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 New energy power battery has a high current during fast charging and discharging, 

producing a huge amount of heat. The rational operation of the battery thermal 

management system (BTMS) plays an important role in increasing the energy storage 

capacity and service life of the power battery. This paper explores the battery thermal 

management and health state assessment of new energy vehicles. For the power battery of 

new energy vehicles, the fast charging is very likely to cause overheating. By analyzing 

this phenomenon, we derived a comprehensive control strategy for the charging and 

discharging of power battery, which optimizes the battery thermal management. Then, the 

main controlling factors were collaboratively controlled for the thermal management 

during the fast charging of the power battery of new energy vehicles, and the collaborative 

control standards and energy consumption laws of the system were discussed in details. 

After that, the backpropagation neural network (BPNN) was combined with adaptive 

genetic algorithm (AGA) to establish a nonlinear model between the health state indices 

and battery capacity of the power battery of new energy vehicles, and the model was 

applied to estimate the health state of the battery. Finally, the effectiveness of the proposed 

model was proved through experiments. 
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1. INTRODUCTION 

 

As the most common vehicles of transportation, traditional 

fuel vehicles run on petroleum, and are very convenient to use. 

However, the exhaust gas of these vehicles pollutes the air. 

New energy vehicles, which consume clean energy, have won 

the favor of the public, for their small environmental pollution 

[1-6]. With the intensification of environmental pollution and 

energy shortage, China has implemented a series of policies to 

support the rapid development of the new energy industry. The 

relevant enterprises have achieved considerable economic 

benefits [7-13].  

The power battery is the core component that affects the 

power performance of new energy vehicles. Whether the 

battery works in the best range directly affects the overall 

performance of the vehicle [14-19]. New energy power battery 

has a high current during fast charging and discharging, 

producing a huge amount of heat. The rational operation of the 

battery thermal management system (BTMS) plays an 

important role in increasing the energy storage capacity and 

service life of the power battery [20-24]. To guarantee the 

safety and stability of new energy vehicles, it is important to 

effectively regulate the temperature of the working 

environment of the battery, and control the working 

temperature and temperature difference in a reasonable range. 

Lithium-ion batteries (LIBs) are widely used in the energy 

storage system for electric and hybrid vehicles. LIBs are 

particularly sensitive to temperature. Uncontrolled heating 

may lead to thermal runaway of the batteries. Therefore, a 

BTMS is needed to prevent battery thermal abuse. Patil et al. 

[25] calculated the heating curves of various driving cycles, 

and verified the curves with the thermoelectric mathematical 

model in MATLAB Simscape. On this basis, a control strategy 

was proposed to limit the battery temperature within the 

prescribed range, thereby minimizing the parasitic power. To 

balance the resistors, Pattnayak and Vijay [26] considered the 

harsh condition that all resistors dissipate heat simultaneously, 

and compared this condition with the derating curve. It was 

discovered that 450s is needed for the resistor temperature to 

rise above the rated temperature. After that, most resistors 

would experience a temperature rise. Choudhari et al. [27] 

summarized the actual mechanism of heat generation, and 

talked about its impact on the various components LIBs. In 

addition, they studied the various temperature control systems 

with different design structures and different cooling 

techniques. Finally, different design structures were adopted 

according to the peak temperature and temperature uniformity 

of each cooling technology, under different test conditions. 

The BTMS is critical for controlling the thermal behavior 

of the battery. A good system simulation tool can minimize the 

time and cost of designing such a complex thermal 

management system. Dhakal et al. [28] developed a general 

and popular BTMS system with MATLAB/Simulink, and 

simulated the battery temperature change and energy 

consumption of the vehicle under different operating 

conditions. To solve the heat dissipation problem of power 

batteries with a high specific energy and high energy density, 

Shen et al. [29] put forward a refrigerant-based BTMS with a 

compact structure and high thermal efficiency. Based on the 

whole vehicle system, a coupled model of air conditioning and 

battery thermal management was established using Simcenter 

Amesim. From the perspective of temperature response 
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features and energy consumption of the system, they analyzed 

the temperature drop and temperature uniformity of single 

batteries and battery pack, as well as the coefficient of 

performance (COP) of the system. 

So far, there is little research about the evaluation indices of 

the health state of power battery in new energy vehicles. The 

relevant assessment approaches are of low accuracy, and poor 

real-timeliness. The health state modeling of the power battery 

in new energy vehicles, which is mainly based on parameter 

and performance optimization, largely adopts neural network 

algorithms inspired by swarm intelligence optimization. These 

algorithms have several defects: the computing load is heavy, 

the precision is easily affected by interference, and the 

effectiveness needs to be verified through repeated tests. 

To solve the above defects, this paper explores the battery 

thermal management and health state assessment of new 

energy vehicles. Section 2 analyzes a typical phenomenon of 

the power battery of new energy vehicles (the fast charging is 

very likely to cause overheating), and derives a comprehensive 

control strategy for the charging and discharging of power 

battery, which optimizes the battery thermal management. 

