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Inverted pendulum is a well-known problem in the control theory because several systems 

such as robot balancing, Segway, hover board riding and operation of a rocket propeller 

are inherently based on Inverted Pendulum, furthermore it possesses a height non-linear 

and unstable dynamics. The main objective of our study is to introduce a comparative 

analysis of fuzzy logic (FLC), radial basis function neural network (RBF) and integral 

sliding mode control (ISMC) tuned with whale optimizer algorithm (WOA) for the control 

of the angle position and velocity of the inverted pendulum system. The implemented 

controller schemas can adequately reflect and approximate a certain type of uncertainties, 

nevertheless their parameters should be fine-tuned in order to get height and efficient 

performance, therefore all the antecedents and consequences of those controllers were 

tuned with WOA. This later provide height accuracy and fast convergence with height 

dimensional cost function. Comparative results shows that ISMC-WOA outperforms other 

techniques in term of settling time and overshoot. 
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1. INTRODUCTION

The inverted pendulum system is a famous benchmark 

model in the control theory because it is unstable, coupled and 

complex non-linearity model, furthermore several systems 

such as robots are based on inverted pendulum, and therefore 

it attracts the attention of automation engineers to test the 

efficiency and robustness of the controller. 

In the contrast of linear control theory, nonlinear control 

does not possess the universal solutions neither for systems 

analysis nor for the construction of their controllers. Most 

nonlinear control theory often needs precise and relevant 

model of the system therefore the performance of the 

deterministic approaches will be directly affected by the 

accuracy of the modeled system. In fact, the obtaining of 

mathematical model with those requirements is really difficult 

and complex in most of times [1]. 

Indeed several studies have been introduced to deal with 

non-linearity situation [2, 3] such as adaptive and sliding mode 

control (Isidori [4], Slotine and Li [5], Utkin [6], Drakunov 

and Utkin [7], Slotine [8, 9] …etc.). However, despite of their 

robustness and efficiency they still require height knowledge 

of the derivative and accurate complex dynamics of the system, 

moreover the model is just an approximation of real world.  

Other effective method is fuzzy logic controller (FLC). FLC 

was firstly developed by lotfizeddah in 1965 it is based on 

human expertise. It describes a real world with a simple set of 

linguistic variables (spoken or non-numeric) rather than crisp 

logic (0-1) just like humans thinking [10], hence it can 

approximate systems with a set of linguistic variables without 

knowing the mathematical model of the system concerned. 

Since the first application of mamdani [11] on steam engines, 

FLC have gained a proliferating interest in several industrial 

fields. This is due to its simplicity and its performance to 

reflect uncertainties [1, 11]. Nevertheless, the application of 

FLC in some pertinent areas have been limited by its lack of 

systematic design and soliciting knowledge of experts [12, 13]. 

The RBF neural network control algorithm has gathered a 

lot of concern regarding its ability to be adopted in many 

control strategies. It can be employed in the tuning process via 

the back-propagation algorithm (determining the parameters 

of PID or any given controller), furthermore it can successfully 

approximate any nonlinear function or parameter and it can 

also apply as a filter or address uncertainties.   

Other proliferating areas that can alleviate the main 

drawbacks of FLC is meta-heuristic schema. Meta-heuristic is 

an optimization technique, which seeks for a best or near 

optimal variable (minimum for minimization problem or 

maximum for maximization problem) within, given search 

space and many approaches have been proposed. Whale 

optimizer algorithm (WOA) is a recent met-heuristic method 

inspired from a social behavior of humpback whale, which 

mimics their hunting mechanism (bubble-net). This algorithm 

is able to handle functions with several local minima in height 

dimensional space, moreover it provides height accuracy and 

fast convergence. 

