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 In this research, the optimum decision of a multi-objective inventory game problem has 

been investigated under strategic complementarities in a multiplayer supply chain. The 

supply chain comprises a single retailer and multi-retailers under the synchronization 

process, the wholesale contract, and the buy-back contract policy. We apply some 

results in supermodular multi-objective game theory to solve these problems. The 

optimal decision for all players is formed in two equilibria, namely the Pareto 

equilibrium and the weighted Nash equilibrium. For numerical results, A genetic 

algorithm and dominance principle elements of the payoff matrix are used to obtain the 

weighted Nash equilibrium and the weighted Nash equilibrium, respectively. The 

analytical and numerical results using the supermodular multi-objective games concept 

can be significant results to solve the supply chain competition problems in the 

industrial engineering. 
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1. INTRODUCTION 

 

Game theory is a useful tool in the strategic competing 

analysis of many decision-making problems. One of the 

decision-making processes in multi-player supply chain 

analysis is how to obtain the optimum solution for the 

inventory problem. In real words, the players in the competing 

supply chain can take various types of strategies to obtain their 

optimum moves such as cooperative or non-cooperative with 

the other players. Therefore, the game theory can be used as a 

mathematical tool to obtain the optimum solution in those 

conditions. These game theory approaches can be more 

complicated than well-known methods such as the integrated 

method. However, by using the game theory concept, the 

optimum solution can be analyzed based on many perspectives 

of the strategy from the players and it is more describing the 

real situations indeed. One of the earliest results is the 

application of game theory to inventory problems with 

substitutable products [1]. Another result can be found in 

several papers, such as supply chain with multiple retailers [2], 

the competitive newsboy [3], and newsvendor games in 

inventory problems [4]. In recent years, the application of 

game theory in inventory problems has recently been extended 

to the multiplayer supply chain [5-8]. Game theory has been 

used to solve multi-player supply chain problems with linear 

multi-objectives [9]. Furthermore, the multi-objective games 

with non-linear multi-objective have been analyzed for a zero-

sum multi-objective game in which most of the results focus 

on games with two players [10]. 

The ordered game is one of the extensions of a class of 

traditional games, which are characterized by strategic 

complementarities. In these games, when one player obtains a 

high payoff by taking a high-ordered strategy, the other 

players would also earn a high marginal payoff if they also 

increase their strategies. The ordered games (in maximization 

problems) with strategic complementarities are called 

supermodular games and are defined in a lattice. The theory of 

supermodular games and complementarity games was first 

explained for minimization games with a single payoff [11, 

12]. These results are also explained in the supermodular form 

[13]. The properties of supermodular and its equilibrium were 

also further developed [14-16]. Then, fixed-point theorems 

were used to analyze the supermodular games [17]. 

The concept of the supermodular game has recently been 

widely applied in economic problems, stock competitions, and 

supply chain issues. One of the earlier relevant literatures on 

the application of supermodular games is the application of 

these games to the Cournot oligopoly problem [18]. Other 

results can be found in several papers, such as supermodular 

games for tax competition [19], NTU supermodular games 

[20], supermodular games for stock competition proposed [21], 

the relation between supermodular games and potential games 

explained [22], newsboy problem using supermodular games 

[3], and multiplayer supply chain models using supermodular 

games [5]. However, those results are still limited to the single 

objective case. 

In this research, we explain some results in supermodular 

multi-objective games and then apply them to analyze the 

optimum result of complementary strategic game situations in 

a multiplayer supply chain with multi-objective. We formulate 

the game in a supply chain comprising of a single 

manufacturer and multi-retailers. All retailers have multi-

objective and play complementarity strategies. The retailers 

conduct the game based on the synchronization process and 

the wholesale and the buy-back contract. We apply the genetic 

algorithm and the dominance principle of the modified payoff 

matrix to obtain the two equilibria. Therefore, this research is 

the first to discuss the application of supermodular multi-
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objective games in inventory problems. Using the 

supermodular multi-objective games concept, we can 

effectively explain the complementarity condition in 

multiplayer inventory games with multi-objective, which is 

indirectly linked to the convexity properties in optimum 

analysis. The analytical results including new definitions and 

theorems are different than the results in the references. In the 

references [11-17], the theoretical result on supermodular is 

constructed for the game with a single payoff. In this paper, 

these results have been extended to the multi-objective 

supermodular games. Our results are also different from the 

previous result on the linear multi-objective game [9] and 

nonlinear multi-objective games which focus on zero-sum and 

two-player cases [10]. In this paper, the formulation of the 

non-cooperative game has been extended to the non-

cooperative supermodular multi-objective cases for non-zero-

sum cases (which can be linear or non-linear). The inventory 

games problem provided in this paper is also different from the 

other reference about the application of game theory in 

inventory [2, 3, 5, 18-22]. The inventory model used in those 

references is in a single objective form. In our paper, the multi-

objective inventory problems are used and proposed in 

supermodular form. Therefore, the results provided in this 

paper are the new result when compared to the references in 

supermodular games and their application. 

The rest of the paper is organized as follows. The 

relationship of each element of the concept of the 

supermodular game to the proposed inventory problems is 

discussed in Section 2. In Section 2, some definitions and 

theorems on multi-objective supermodular games are 

proposed. The inventory games including assumption, general 

form, and properties are proposed in Section 3. Furthermore, 

the optimal analysis of the equilibrium of the games is 

presented in Section 4. A numerical example is also 

demonstrated in Section 5. Finally, the conclusion of the 

results of the research and some suggestions for future 

research are provided in the last section of the paper. 

 

 

2. PRELIMINARIES 

 

We propose the mathematical formula to illustrate the 

competition condition between all players in the supply chain 

system when all players use the strategic complementarities 

and have more than a payoff function. The respective formula 

can be presented in supermodular game form. Therefore, our 

work is based on non-cooperative supermodular multi-

objective games. Because the concept of these games has not 

been constructed before, then we proposed new definitions and 

theorems to explain the supermodular multi-objective games 

in this section. The definition of two equilibria is given to 

explain the optimum solution to our proposed inventory game 

problem. Because each player has multi-objective, then the 

optimum solution for each player must be the Pareto optimal. 

Furthermore, the players also played non-cooperative games 

with each other and the optimum of the pure strategy must 

meet the Nash equilibrium. Moreover, we use the weighted 

Nash equilibrium regarding the multi-objective conditions. 

The existence theorem of the equilibrium has been proved. 

This theorem can be used to check the conditions of the game 

whether it has an equilibrium or not. 

