AVOA 

was 2.21%, and the enhancement rate compared to the Hybrid 

Fuzzy-WDO for map (1) was 1.02207%. In addition, the 

environment with a moving target has been successfully tested, 

in which the robot could successfully follow and reach the 

moving target. Moreover, the mobile robot has done well in 

avoiding two moving obstacles in a dynamic environment.  

These outcomes can significantly enhance the performance 

of mobile robots in real-time applications. For our future work, 

we will extend our method to work experimentally in an 

unknown maze with dynamic obstacles.  
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