The rest of the paper is organized as follows. Section 2 

provide the related work. In Section 3 gives main model of the 

inverted pendulum. The proposed meta-heuristic algorithm is 

explained in Section 4 and its subsections. The RBF based 

neural network and ISMC controller are both explained in 

Section 5 and 6. Section 7 presents the main parameters of the 

WOA used to find the near optimal parameters of the applied 

control strategies. Finally, in Sections 8 and 9 results and 

conclusions are explained respectively. 
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2. RELATED WORK 
 

Meta-heuristic schema based fuzzy logic tuning process and 

the control of inverted pendulum have been studied 

extensively in the literature. Amador et al. [14]. They 

introduced Chicken Search Optimization (CSO) to design the 

optimal parameter of fuzzy logic controller and this later was 

applied to two benchmark model (inverted pendulum and 

Water Tank Controller). Bejarbaneh et al. [15] introduced a 

hybrid PSO search technique called PSOSCALF to determine 

the best parameters of PID type fuzzy logic. This proposed 

schema is applied to the control of nonlinear Inverted 

Pendulum (IP) system. Rabah et al. [16] investigate the 

performance of PID, fuzzy logic and fuzzy PID controller to 

stabilize the gyroscopic inverted pendulum. PID controller, 

fuzzy logic controller and PID-type Fuzzy adaptive controller 

approaches are applied to retain the pendulum on the linear 

moving car vertically and to stabilize the car on the 

equilibrium position for real-time control [17]. In their study 

Lakmesari et al. [18] combined feedback linearization (FL) 

and sliding mode controller (SMC) this proposed schema is 

improved by fuzzy rules and gradient descent laws then the 

coefficients are determined by termed multi-objective ant lion 

optimizer (MOALO) and finally this technique is 

implemented to control a fourth-order under-actuated 

nonlinear inverted pendulum system. Ghaliba and Oglah [19] 

designed the parameters of fuzzy-like PID (FPID) controller 

with genetic algorithm (GA), ant colony optimization (ACO), 

and social spider optimization (SSO) for the control trajectory 

of inverted pendulum. Alimoradpour et al. [20] attempt to set 

fuzzy rules and their membership function and the length of 

the learning process with genetic algorithm and the results of 

the proposed method on inverse pendulum was promising. In 

the first phase of their studies Magdy et al. [21] presented a 

model of inverted pendulum regarding to Alembert’s principle 

then they verified this model with other after that they 

compared the results of PID-GSA and PID-GA controller on 

this model. Erkol [22] presented a fractional order PID 

controller for the position control of a two wheeled inverted 

pendulum and compared the performance of artificial bee 

colony, particle swarm optimization, grey wolf optimizer, and 

cuckoo search algorithm in finding the best parameter of this 

controller. Abdullah et al. [23] employed Linear Quadratic 

Regulator (LQR) to stabilize a Three Links Inverted Pendulum 

with Cart and parameters was determined with the help of 

Genetic Algorithm (GA).  

Motivated by above-mentioned discussion our study aims 

to present a comparative study of FLC, RBF and ISMC and 

determine their parameters with the help of WOA. All the 

proposed schemas have been implemented on the control 

trajectories of the inverted pendulum. The comparison is 

carried out based on various parameters like time and steady 

error. The results prove the efficiency of the different proposed 

methodologies, however the ISMC was the outstanding one in 

term of settling time and steady error. 
 

 

3. SYSTEM DESCRIPTION 
 

The inverted pendulum is governed by the following 

differential equations [5]: 
 

{
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where, x1=θ is the angle of rotation, x2=θ̇ the angular velocity, 

g=9.81m/s2 the acceleration due to gravity, mc the mass of the 

trolley, m the mass of the beam, 2.l the length of the beam, u 

the force (command) applied to the system. 

 

 

4. WHALE OPTIMIZER ALGORITHM (WOA) 

 

WOA is relatively new meta-heuristic schema firstly 

proposed by Seyed Ali Mirjalili in 2016. This algorithm 

imitates the hunting mechanism of humpback whales, which 

describe the bubble-net technique with simple mathematical 

model. The essential of the proposed algorithm can be 

performed in 3 main phases, which are encircling prey, 

attacking prey (exploitation phase) and searching prey 

(exploration phase). In the encircling and search phase the 

humpback whales consider the agent with best score or 

random agent (to skip from local minima) as a target point thus 

it update their position within the neighborhood of this 

position. After defining the best candidate the humpbacks 

moves either with circular or spiral (see section 4.2) shape 

toward the target point (see Figure 1). 