Next, we will provide some elements of the n-person non-

cooperative supermodular multi-objective game (NC-SMOG) 

in maximize case. We consider a supermodular game with a 

finite number of players ρ={1, .., n}. We also denote the games 

as �̂�𝑚 = (𝜌, {𝑆𝑖}𝑖∈ℕ; {𝐹𝑖}𝑖∈ℕ). We then define a strategic space 

𝑆𝑖 ⊆ ℝ𝑝𝑖, where pi is the number of dimensions of the feasible 

strategy. The joint strategy space S:=S1×S2×...×Sn is a finite 

Cartesian product of Si from i=1 to i=n and denoted by 𝑆 =

×𝑖=1
𝑛 𝑆𝑖 . The payoff 𝐹𝑖  is a vector-valued function of S into 

ℝ𝑘𝑖 , where ki is the number of components of each player-i's 

payoff. The payoff function for each player-i is said to be 

supermodular on ×𝑖=1
𝑛 𝑆𝑖 if it satisfies the following definition: 

Definition 1. Let (×𝑖=1
𝑛 𝑆𝑖 , ⪯) be a partially ordered set. A 

function 𝐹𝑖
𝑟𝑖: 𝑆𝑖 → ℝ , where 𝑟𝑖 ∈ {1, … 𝑘𝑖} , is said to be a 

supermodular on ×𝑖=1
𝑛 𝑆𝑖 if 

 

𝐹𝑖(𝑥𝑖
′) + 𝐹𝑖(𝑥𝑖

′′) ≤ 𝐹𝑖(𝑥𝑖
′ ∨ 𝑥𝑖

′′) + 𝐹𝑖(𝑥𝑖
′ ∧ 𝑥𝑖

′′) (1) 

 

where, 𝑥𝑖
′, 𝑥𝑖

′′ ∈ 𝑆𝑖 where 𝑥𝑖
′ ⪯ 𝑥𝑖

′′. 
We use notations 𝕃+ and 𝕃++ to define the simplex of and 

its relative interior ℝ+
𝑘𝑖 , where: 

 

𝕃++
𝑘𝑖 : = {𝐦𝑖 = (𝑚𝑖

1, . . . , 𝑚𝑖
𝑘𝑖) ∈ ℝ+

𝑘𝑖| ∑ 𝑚𝑗 = 1

𝑘𝑖

𝑖=1

} (2) 

 

We extend the definition of the Pareto equilibrium by Ji et 

al. [9] which was first proposed in minimization cases into 

supermodular maximization games as follows: 

Definition 2. A set of pure strategy x⋆ is called a Pareto 

equilibrium of NC-SMOG �̂�𝑚 in a lattice. If 𝑥𝑖
⋆, 𝑖 ∈ {1, … , 𝑛} 

is an optimal solution for the multi-objective problem for each 

respective player-i and there is no 𝑥𝑖 ∈ 𝑆𝑖  such that: 

 

𝐹𝑖
𝑟(𝑥1

⋆, … , 𝑥𝑖−1
⋆ , 𝑥𝑖

⋆, 𝑥𝑖+1
⋆ , . . . , 𝑥𝑛

⋆)
≼ 𝐹𝑖

𝑟(𝑥1
⋆, … , 𝑥𝑖−1

⋆ , 𝑥𝑖 , 𝑥𝑖+1
⋆ , … , 𝑥𝑛

⋆) 
(3) 

 

where, r=1, 2, …, ki and (3) holds strictly for at least one index 

r. 

For each 𝐱 ∈ 𝑆 , we define the weighted joint response 

function for each player-i is defined as a real-valued function 

𝑘𝛿: 𝑆 × 𝑆 → ℝ: 

 

𝑘𝛿(𝐱, 𝐲): = ∑ 𝛿𝑖 . 𝐹𝑖(𝑥1, … , 𝑥𝑖−1, 𝑦𝑖 , 𝑥𝑖+1, … , 𝑥𝑛)

𝑛

𝑖=1

 (4) 

 

where, 𝛿 = (𝛿1, 𝛿2, … , 𝛿𝑛) , with 𝛿𝑖 = (𝛿𝑖
1, … , 𝛿𝑖

𝑘𝑖) ∈ 𝕃++
𝑘𝑖 , 

i=1, …, n. From (4), we can define the following function. 

Definition 3. Function 𝑍𝛿: 𝑆 → 𝒫(𝑆), with: 

 

𝑍𝛿(𝒙): = {𝒚′ ∈ 𝑆|𝑘𝛿(𝒙, 𝒚′) = 𝑚𝑎𝑥
𝒚∈𝑆

 𝑘𝛿(𝒙, 𝒚)} , ∀𝒙

∈ 𝑆 
(5) 

 

is called a weighted best joint response function of each player 

concerning the weight combination 𝛿 = (𝛿1, 𝛿2, … , 𝛿𝑛) where 

𝛿𝑖 = (𝛿𝑖
1, … , 𝛿𝑖

𝑘𝑖) ∈ 𝕃++
𝑘𝑖 , 𝑖 = 1, … , 𝑛. 

We then present our theorem regarding the existence of the 

Pareto equilibrium of NC-SMOG. 

Theorem 1. Given NC-SMOG �̂�𝑚 = (𝜌, {𝑆𝑖}𝑖∈ℕ; {𝐹𝑖}𝑖∈ℕ) 

and a weight 𝛿 = (𝛿1, 𝛿2, . . . , 𝛿𝑛), where 𝛿𝑖 ∈ 𝕃++
𝑘𝑖  i=1, .., n for 

𝐹𝑖 . If Si, i=1, ..., n is a nonempty compact lattice and 

𝐹𝑖
𝑟(𝑥−𝑖 , 𝑦𝑖), 𝑟 = {1, . . . , 𝑘𝑖} is upper-semicontinuous in yi on 
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𝑆𝑖(𝑥−𝑖) for each 𝑥−𝑖 in 𝑆−𝑖 and r={1, ..., ki}, then a set of the 

Pareto equilibrium exists for �̂�𝑚. 

Proof. If Si for each, 𝑖 ∈ {1, … , 𝑛} is a nonempty compact 

lattice, then the weighted best joint response function 𝑍�̅�(𝐱) 

for each strategy 𝑥 ∈ 𝑆 =×𝑖=1
𝑛 𝑆𝑖  is a nonempty subcomplete 

sublattice of lattice 𝑆 =×𝑖=1
𝑛 𝑆𝑖 . Section 𝑍𝐱

�̅� is a sublattice of 

S×S. The range of 𝑍�̅�(. ) for each 𝐱 ∈ 𝑆 is a set with induced 

set ordering ⊑ on a nonempty power set of S, 𝒫(𝑆)\{∅}. We 

will prove that 𝑍�̅�(. )  is an increasing function in 𝐱 ∈ 𝑆 . A 

section 𝑍𝐱
�̅� increases in 𝐱 on projection ∏ 𝑍�̅�

𝑥 . Function 𝑘�̅�(. ) 

is a supermodular function in y on S for each 𝐱 ∈ 𝑆. Therefore, 

𝑍�̅�(. ) is an increasing function in x on the projection ∏ 𝑍�̅�
𝑥 . 

Hence, the set of the fixed point of 𝑍�̅�(. ) is a nonempty lattice 

with the largest and smallest fixed points. Furthermore, taking 

any fixed point of 𝑍�̅�(. ), we obtain: 

 

𝑘𝛿(𝐱, 𝐲) ≼ 𝑘𝛿(𝐱, 𝐱⋆), ∀𝐱 ∈ 𝑆. (6) 

 

which holds 

 

𝛿𝑖. 𝐹𝑖(𝑥1
⋆, . . . , 𝑥𝑖−1

⋆ , 𝑦𝑖 , 𝑥𝑖+1
⋆ , . . . , 𝑥𝑛

⋆)

≺ 𝛿𝑖. 𝐹𝑖(𝑥1
⋆, . . . , 𝑥𝑖−1

⋆ , 𝑥𝑖
⋆, 𝑥𝑖+1

⋆ , . . . , 𝑥𝑛
⋆) 

(7) 

 

where, 𝐹𝑖 = [𝐹𝑖
1, 𝐹𝑖

2, . . . , 𝐹𝑖
𝑟]𝑇 , 𝑦𝑖 ∈ 𝑆, i=1, .., n. If that fixed 

point 𝐱⋆ is not a Pareto equilibrium, then i0 and 𝑦𝑖0

⋆ ∈ 𝑆 exists 

such that: 

 

𝐹𝑖0

𝑟 (𝑥1
⋆, . . . , 𝑥𝑖0−1

⋆ , 𝑥𝑖0

⋆ , 𝑥𝑖0+1
⋆ , . . . , 𝑥𝑛

⋆)

≼ 𝐹𝑖0

𝑟 (𝑥1
⋆, . . . , 𝑥𝑖0−1

⋆ , 𝑦𝑖0

⋆ , 𝑥𝑖0+1
⋆ , . . . , 𝑥𝑛

⋆) 
(8) 

 

where, 𝑟 = 1, . . . , 𝑘𝑖0
, and holds strictly for at least one 

inequality (𝑟 = 𝑙𝑖0
, 𝑙𝑖0

≤ 𝑘𝑖0
) such that: 

 

𝛿
𝑖0

𝑙𝑖0𝐹
𝑖0

𝑘𝑖0 (𝑥1
⋆, . . . , 𝑥𝑖0−1

⋆ , 𝑥𝑖0

⋆ , 𝑥𝑖0+1
⋆ , . . . , 𝑥𝑛

⋆)

≺ 𝛿
𝑖0

𝑙𝑖0𝐹𝑖0

𝑘𝑖0(𝑥1
⋆, … , 𝑥𝑖0−1

⋆ , 𝑦𝑖0

⋆ , 𝑥𝑖0+1
⋆ , … , 𝑥𝑛

⋆) 
(9) 

 

where, 𝛿
𝑖0

𝑘𝑖0 ∈ ℝ++. This condition a contradiction with (7). 

Hence, 𝐱⋆ is the Pareto equilibrium for �̂�𝑚. 
We then explain the second equilibrium of NC-SMOG in 

the following definition. 

Definition 4. A selective strategy 𝐱∗  is called by the 

weighted Nash of NC-SMOG with the weight 𝛿 =

(𝛿1, 𝛿2, . . . , 𝛿𝑛), where 𝛿𝑖 ∈ ℝ++
𝑘𝑖 , i=1, ..., n; for each player-i, 

the following is satisfied: 

 

𝛿𝑖. 𝐹𝑖(𝑥1
∗, . . . , 𝑥𝑖−1

∗ , 𝑥𝑖 , 𝑥𝑖+1
∗ , . . . , 𝑥𝑛

∗ )

≼ 𝛿𝑖 . 𝐹𝑖(𝑥1
∗, . . . , 𝑥𝑖−1

∗ , 𝑥𝑖
∗, 𝑥𝑖+1

∗ , . . . , 𝑥𝑛
∗ ) 

(10) 

 

We demonstrate the existence of the weighted Nash 

equilibrium in the following theorem: 

Theorem 2. Given NC-SMOG �̂�𝑚 = (𝜌, {𝑆𝑖}𝑖∈ℕ; {𝐹𝑖}𝑖∈ℕ). 

If S is a nonempty compact lattice and 𝐹𝑖
𝑟(𝑥−𝑖 , . ), 𝑟 = 1, . . . , 𝑘𝑖 

i=1, ..., n is upper-semicontinuous in yi on 𝑆𝑖(𝑥−𝑖) for each 

𝑥−𝑖 ∈ 𝑆−𝑖  𝑖 ∈ {1, . . . , 𝑛} then the set of the equilibrium 𝒙∗ =
(𝑥𝑖

∗, . . . , 𝑥𝑖
∗)  is a nonempty complete lattice and the largest 

weighted Nash equilibrium 𝒙
∗′

 and the smallest weighted 

Nash equilibrium 𝒙
∗′′

 exist. 

The supply chain comprises a single manufacturer and 

multi-retailer (also known as a single vendor-multi buyer) has 

been analyzed before by several authors [23-26]. In a single 

manufacturer and multi-retailer model, a finite number of 

retailers with competing conditions exists. All retailers are 

assumed to take place the order of a single product to a single 

manufacturer. One of the main assumptions of a single 

manufacturer-multi retailer model is the synchronization 

process. The production cycle of the manufacturer should be 

synchronized with the ordering cycles of the retailers [23]. The 

total cost for each retailer is calculated by several marginal 

costs such as ordering cost, transportation cost, and also 

holding cost [26]. The manufacturer’s inventory level can be 

obtained by calculating the difference between the 

manufacturer’s accumulated inventory and the retailers’ 

accumulated inventory [24]. The strategic complementarities 

have been applied to the inventory problem [5]. 

Supermodularity between any two strategies is not linked 

directly to either convexity or even continuity [5]. In these 

games, increasing best response functions is the only major 

requirement for an equilibrium to exist [5]. In this paper, we 

use a single manufacturer and multi-retailer model which 

additional assumptions like a wholesale price and buyback 

contract. We propose the relationship between the vendor and 

the retailers using strategic complementarities in the 

competing situations. 

 

 

3. GAMES FORMULATION  

 

3.1 General assumptions 

 

We consider the multiplayer supply chain system, which 

comprises one manufacturer and multiple competing retailers. 

The manufacturer produces the items to fulfill the demand of 

the retailers and coordinates the supply chain terms and 

conditions to earn profit from the supply chain. A finite 

number of retailers with competing conditions exists. The 

competition occurs by allocating the demand along with the 

retailers to their inventory under terms and conditions issued 

by the manufacturer. All the retailers can have more than one 

payoff function. They maximize their payoffs by determining 

the optimum ordering quantity through a decentralized scheme, 

which is implemented with a multi-objective game. The game 

only exists among the retailers. The manufacturer is not 

directly involved in the games. However, the manufacturer is 

the coordinator in the supply chain system and can offer some 

contracts to all retailers. Three kinds of contracts are presented 

as follows: 

(1) Synchronization process. The production cycle of the 

manufacturer should be synchronized with the ordering cycles 

of the retailers. Based on the result of the synchronization 

process in the inventory problem [23-26], the synchronization 

is useful to reduce the total related cost for the entire supply 

chain.  

(2) Wholesale contract. The manufacturer will charge each 

retailer-i the amount of price per unit purchased. 

(3) Buy-back contract. The manufacturer charges the 

retailer amount of wholesale price, but pays the retailer 

amount of price per uni remaining at the end of the cycle on 

each side of retailer-i. The manufacturer also charges the 

retailer a standard cost for handling the remaining product 

return process. This standard cost can be reduced by an 

advance agreement with the retailers.  
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The game can start when all buyers have agreed to the 

contracts from the manufacturer. Using the synchronization 

process, the manufacturer will use the equilibrium from the 

games played by all retailers as the reference to determine the 

optimum result. We will only discuss two payoff functions in 

the current research and focus on exploring the strategic 

complementary that will be used by all players. Therefore, we 

will work with a completely new perspective and situations in 

multi-objective and game problems, namely supermodular 

multi-objective games.  