 

 
 

Figure 1. Flowchart of WOA 

 

4.1 Encircling 

 

Initially after finding the prey the humpback whales start the 

encircling process, however the optimal position within a 

given search space is not known hence this algorithm consider 

the current best agent as the prey position (optimal solution), 

then the remain candidate will update their position according 

to the best solution (best candidate). The main mathematical 

model of the encircling phase is given by Eq. (2), (3): 

 

D⃗⃗ = |C.⃗⃗  ⃗X*⃗⃗⃗⃗ (t)-X⃗⃗ (t)| (2) 

 

X⃗⃗ (t+1)=X*⃗⃗⃗⃗ (t)-A⃗⃗ .D⃗⃗  (3) 
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where, t is the current iteration, A⃗⃗  and C⃗⃗  are coefficient vectors, 

X*⃗⃗⃗⃗  represent the position vector of the best candidate, X⃗⃗  

indicate the position vector. It is important to notice that X*⃗⃗⃗⃗  
must be updated in each iteration if better solution exist. 

The coefficient vectors A⃗⃗  and C⃗⃗  are provided in Eq. (4), (5): 

 

X⃗⃗ (t+1)=X*⃗⃗⃗⃗ (t)-A⃗⃗ .D⃗⃗  (4) 

 

X⃗⃗ (t+1)=X*⃗⃗⃗⃗ (t)-A⃗⃗ .D⃗⃗  (5) 

 

where, A⃗⃗  decrease linearly from 2 to 0 over the course of 

iterations (in both exploration and exploitation phases) and r  
is a random vector in [0,1]. It is worthy to notice that A defines 

whether the candidate move toward best agent (when |A⃗⃗ |>1) 

or moves far from it when |A⃗⃗ |<1. 

 

4.2 Attacking prey (bubble-net) 

 

This step is devoted to describe bubble-net strategy. It 

should be kept in mind that humpback whales attack and 

encircle their prey simultaneously with shrinking circle and 

spiral shaped movement toward the prey (target point) when 

|A⃗⃗ |<1 (see Figure 2). In order to simulate this kind of behavior 

this algorithm proposes 50% probability to choose between 

this kind of movement. The bubble-net mechanism is given in 

Eq. (6): 

 

{
X*⃗⃗⃗⃗ (t)-A⃗⃗ .D⃗⃗ ifp<0.5

D'⃗⃗  ⃗.ebl. cos(2πl)+X*⃗⃗⃗⃗ (t)ifp≥0.5
 (6) 

 

where, D'⃗⃗  ⃗= |X*⃗⃗⃗⃗ (t)-X⃗⃗ (t)| represent the distance of the i-th whale 

to the prey (best solution obtained so far), b is a constant for 

defining the shape of the logarithmic spiral, l is a random 

number in [-1,1], and p is a random number in [0,1]. 

 

 
(a) shrinking circle movement (b) spiral shaped movement [24] 

 

Figure 2. Attacking prey mechanism 
 

4.3 Searching prey (exploration) 
 

Regarding to the variation of the vector A⃗⃗  this step 

investigates the exploration ability of this algorithm. In reality, 

the humpback whale randomly moves to the target based on 

the position of each other. For the sake of describing the 

exploration, process the search agent moves far away the 

target (reference whale) when the value of A⃗⃗  is less than -1 or 

greater than 1. In the contrary of exploitation, phase each 

candidate update their position with respect to a randomly 

chosen agent (when |A⃗⃗ |>1) in exploration mechanism. This 

phase is expressed in Eq. (7), (8). 

D⃗⃗ =|C.⃗⃗  ⃗Xrand
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗-X⃗⃗ | (7) 

 

X⃗⃗ (t+1)=Xrand
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗-A⃗⃗ .D⃗⃗  (8) 

 

where, Xrand
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  indicates a random position vector (a random 

whale) chosen from the current population [24]. 

 

 

5. RADIAL BASIS FUNCTION NEURAL NETWORK 

(RBF) 

 

The radial basis function (RBF) neural network is a 

multilayer neural network, which usually adopts three-layer 

feed-forward to map rapidly the inputs to output by adjusting 

its weights (online adjustment) and making the feedback 

control tend to zero [25]. 

RBF neural network takes input r(k), radial basis function 

vector in hidden layer H=[h1, ….., hm]T and adopt a Gaussian 

membership as an activation function, which is given in Eq. 