Quantity orders qi is a decision variable for each retailer. For 

each 𝑖 ∈ {1, … , 𝑛}, 𝑆𝑖 ∈ ℝ1 is a strategic space for all retailers. 

We define the function �̅�𝑖: 𝑆 → ℝ1 as retailers’ payoffs. The 

first payoff is related to the profit for selling the product to the 

respective consumers, while the second payoff is the reward 

function using the reward rate from the manufacturer. Each 

player has the same ordering (a complete, transitive binary 

relation) preference ⪯ over feasible payoff outcomes which is 

a subset of ℝ𝑘𝑖 . We use the lexicographic ordering induced by 

standard ordering ≤ in the component of each vector in this 

research. Therefore, for each feasible selective outcome 

𝒛′, 𝒛′′  ∈ ℝ𝑘𝑖 , 𝒛′ ⪯ 𝒛′′ , if 𝒛′ = 𝒛′′or there is 𝑖0with 1 ≤ 𝑖0 ≤
𝑛  exist such that 𝑧𝑖

′ = 𝑧𝑖
′′  and 𝑧𝑖0

′ = 𝑧𝑖0
′′  for each i with 1 ≤

𝑖 ≤ 𝑖0. The ordering preference of all players also induces the 

preference for the joint strategy space 𝑆 =×𝑖=1
𝑛 𝑆𝑖 . For each 

selective joint strategy 𝐱 = {𝑥1, … , 𝑥𝑛}, 𝐲 = {𝑦1, … , 𝑦𝑛} ∈ 𝑆 , 

𝐱 ⪯  𝐲  whenever �̅�𝑖(𝐱) ⪯  �̅�𝑖(𝐲) . Suppose vector x=(qi, q-i) 

denotes the joint strategy vector with the strategy xi of player-

i replaced by yi in x and other components of x remain 

unchanged. Each player-i obtains his payoff �̅�𝑖(𝐱) =

(�̅�𝑖
1(𝐱), �̅�𝑖

2(𝐱)), 𝑖 = 1,2  when a selective joint strategy 𝐱 =

(𝑞1, 𝑞2, … , 𝑞𝑛) ∈ 𝑆 is played. We assume that 𝑆𝑖 , 𝑖 ∈  {1, … , 𝑛} 

is a nonempty compact lattice. Therefore, S is also a nonempty 

compact lattice. 

 

3.2 Nomenclature and notations 

 

Before the detailed discussion regarding the payoff function, 

we present the following notations used in this paper.  

 

Notation for the manufacturer 

 

P Production rate per cycle 

Am Setup cost per unit product 

hm Holding cost per unit product per cycle 

Im Inventory level per cycle 

cm The marginal cost per unit product per cycle 

�̅�𝑠 Manufacturer’s payoff function 

 

Notation for the retailers 

 

qi Decision variables, product's order quantity 

Di Retailer’s demand per cycle 

D Cumulative demand 

𝑝𝑖
𝑟 Purchased cost per unit product 

𝑤𝑖
𝑟  Wholesale price per unit product 

𝑐𝑖
𝑟  The marginal cost per unit product per cycle 

𝐴𝑖
𝑟 Ordering cost 

𝐵𝑖
𝑟  Transportation cost 

𝑏𝑖
𝑟 Buy-back cost per unit rest product 

ℎ𝑖
𝑟  Holding cost per unit product per cycle 

𝐼𝑖
𝑟 Retailer’s inventory level per cycle 

�̅�𝑖 Retailer’s vector-valued payoff function 

𝑐𝑟𝑡 The standard cost for handling a returning unsold 

product  

 

3.3 Retailer’s payoff 

 

The first payoff for all of the retailers is a profit function. 

Each retailer-i earns some profit from selling a single type of 

the product to their independent consumer after its reduction 

by some costs. The retailers order a single type of product from 

a single manufacturer well in advance of the selling period to 

meet their product needs, and retailers will then order a 

quantity of the product from the manufacturer with 

deterministic demand. The manufacturer starts its production 

after receiving the order of the retailer at a production rate of 

P with excess total retail demand (P>D). The total retail 

demand is divided between n retailers proportional to their 

stocking quantity Di such that: 

 

𝐷𝑖 = (
𝑞𝑖

𝑞
) 𝐷 (11) 

 

with the shipment quantity size, q is the sum of the order 

quantity of all retailers (𝑞 = ∑ 𝑞𝑖
𝑛
𝑖=1 ). We denote q-i=q-qi as an 

order quantity from another player except for player-i. 

Replenishment of all of the retailers using the synchronization 

contract is conducted via a single-shipment such that the 

shipment cycle time of the manufacturer is equal to the 

common ordering cycle time of the retailer. The manufacturer 

ships simultaneously numerous q to meet the total retail 

demand of all of the retailers. The shipment process is 

completed at once. We consider the condition without a lead 

time and shortages in all the retailers to avoid the complexity 

and ensure fairness in the game. Thus, the manufacturer has 

obtained some resources and power to ensure that the 

replenishment product will be received by all of the retailers 

simultaneously. A deterministic demand generates a constant 

inventory level on the retailers’ side. Therefore, the form of 

sales function 𝑅(. ): 𝑆𝑖 → ℝ, which depends on the demand, is 

known by each player. Function R(.) is assumed to be a twice 

differentiable function in 𝑞𝑖 ∈ 𝑆𝑖 . We then explain the cost 

associated with the activities of the retailer. The first 

component of the cost is the marginal cost per unit per cycle 

𝑐𝑖
𝑟 , which comprises ordering and transportation costs. This 

cost is simply formulated by 𝑐𝑖
𝑟 = 𝐴𝑖

𝑟 + 𝐵𝑖
𝑟 . Each retailer-i 

incurs the holding cost for storing unsold inventory because 

selling the inventory and collecting the payment quickly is 

time-consuming. The cost is also calculated based on the on-

hand inventory level until the end of the cycle. The inventory 

levels are illustrated in the following figure: 

 

 
 

Figure 1. Inventory level for manufacturer and retailer i 
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Figure 1 indicates that the inventory level for each retailer-

i and the manufacturer is: 

 

𝐼𝑖
𝑟 = ∫ 𝐷𝑖𝑡𝑑𝑡

𝑇

0

=
1

2
𝐷𝑖𝑡2|

0

𝑇

=
1

2
𝐷𝑖𝑇2 =

1

2
𝐷𝑖

𝑞2

𝐷𝑖
2

=
1

2

𝑞𝑖
2

𝐷𝑖

 

(12) 

 

Therefore, the holding cost term is ℎ𝑖
𝑟𝐼𝑖

𝑟 , where ℎ𝑖
𝑟𝐼𝑖

𝑟 =
ℎ𝑖

𝑟𝑞𝑖
𝑟

2𝐷𝑖
. 