(9): 

 

hj=exp(
‖r(k)-Cj‖

2bj
2

) (9) 

 

where, j=1, .., m, Cj, bj denotes respectively the center and the 

width vector of the Gaussian membership function of the nod 

j. 

The weight of RBF are written in Eq. (10): 

 

W=[w1,…,w2]T (10) 

 

Then its output is expressed in Eq. (11): 

 

y(t)=h1w1…+hjwj+…+hmwm (11) 

 

5.1 Controller design 

 

The Eq. (1). can be represented by the following double 

integrator system: 

 

ẍ=f(x,ẋ)+g(x,ẋ)u (12) 

 

Considering that, the errors of system expressed in Eq. (13): 

 

e=y
d
-y, S=[e ė]T (13) 

 

where, yd is the desired input, e and ė are the error and the 

derivative of error. 

Consequently, the control objective is now modified to 

design the control input u, so that the closed loop system 

written in Eq. (12). errors S converge to zero in finite time. 

The control law can be formulated as given in Eq. (14): 

 

u=
1

g(x)
(-f(x)+ÿ

d
+KTS) (14) 

 

where, K=[kp kd]T  is designed such that the polynomial 

s2+kds+kp=0 is in the left side of the complex plane, which 

ensure the convergence of e and ė to zero in finite time. 

Now after using the RBF to approximate the unknown 

function f(x) the control law can be rewritten as given in Eq. 

(15) and the unknown function is provided in Eq. (16): 
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u=
1

g(x)
(-f̂(x,θf)+ÿ

d
+KTS) (15) 

 

f̂(x,θf)=θf
T
h(x) (16) 

 

where, h(x) is Gaussian function, θf
T

 is the vector of the 

adjustable parameters of the function f̂. 

 

5.2 Stability analysis 

 

We define the vector of the optimal parameter θf
*
 expressed 

in Eq. (17) by: 

 

θf
*
=argminθf∈Ωf

(sup
x∈Uc

|f̂(x,θf)-f(x)|) (17) 

 

where, 

 

f(x)=θf
*T

h(x)+ε1 (18) 

 

where, ε1 is the minimum approximation error for f. 

 

f̂(x,θf)-f(x)=θf
T
h(x)-θ

f

*T
h(x)+ε1=θ̃f

T
h(x)+ε1 (19) 

 

where, 

 

θ̃f

T
=θf

T
-θf

*T
 (20) 

 

Now, we substitute the control law written in Eq. (15, 12). 

we get: 

 

ë=-KTS+[f̂(x,θf)-f(x)] (21) 

 

Assuming that: 

 

A= [
0 1

-kp -kd
] , B= [

0

1
] (22) 

 

Now, Eq. (21) Can be rewritten as given in Eq. (23): 

 

Ṡ=AS+B[f̂(x,θf)-f(x)] (23) 

 

Submitting the control law given by Eq. (19) into Eq. (23) 

we find: 

 

Ṡ=AS+B [θ̃f

T
h(x)+ε1] (24) 

 

Now, we define the Lyapunov candidate function in Eq. 

(25): 

 

V=
1

2
STPS+

1

2γ
f

θ̃f

T
θ̃f (25) 

 

where, γ
f
 is positive constant. P is a positive definite and 

symmetric matrix, which satisfies the following Lyapunov 

equation: 

 

ATP+PA=-Q (26) 

 

with, Q≥0 and A is given Eq. (22). 

By deriving the Lyapunov function and substituting the Eq. 

(24) and Eq. (26) we obtain: 

 

V̇=-
1

2
STQS+STPB [θ̃f

T
h(x)+ε1]+

1

γ
f

θ̃f

T
θ̇̃f (27) 

 

V̇=-
1

2
STQS+(S

T
PBh(x)+

1

γ
f

θ̇̃f)θ̃f

T
+STPBε1 (28) 

 

We choose θ̇̃f=-γ
f
(S

T
PBh(x)) and we submit into Eq. (28). 

we get: 

 

V̇=-
1

2
STQS+STPBε1 (29) 

 

Since -
1

2
STQS<0, if we design ε1 very small by using RBF, 

we will get V̇<0. Then we can get that S and θ̃f are bounded. 

And by invoking the barbarat’s lemma we can ensure the 

convergence. 