The last component of the retailers’ cost is the transfer 

payment 𝑇𝑖
𝑟 using the buy-back contract. The supplier charges 

each retailer-i 𝑤𝑖
𝑟 , but pays each retailer-i 𝑏𝑖

𝑟  per unit of 

remaining inventory at the end of the cycle. The manufacturer 

should not profit from the remaining excess inventory in the 

newsvendor problem class; thus, 𝑏𝑖
𝑟 ≤ 𝑤𝑖

𝑟  [27]. The unit cost 

associated with the buy-back contract in the deterministic case 

is larger than the holding cost, that is, 𝑏𝑖
𝑟 ≤ ℎ𝑖

𝑟  [28]. According 

to Eq. (12), the inventory level formula is obtained from the 

integral process from T=0 until the end of cycle period T 

(equivalent to 
𝑞𝑖

𝐷𝑖
). Furthermore, the transfer payment for the 

left inventory that occurred at the end of the cycle is calculated 

as 𝑏𝑖
𝑟𝐼𝑖

𝑟 − 𝑐𝑖
𝑟𝑅(𝑞𝑖). Hence, the first payoff for each retailer-i is 

formulated by 𝜋𝑖
1: 𝑆−𝑖 × 𝑆𝑖 → ℝ with: 

 

𝜋𝑖
1(𝑞𝑖 , 𝑞−𝑖) = (𝑝𝑖

𝑟 − 𝑐𝑖
𝑟)𝑅(𝑞𝑖) − (ℎ𝑖

𝑟 − 𝑏𝑖
𝑟)

1

2

𝑞𝑖
2

𝐷𝑖

− 𝑤𝑖
𝑟𝑞𝑖 . 

(13) 

 

We will then explain the second payoff for each retailer-i. 

The manufacturer will buy the remaining product at the 

retailers due to the buy-back contract. Therefore, the 

manufacturer also incurs a standard cost crt to handle the 

returning process (including transportation, packing, and other 

preparations), and such a cost will be charged to all retailers. 

However, the standard cost can still be reduced based on the 

number of unsold products in each retailer-i. For each unit sold 

product, the cost will be multiplied by a unit price gm, in which 

these results will be used to reduce the fixed cost crt. Therefore, 

each retailer must minimize the returning process cost which 

is formed in the real-valued function 𝑓𝑖: 𝑆−𝑖 × 𝑆𝑖 → ℝ, in 

which 𝑓𝑖(𝑞, 𝑞−𝑖): = 𝑐𝑟𝑡−𝑔𝑚𝑞𝑖 . It is assumed that 𝑐𝑟𝑡 ≥
𝑔𝑚𝑞𝑖; therefore, 𝑓𝑖(𝑞, 𝑞−𝑖) ≥ 0. The minimization process for 

fi(q, q-i) can be converted into the equivalent problem that 

maximizes -fi(q, q-i) to simplify the analytical process of the 

game. Therefore, each retailer will maximize the -fi(q, q-i) as 

the second payoff. Hence, the second payoff function for each 

retailer-i, 𝜋𝑖
2: 𝑆−𝑖 × 𝑆𝑖 → ℝ is formulated by: 

 

𝜋𝑖
2(𝑞𝑖 , 𝑞−𝑖) = 𝑔𝑚𝑞𝑖 − 𝑐𝑟𝑡 (14) 

 

The optimal solution 𝑞𝑖
∗ is also the equilibrium of the games. 

In other words, 𝑞𝑖
∗ should be the weighted best response from 

each retailer-i. The weighted Nash equilibrium 𝑞𝑖
∗  must be 

included in the Pareto set, and this value is used by the 

manufacturer as optimal decision variables 𝑞𝑖
∗. 

 

3.4 Manufacturer’s payoff 

 

We also explain the payoff function of the manufacturer. 

The manufacturer does not follow the game directly because 

his payoff depends on the optimum solution by the retailers. 

The manufacturer has one payoff function, which is the profit 

function. This profit is obtained from the purchased cost after 

its reduction by some costs, which include the cost to run the 

setup process, production process, holding, and shipments. 

Figure 1 shows that the inventory level of the manufacturer is: 

 

𝐼𝑚 =
𝑞2

2𝑃
 (15) 

 

Therefore, the holding cost term for the manufacturer is: 

 

ℎ𝑚𝐼𝑚 = ℎ𝑚

𝑞2

2𝑃
 (16) 

 

Only one component is assumed for the marginal cost, that 

is cm=Am. Hence, we obtain the payoff function 𝜋𝑚: 𝑆𝑚 → ℝ 

of the manufacturer as follows: 

 

𝜋𝑚(𝑞) = ∑(𝑤𝑖
𝑟 − 𝑏𝑖

𝑟)𝑞𝑖

𝑛

𝑖=1

− 𝑐𝑚𝑞 − ℎ𝑚

𝑞2

2𝑃

+ 𝑐𝑟𝑡−𝑔𝑚𝑞𝑖 

(17) 

 

 

4. OPTIMUM ANALYSIS 

 

We consider the multi-objective inventory game with two 

payoffs 𝐺𝑃𝑚 = (𝜌, {𝑆𝑖}𝑖∈ℕ; {𝐹𝑖}𝑖∈ℕ)  in this section. We 

present the analytical analysis of the equilibrium of GPm. First, 

we will verify whether GPm is it a supermodular game or not. 

Take any value 𝑞𝑖
′, 𝑞𝑖

′′ ∈ 𝑆𝑖 , with 𝑞𝑖
′  ≼  𝑞𝑖

′′  Since Si is a 

nonempty lattice (and also as chain); thus, 𝑞𝑖
′ ∨ 𝑞𝑖

′′,  𝑞𝑖
′ ∧ 𝑞𝑖

′′ ∈
𝑆𝑖 and: 

 
𝜋𝑖

1(𝑞−𝑖 , 𝑞𝑖
′) + 𝜋𝑖

1(𝑞−𝑖 , 𝑞𝑖
′′)  

≼ 𝜋𝑖
1(𝑞−𝑖 , 𝑞𝑖

′ ∨ 𝑞𝑖
′′) + 𝜋𝑖

1(𝑞−𝑖 , 𝑞𝑖
′ ∧ 𝑞𝑖

′′) 
(18) 

 

Therefore, 𝜋𝑖
1 is the supermodular function in yi on Si for 

each 𝑞−𝑖 ∈ 𝑆−𝑖 and 𝜋𝑖
1 has increasing differences in (q-i, yi) on 

S-i×Si. Again, if we take any 𝑞𝑖
′, 𝑞𝑖

′′ ∈ 𝑆𝑖 , 𝑞𝑖
′  ≼  𝑞𝑖

′′, then we 

can obtain: 

 

𝜋𝑖
2(𝑞−𝑖 , 𝑞𝑖

′) + 𝜋𝑖
2(𝑞−𝑖 , 𝑞𝑖

′′) = 𝑔𝑚𝑞−𝑖𝑞𝑖
′ + 𝑔𝑚𝑞−𝑖𝑞𝑖

′′ 

≼ 𝜋𝑖
2(𝑞−𝑖 , 𝑞𝑖

′ ∨ 𝑞𝑖
′′) + 𝜋𝑖

2(𝑞−𝑖 , 𝑞𝑖
′ ∧ 𝑞𝑖

′′) 
(19) 

 

Therefore, 𝜋𝑖
2(𝑞−𝑖 , . ) is also supermodular in yi on Si for 

each 𝑞−𝑖 ∈ 𝑆−𝑖 and demonstrates increasing differences in (q-i, 

yi) on S-i×Si. Moreover, 𝜋𝑖
1(𝑞−𝑖 , . ) and 𝜋𝑖

2(𝑞−𝑖 , . ) are verified 

to be continuous (also upper-semicontinuous) functions in yi 

on Si for each 𝑞−𝑖 ∈ 𝑆−𝑖 . Hence, GPm is an NC-SMOG. 