 

 

6. INTEGRAL SLIDING MODE CONTROL (ISMC) 

 

The ISMC adopt the same schema as sliding mode control 

(SMC), in which its control law is established by two term the 

first is the equivalent control, which attempt to bring the 

system dynamics to a given sliding surface while the second 

term is the switched control, which seeks to retain the 

dynamics of system along sliding surface. The only difference 

is that the integral term is added to the sliding surface for the 

sake of obtaining better performance (fast convergence, 

reduce the chattering phenomenon, minimize the cost 

function ...etc.) [2]. 

 

6.1 Controller design 

 

In ISMC the sliding surface is represented in Eq. (30). 

Which is given by: 

 

S=(
d

dt
+λ)

n-1

e+z (30) 

 

with, z=kpe+ki ∫ e  is the integral term (kp and ki are 

respectively the proportional and integral gain), e=yd-y is the 

error (yd is the desired trajectory and y is the output of the 

system), n represent the order of the system and λ indicates a 

positive constant. 

Given that n=2 the sliding surface can be rewritten as in Eq. 

(31): 

 

S=ė+λe+z (31) 

 

The objective control of ISMC is to design two-control law, 

which are equivalent control ueq and switched control udis. The 

first controller seeks to bring the system’s dynamics to the 

desired sliding surface by making Ṡ=0 , while the second 

attempt to retain this later in a given sliding surface. After 

deriving the sliding surface and considering the Eq. (12). we 

obtain the following equation: 

 

Ṡ=ë+λė+ż=ÿ
d
-f(x,t)-g(x,t)u+λė+ż (32) 
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Thus, the equivalent and swished term can be designed as 

written in Eq. (33). And Eq. (34): 

 

ueq=
-f(x,t)+ÿ

d
+λė+ż

g(x,t)
 (33) 

 

udis=-ksign(S)-ξS (34) 

 

where, sign(S) represents the sign function, k and ξ are a 

positive constant. 

 

6.2 Stability analysis 

 

In order, to investigate the stability of the proposed 

controller we have considered the following Lyapunov 

function given in Eq. (35): 

 

V=
1

2
S2 (35) 

 

After taking the derivative of Eq. (35). and replacing the 

equivalent and switched control written in Eq. (33), (34) we 

find: 

 

V̇=SṠ (36) 

 

V̇=S(ÿ
d
-f(x,t)-g(x,t)u+λė+ż) (37) 

 

V̇=S(-ksign(S)-ξS) (38) 

 

V̇≤-k|S|-ξS2 (39) 

 

Given that V̇≤0, thus the system dynamic will converge to 

the sliding surface in finite time. 

 

 

7. OPTIMIZATION OF FLC, RBF AND ISMC WITH 

WOA 

 

The optimizations results involved in the proposed work 

were carried on MATLAB/Simulink by engaging 25-search 

agent in 25 iterations for all presented control strategies under 

the cost function of the mean of root of squared of error 

(MRSE), which is expressed in Eq. (40): 

 

MRSE=∑ e(i)
2

N

i=1

+∑ (
de(i)

dt
)

2N

i=1

 (40) 

 

where, e(i) is the error of the trajectory of the i-th sample, 
de(i)

dt
 

is derivative of the error for the trajectory of the i-th sample 

and N is the number of samples.  

Figures 3-6 depict the control diagram of the proposed 

schemas when performing task in order to get the near optimal 

parameters of those technics. 

The Takagi Sugono fuzzy logic type have adopted in this 

work, 14 triangular and trapezoid memberships function was 

used for the inputs of FLC and the total number of rules is 49 

(see Table 1). Since the FLC has 14 memberships function and 

49 rules, therefore WOA search for the optimal of the 

antecedents and consequence parameters of the proposed 

controller in 12 dimensional space. 

 

 
 

Figure 3. Control strategy of FLC-WOA 

 

 
 

Figure 4. Block diagram of FLC-WOA 

 

 
 

Figure 5. Block diagram of RBF-WOA 
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Figure 6. Block diagram of ISMC-WOA 

 

Table 1. Rule base of FLC 

 
e 

de 
NB NM NS Z PS PM PB 

NB NB NB NB NB NM NS Z 

NM NB NB NB NM NS Z PS 

NS NB NB NM NS Z PS PM 

Z NB NM NS Z PS PM PB 

PS NM NS Z PS PM PB PB 

PM NS Z PS PM PB PB PB 

PB Z PS PM PB PB PB PB 

 

The parameters of the applied strategies after performing 

the optimization are presenter in Figures 7, 8 and Table 2. 