Furthermore, two equilibria exist for this game. Definition 2.2 

indicates that two conditions exist for the Pareto equilibrium 

𝐱⋆ = (𝑞1
⋆, 𝑞2

⋆, ⋯ , 𝑞𝑛
⋆ ). A selective 𝑞𝑖

⋆, 𝑖 ∈ {1, . . . , 𝑛} should be 

an optimal solution for the multi-objective problem for each 

respective player-i. Furthermore, 𝑥𝑖 ∈ 𝑆𝑖  does not exist such 

that satisfies (3) for r=1, 2, …, ki, which holds strictly for at 

least one index r. We use the weighted sum method under a 

priori assumption to obtain a solution to the multi-objective 

problem with the associated payoff of all players. We change 

the multi-objective problems into the single objective ones 

following the form in (4). The sum of the weight values in 

these functions must be equal to one, that is, ∑ ∑ 𝛿𝑘𝑖
𝑟=𝑘𝑖
𝑟=1

𝑛
𝑖=1 . 

All players are considered to be informed of their weights. We 
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will then determine the weighted Nash equilibrium of GPm. 

Suppose the weights 𝛿̅ = (𝛿1, 𝛿2) , where 𝛿𝑖 = (𝛿𝑖
1, 𝛿𝑖

2) ∈
ℝ++

2 . We define the weighted best response of all of the 

players as: 

 

u�̅�(𝐱, 𝐲) = ∑ 𝛿𝑖
1 ((𝑝𝑖

𝑟 − 𝑐𝑖
𝑟)𝑅(𝑦𝑖) − (ℎ𝑖

𝑟 − 𝑏𝑖
𝑟)

1

2

𝑞𝑖
2

𝐷𝑖

𝑛

𝑖=1

− 𝑤𝑖
𝑟𝑦𝑖) + ∑ 𝛿𝑖

2𝑔𝑚𝑞𝑖 − 𝑐𝑟𝑡

𝑛

𝑖=1

  

(20) 

 

The function 𝑢�̅�(𝐱, . ) in (20) is supermodular in y on S for 

each q-i in S-i by supermodularity of function in (13) and (14). 

Function 𝑢�̅�(𝐱, . ) is defined on the chain; therefore, it has 

increasing differences in q-i, yi on S-i×Si. If Si, 𝑖 ∈ {1, . . , 𝑛} is a 

nonempty complete lattice, then 𝐺𝑃𝑚  has a weighted Nash 

equilibrium. Let q(q-i) be the response function of a retailer-i. 

Each retailer-i has symmetric payoff functions; therefore, 

𝑞𝑗(𝑞−𝑗) = 𝑞𝑖(𝑞−𝑖), 𝑖 ≠ 𝑗.  If a quantity ordering set 𝐱∗ =

{𝑞1
∗, 𝑞2

∗, . . . , 𝑞𝑛
∗ }  is a weighted best response of all of the 

retailers, then x* is the weighted Nash equilibrium, thereby 

satisfying 𝑞𝑖
∗ = 𝑞𝑖(𝑞−𝑖

∗ ), with 𝑞−𝑖
∗ = 𝑞∗ − 𝑞𝑖

∗  and ∑ 𝑞𝑗
∗, 𝑗 ∈𝑛

𝑗=1

{1, . . , 𝑛} . The weighted Nash equilibrium becomes a fixed 

point of 𝑍�̅�(. ) in Definition 2.3. Another approach is using 

Definition 2.5. to obtain that equilibrium directly.  

The Pareto equilibrium of NC-SMOG can be numerically 

obtained by the same process when determining Pareto 

optimal solutions for multi-objective problems. Many 

different methods can be used to solve multi-objective 

optimization. One of these methods is the genetic algorithm. 

The genetic algorithm can solve the difficult optimization 

problem [29]. We apply a genetic algorithm in this research 

through NSGA II in Python using pymoo packages [30]. Most 

numerical methods used to identify the Nash equilibrium are 

designed for two players. We extend the dominance principle 

of the payoff matrix element in this research. We modify the 

payoff matrix in the single objective (payoff) into the multi-

objective case and obtain the algorithm to acquire the weighted 

Nash equilibrium in the case of two players. The elements of 

each player in the payoff matrix are obtained from the sum of 

the dot product between the payoff and the respective weight. 

We use the dominance property principle to analyze each 

element in each row and column. This analysis will check all 

of the elements for each row and each column and then 

determine whether other elements can be a high payoff or not. 

The pseudocode of the algorithm is as follows. 

 

 
Algorithm to obtain the weighted Nash equilibrium 

Begin 

[1]: Import: NumPy as np.  

[2]: Define the initial requirement value. 

[3]:   Input: the weights value r time for Each Player. 

[4]:   Input: the lower and the upper bound of strategic space.    

[5]: Define the strategic space using np.array. 

[6]: For each strategy in Player I’s strategic space: 

[7]:   For each strategy in Player II’s strategic space: 

[8]:    Input: the form of weighted payoff for Player I and  

          check if the weighted payoff is less than or equal  

          to the upper bound. 

[9]:    Input: the form of the weighted payoff for Player II and  

          check if the weighted payoff is less than or equal  

          to the upper bound. 

[10]:        If satisfy steps 8 and 9:  

[11]:             Print the value of the weighted payoff. 

[12]:        If neither can satisfy: 

[13]              Print “0” as the weighted payoff. 

[14]:  Input: result from steps 11 – 13 as a matrix form where  

          Player I is a row Player I and Player II column player. 

[15]: For each element in each row of the weighted payoff  

         matrix: 

[16]:   For each element in each column of the weighted  

           payoff matrix. 

[17]:     Check if the row player can gain a better payoff. 

[18]:     Check if the column player can gain a better payoff. 

[19]:          If neither element can be: 

[20]:              Set as a weighted Nash equilibrium. 

[21]:          If any element can be: 

[22]:              Set as not a weighted Nash equilibrium. 