 

 
 

Figure 7. Memberships functions of fuzzy logic after 

optimization by WOA 

 

 
 

Figure 8. Memberships functions of RBF after optimization 

by WOA 

Table 2. The parameters of the proposed schema after 

optimization 

 
Parameters FLC-WOA RBF-WOA ISMC-WOA 

kp 10.69 40 19.48 

kd 9.53 34.99 - 

ki - - 0.69 

k 13.64 - 0.5 

ξ - - 0.5 

γ
f
 - 1200 - 

λ - - 62.61 

 

 

8. RESULTS AND DISCUSSIONS 

 

The objective of the controller is to force the angle of the 

pendulum θ to follow the desired trajectory defined by: 

yd=(π/30) sint and the pendulum parameters respectively are: 

mc=1 kg, m=0.1 kg. The numerical simulation results obtained 

by the implemented control technics tuned with whale 

optimizer algorithm for an initial condition of the system x0 = 

[-0.05, 0] are represented in Figures 9-13. 

Figure 9-11 highlights the trajectory of angle position 

obtained by the carried out control strategies, which evidently 

shows that both trajectory converge rapidly to their respective 

set point in finite time for both proposed schemas and their 

performances are summarized in Table 3. 

 

 
 

Figure 9. Angle position and the reference trajectory based 

on FLC-WOA 

 

 
 

Figure 10. Angle position and the reference trajectory based 

on RBF-WOA 
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Figure 11. Angle position and the reference trajectory based 

on ISMC-WOA 

 

 
 

Figure 12. Angle velocity and its reference trajectory based 

on FLC-WOA, RBF-WOA and ISMC-WOA 

 

 
 

Figure 13. Control input by using FLC-WOA, RBF-WOA 

and ISMC-WOA laws 

 

Table 3. Performances analysis of control strategies 

 

Angle position 
FLC-

WOA 

RBF-

WOA 

ISMC-

WOA 

RMSE 0.0015 0.0014 0.0014 

Setlling Time 

(sec) 
3.28 2.23 2 

Steady Error 0.003 0 0 

Overshoot (%) 0 0 0 

Table 3 reports the performances based comparative 

analysis for the applied control strategy (FLC-WOA, RBF-

WOA and ISMC-WOA) on the position of the inverted 

pendulum. The performance parameters obviously proves that 

both approaches provide accuracy and shows that the RBF-

WOA ISMC-WOA was the outstanding one in term of settling 

time and steady error.  

It is clearer from Figure 12 that the angle velocity rapidly 

reach its sinusoidal trajectory reference for all control 

approaches. The FLC-WOA and ISMC-WOA provide height 

performance with tracking trajectory minimum overshoot as 

compared to RBF-WOA.  

Figure 13 outlines the corresponding simulation results of 

the control input applied on the inverted pendulum system to 

achieve a given desired trajectory for the aforementioned 

schemas and clearly shows that they acquire a sinusoidal, 

which obviously verifies our claims by obtaining a lesser and 

continuous signals. 

 

 

9. CONCLUSIONS 

 

Our study proposed FLC, RBF and ISMC based WOA 

approach to stabilize the dynamic of inverted pendulum in a 

given trajectory. The proposed algorithm has the ability to 

address a non-linear function with height dimensional search 

space and bypass local minims, furthermore it provides height 

accuracy and fast convergence. This algorithm is devoted to 

find near optimal parameters of FLC, RBF and ISMC. The 

implemented control strategies perfectly reflect the 

uncertainties and adequately investigate non-linear system. 

The involved results of the comparative study shows that both 

strategies provide good performance in the stabilization of the 

dynamics of inverted pendulum. Overall performance 

comparison concludes that ISMC over perform other 

techniques, however the derivatives knowledge and system 

dynamics should be taken into consideration, and further 

studies should be move in the direction of adapting the ISMC 

strategy with FLC and RBF control. 
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