End 

 

 

5. NUMERICAL EXAMPLE 

 

We provide some numerical examples in this section to 

obtain the representation of the equilibria of GPm. We consider 

the supermodular games GPm with two retailers and denoted 

by GPm. The respective joint strategy space is the set: 

 

𝑆 = {𝑥|𝑞1 = 𝑞2, 𝑞2 ∈ [1, 3) } ∪ ([3,25] × [3,25]) (21) 

 

The sales function for the first retailer is 𝑅1: 𝑆1 → ℝ, where 

𝑅1(𝑞1) = 𝑞1
3 − 4𝑞1

2 + 5 and for the second retailer is 𝑅2: 𝑆2 →
ℝ , with 𝑅2(𝑞2) = 𝑞1

3 − 4𝑞1
2 + 5 . Let the value of the 

parameters for the retailers be 𝑝1
𝑟 = 100, 𝑝2

𝑟 = 95, 𝑐1
𝑟 = 10, 

𝑐2
𝑟 = 8, ℎ1

𝑟 = 5, ℎ2
𝑟 = 6, 𝑏1

𝑟 = 20, 𝑏2
𝑟 = 20, 𝑤1

𝑟 = 55, 𝑤1
𝑟 =

55, 𝐷1 = 30,  𝐷2 = 25, 𝑔𝑚 = 0.1, 𝑐𝑟𝑡 = 25. Therefore, the 

payoff function for the first retailer is 𝜋1
𝑘1: 𝑆2 → ℝ, 𝑘1 ∈ {1,2}, 

where: 

 

𝜋1
2(𝑞1, 𝑞2) = (90)(𝑞1

3 − 4𝑞1
2 + 5) +

1

4
𝑞1

2 − 55𝑞1

= 30𝑞1
3 − 359.75𝑞1

2 − 55𝑞1

+ 450 

(22) 

 

and 

 

𝜋1
2(𝑞1, 𝑞2) = 0.1𝑞1 − 25 (23) 

 

By contrast, the payoff function for the second retailer is 

𝜋2
𝑘2: 𝑆2 → ℝ, 𝑘2 ∈ {1,2}, where: 

 

𝜋2
1(𝑞2, 𝑞1) = (87)(𝑞2

3 − 5𝑞2
2 + 8) +

7

25
𝑞2

2 − 55𝑞2

= 87𝑞2
3 − 434.72𝑞2

2 − 55𝑞2 + 696 
(24) 

 

and 

 

𝜋1
2(𝑞2, 𝑞1) = 0.1𝑞2 − 25 (25) 

 

The joint strategic space S in (21) is a nonempty 

subcomplete sublattice of lattice ℝ2  with a lexicographic 

ordering relation; thus, S in (21) is a nonempty compact 

sublattice. The payoff functions (22), (23), (24), and (25) are 

upper-semicontinuous functions in yi on Siq-i for each q-i in S-i, 

𝑖 ∈ {1,2}. Hence, GPm1 demonstrates the Pareto equilibrium.  
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We will then determine the Pareto equilibrium of GPm1 

using Definition 2.2. Based on the form of S in (21), if one of 

the players plays a strategy 𝑞1 ∈ [1, 3), then the other must 

choose the same strategy. The player cannot increase his 

strategy as long as the other retains his choice. Therefore, a set 

[1, 3] is a Pareto equilibrium. By contrast; based on the form 

of joint strategy S set in (21), the strategy which is contained 

in [3, 25] can be chosen by each player without depending on 

the choices of the other player. It means that each player 

doesn't have to choose the same strategy as other players. For 

example, when player 1 chooses q1=5, then player 2 doesn’t 

have to choose q2=25 and can freely choose their strategy in 

[3, 25] in the game. Payoffs (23) and (25) have different forms; 

however, payoffs (22) and (24) only depend on the choice of 

strategy of each player. Thus, each player will choose the 

strategy with the largest possible payoff (in this case, q1=25). 

The Pareto equilibrium must be a solution to a multi-objective 

problem related to the multi-payoff from all players. We use a 

weighted sum method under a priori assumption in the current 

research. Using the aforementioned method, we perform the 

optimization process by employing a new single objective 

function. This function is obtained from the sum of the finite 

product of each payoff component with its respective weights. 

The sum of the weights must be equal to one (𝛿1
1 + 𝛿1

2 + 𝛿2
1 +

𝛿2
2 = 1). In this case, we simply use the weighted best joint 

response 𝑘�̅�(. , . ) for GPm1 such that: 

 

𝑘�̅�(𝑞1, 𝑞2) = 𝛿1
1(90(𝑞1)3 − 359.75(𝑞1)2 − 55𝑞1

+ 450)  + 𝛿1
2(0.1𝑞1 − 25)

+ 𝛿2
1(87(𝑞1)3 − 434.72(𝑞2)2

− 55𝑞2 + 696) + 𝛿2
2(0.1𝑞2 − 25) 

(26) 

 

As previously explained, if one of the players plays a 

strategy 𝑞1 ∈ [1, 3) , then the maximum value of 𝑘�̅�(. , . )  is 

reached for all points contained in [1, 3]. Therefore, all points 

in [1, 3] are fixed points of 𝑍�̅�(. ) which are related to 𝑘�̅�(. , . ). 

Furthermore, function 𝑘�̅�(. , . )  is twice differentiable on ℝ2 

and satisfies 
𝜕𝑘�̅�(𝑞1,𝑞2)

𝜕𝑞2𝜕𝑞1
= 0 and 

𝜕𝑘�̅�(𝑞1,𝑞2)

𝜕𝑞1𝜕𝑞2
= 0; thus, 𝑘�̅�(. . , ) is 

valuation (that is, supermodular and submodular 

simultaneously). Therefore, function 𝑘�̅�(𝐱, . )  demonstrates 

increasing differences in ℝ2 for each 𝐱 ∈ ℝ2. A joint strategic 

space S is a chain and 𝑘�̅�(𝐱, . ) is supermodular on S for 𝐱 ∈ 𝑆. 

The two conditions imply that function 𝑘�̅�(𝐱, . ) will not reach 

its maximum at the stationary point, which is not the endpoint 

of the interval Si=[3, 25]. Function 𝑘�̅�(𝒙, . ) is continuous (and 

also upper semicontinuous) on S×S. Therefore, 𝑘�̅�(𝒙, . ) 

reaches its maximum at point qi=25, i=1, 2. The value of all of 

the weights is less than one; thus, the payoff for each player 

will be smaller than before being weighting. The maximum 

possible weight value that can be taken by the first player and 

the second players is 𝛿1
1 + 𝛿1

2 = 0.5  and 𝛿2
1 + 𝛿2

2 = 0.5 , 

respectively. Each player must divide the priority in 

determining the weight value for their payoff components. If 

they play rationally, then they will provide as much weight as 

possible to the first payoff. However, assigning a zero weight 

value to one of the payoff functions is not permissible. Hence, 

the Pareto equilibrium for GPm1 is: 

 

𝐱⋆ = {(𝑞1
⋆, 𝑞2

⋆ )|𝑞1
⋆, 𝑞2

⋆ ∈ [1, 3) ∪ {25}} (27) 

 

with optimum value of the weights at 𝛿1
1⋆ + 𝛿1

2⋆ = 0.5 and 

𝛿2
1⋆ + 𝛿2

2⋆ = 0.5 . The second equilibrium is the weighted 

Nash equilibrium. We determine this equilibrium by using 

Definition 2.5. The selective strategy 𝑞1
∗ ∈ 𝑆1  of the first 

player is called the weighted Nash concerning the optimum 

strategy of the second player if the following condition holds. 

 
𝛿1

1(90(𝑞1)3 − 359.75(𝑞1)2 − 55𝑞1 + 450)

+ 𝛿1
2(0.1𝑞1 − 25)

⪯ 𝛿1
1

(90(𝑞
1
∗)

3
− 359.75(𝑞

1
∗)

2

− 55𝑞
1
∗ + 450) + 𝛿1

2
(0.1𝑞

1
∗ − 25) 

(28) 

 

If 𝑞2
∗ ∈ [1, 3), then the first player must choose the same 

strategy. For each 𝛿1
1, 𝛿1

2 ∈ ℝ++, any 𝑞1 ∈ [1, 3) satisfies (10). 

By contrast, if 𝑞1
∗ ∈ [3,25], 𝑞1 = 25, then (10) is satisfied for 

each 𝛿1
1, 𝛿1

2 ∈ ℝ++. Furthermore, a selective strategy 𝑞2
∗ ∈ 𝑆2 

is called the weighted Nash concerning of the first player if the 

following condition holds. 

 

𝛿2
1(87(𝑞1)3 − 434.72(𝑞2)2 − 55𝑞2 + 696)

+ 𝛿2
2(0.1𝑞2 − 25)

⪯ 𝛿2
1(87(𝑞2

∗)3 − 434.72(𝑞2
∗)2

− 55𝑞2
∗ + 696) + 𝛿2

2(0.1𝑞2
∗ − 25) 

(29) 

 

Similar to the first player, for each 𝛿1
1, 𝛿1

2 ∈ ℝ++  and 𝑞1 ∈
[1, 3), any 𝑞2 ∈ [1, 3) satisfies (10). However, for each 𝑞2 ∈
[1, 3), 𝑞2 = 25, (10) is satisfied for each 𝛿1

1, 𝛿1
2 ∈ ℝ++. Hence, 

the set of equilibrium (28) is also the weighted Nash 

equilibrium. The largest equilibrium is (𝑞1
∗, 𝑞2

∗) = (25,25) and 

the least equilibrium is (𝑞1
∗, 𝑞2

∗) = (1, 1). 

Next, we will use the algorithms to obtain the two equilibria. 

Only criteria related to the multi-objective optimization will 

be examined for the Pareto equilibrium. The selective strategy 

in [1, 3) disregards the use of a numerical test; therefore, the 

numerical test is only performed for the selective strategy in 

the [3, 25]. We use a genetic algorithm NSGA II [30] to obtain 

solutions numerically. We take the weight value of 0.25 for 

each payoff component. To use a genetic algorithm type, we 

must input some value of parameters. These parameters are 

commonly described in the terms of biology and genetics, such 

as population, the crossover, and the offspring. We take some 

value of the number of population, termination population, and 

several offsprings as the initial value for the algorithm. We 

take the crossover probability of 0.4 for the numerical test. The 

optimal results for several different parameter values are 

presented below Table 1. 

Based on Table 1, if we use a large number (more than 150) 

as the value of the initial population in an NSGA II, then we 

obtain that the equilibrium value will tend to the q1=25 and 

q2=25. Therefore, we obtain a single Pareto equilibrium 𝑥⋆ =
(𝑞1

⋆, 𝑞2
⋆) = (25,25) . This Pareto equilibrium is the optimal 

solution for each player regarding their multi-objective. If one 

of the players chooses a strategy in [1, 3), then all of the points 

in [1, 3) are the Nash equilibrium for another player based on 

the definition of S in (21). Furthermore, we will determine the 

weighted Nash equilibrium when the players choose a strategy 

in the interval [3, 25]. We apply the dominance principle to 

determine the equilibrium. We take 0.25 as the weight for each 

component of the payoff function. Each player takes 23 

strategies such as qi=3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 

16, 17, 18, 19, 20, 21, 22, 23, 24, and 25. Therefore, we obtain 

the weighted payoff matrix with 529 elements. We also obtain 

the weighted Nash equilibrium of (𝑞1
∗, 𝑞2

∗) = (25,25) by using 

the proposed algorithm in the previous section. If both players 
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choose the aforementioned strategy, player 1 earns a total 

payoff (sum of the first payoff and the second payoff) of 

295,114. 875 (in IDR 1000), while player 2 obtains 

271743,563 (in IDR 1000). Furthermore, each player can pay 

minimal costs for the returning process while increasing 

profits simultaneously by taking the higher strategy (qi>1). 

Because it is assumed that all players use the complementary 

strategy, then it can be suggested that all players choose the 

highest equilibrium (𝑞1
∗, 𝑞2

∗) = (25,25). All retailers can 

eventually obtain the maximum profit and pay the minimum 

returning cost if they choose (𝑞1
∗, 𝑞2

∗) = (25,25). Therefore, 

the highest and the least weighted Nash equilibrium is 
(𝑞1

∗, 𝑞2
∗) = (1,1)  and (𝑞1

∗, 𝑞2
∗) = (25,25) , respectively. The 

weighted Nash equilibrium results in the game performed by 

all retailers are used by the manufacturer to determine his 

optimal moves. Let the value of the parameters for the 

manufacturer be cm=13, hm=4, and P=60. Two possible 

payoffs will be obtained by the manufacturer according to the 

optimum quantity ordered from the retailers. 

(1) If each retailer chooses to play the least optimum 

strategy (𝑞1
∗, 𝑞2

∗) = (1,1) , then the manufacturer will use 

q*=1+1 as his strategy and will earn πm=68.76 (in IDR 1000). 

(2) If each retailer chooses to play the largest optimum 

strategy (𝑞1
∗, 𝑞2

∗) = (25, 25), then the manufacturer will use 

q*=25+25=50 as his strategy and will earn πm=1039,167 (in 

IDR 1000). 

Hence, if each retailer takes the high-order quantities, then 

such a condition is profitable for the manufacturer. 

 

Table 1. Numerical test for pareto equilibrium using an 

NSGA II 

 
Initial 

Population 

Termination 

Population 

Off-

springs 
𝑞1

⋆ 𝑞2
⋆ 

3 6 2 24.860 23.660 

3 8 2 24.860 23.927 

5 10 2 24.884 24.907 

5 13 5 24.984 24.471 

15 20 5 24.999 24.999 

20 25 5 24.999 24.999 

25 30 7 24.999 24.999 

30 50 7 24.999 24.999 

40 70 7 24.999 24.999 

50 90 7 24.999 24.999 

60 110 10 24.999 24.999 

70 130 10 25 25 

80 150 10 25 25 

90 170 10 25 25 

100 190 12 25 25 

110 210 12 25 25 

120 230 12 25 25 

130 250 15 25 25 

140 270 15 25 25 

150 300 15 25 25 

 

 

6. CONCLUSIONS 

 

A new multi-objective inventory game for a single 

manufacturer and multi-retailer has been formulated under the 

synchronization process, the wholesale contract, and the buy-

back contract. The manufacturer is the coordinator of the 

system and determines the details of the contract. All the 

retailers conduct a non-cooperative game to determine the 

optimum decision. This game is analyzed using the concepts 

of non-cooperative supermodular multi-objective games We 

must convert the second payoff for each retailer into the 

maximation case to obtain the second payoff for each retailer. 

Each retailer can pay a minimal cost for the returning process 

while increasing profits simultaneously by taking the superior 

strategy. Therefore, we obtain the highest and the least 

weighted Nash equilibrium which is included in the Pareto set 

equilibrium. We use a class of genetic algorithms to obtain the 

Pareto equilibrium. Finally, the dominance principle is applied 

to obtain the weighted Nash equilibrium. 
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