Section 3 controls the main controlling factors collaboratively 

for the thermal management during the fast charging of the 

power battery of new energy vehicles, and discusses the 

collaborative control standards and energy consumption laws 

of the system. Section 4 combines the backpropagation neural 

network (BPNN) was combined with adaptive genetic 

algorithm (AGA) to establish a nonlinear model between the 

health state indices and battery capacity of the power battery 

of new energy vehicles, and applies the model to estimate the 

health state of the battery. Finally, experimental results were 

given, which verify the effectiveness of the proposed model. 

 

 

2. FAST CHARGING PROCESS 

 

Compared with the discharging process, the fast charging of 

the power battery of new energy vehicles is very likely to 

cause overheating. To ensure the high-temperature safety of 

the power battery rack, the battery temperature must be 

controlled in real time during the charging. Based on the three 

laws proposed by J.A. Mas, this paper analyzes the direct 

current (DC) charging process of the power battery of new 

energy vehicles. Let Ψ be a constant; β be the current 

acceptance rate. When the battery is discharged at the same 

rate of current, the relationship between β and the battery 

discharge capacity can be established based on Maas' first law: 

 

/Ψ D =  (1) 

 

During the charging process, the acceptable current is 

denoted by i, the initial maximum current by Z0, and the time 

by p. Based on Maas' second law, the acceptable current of the 

power battery can be constructed by: 

 

0

pi Z o −=  (2) 

 

Formula (2) shows that the acceptable current of the power 

battery increases exponentially with time. When the battery is 

discharged at different rates, the sum of the acceptable current 

for charging is denoted by Zr, the total discharge amount by Dr, 

and the total current acceptance rate by βr. Based on Maas' 

third law, we have: 

1 2r mZ Z Z Z= + + +  (3) 

 

/r r rZ D =  (4) 

 

Due to the fixed ohmic (internal) resistance of the battery, 

when the current flows through the interior of power battery 

of the new energy vehicle, a certain potential difference will 

be generated. This phenomenon is called ohmic polarization. 

Let Vo be the ohmic polarization voltage; Z be the current; So 

be the internal resistance of the battery. Then, we have: 

 

o oV ZS=  (5) 
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Figure 1. Shortening mechanism of power battery life 

 

Figure 1 shows the shortening mechanism of power battery 

life. It can be seen that improper use will produce a passive 

film or block the surface of the electrodes. To ensure the 

charging rate without affecting the battery life, the charging 

current should not be too large for the power battery of new 

energy vehicles. Besides, the charging point of the battery is 

closely related to the discharging process, and the current 

acceptance rate β of the charging process is greatly affected by 

the discharging current. Therefore, the thermal management of 

the power battery can be optimized through the comprehensive 

control of the charging and discharging process. 

Ohmic polarization takes place throughout the charging and 

discharging process. Apart from that, the power battery of new 

energy vehicles experiences concentration difference 

polarization and electrochemical polarization. Let Vd be the 

voltage of concentration difference polarization; Φ be the gas 

constant; ψ be the battery temperature; ζ be the Faraday 

constant; Zd be the diffusion current. The concentration 

difference polarization can be expressed as: 

 

d

d

d

ZS
V ln

mG Z Z


=

−

 
(6) 

 

Let Zr denote the electrochemical exchange current. Then, 

the electrochemical polarization can be expressed as: 

 

o

r

S Z
V

mGZ


=

 
(7) 

 

Ohmic polarization, concentration difference polarization, 

and electrochemical polarization all reduce the ability of the 

power battery of new energy vehicles to withstand current. 

During the charging process, if the actual working current of 

the battery is greater than the upper limit of the acceptable 

current, irreversible damage will occur. This damage can be 

prevented through polarization elimination measures, such as 

using negative pulses, stopping charging, and optimizing 

materials. 
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3. COLLABORATIVE CONTROL STANDARDS 

 

The diverse specifications of the power battery of new 

energy vehicles complicate the thermal load in actual charging. 

Therefore, the battery thermal management strategy must 

adapt to power batteries of various specifications. In this study, 

the main controlling factors are collaboratively controlled for 

the thermal management during the fast charging of the power 

battery of new energy vehicles. The collaborative control 

standards and energy consumption laws of the system are 

detailed below. 

If the thermal management adopts the direct cooling 

strategy, the performance of the BTMS can be measured based 

on the system energy consumption. We selected the energy 

efficiency ratio (EER) to characterize the energy consumption 

of the system. The cooling capacity of the system per unit time 

is denoted by Wd, the power consumption of the compressor 

by Qdt, and the power consumption of the condenser fan by Qte. 

Then, the EER can be calculated by: 

 

d

dt de

W
EER

Q Q
=

+
 

(8) 

 

Our collaborative control aims to minimize the energy 

consumption of the BTMS. Under the premise of ensuring the 

operating temperature features required by the battery, the 

entire collaborative control process should be robust enough 

to adapt to the variation in various dynamic loads under the 

complex charging conditions. 

When the power battery of new energy vehicles is rapidly 

charged at different rates, the compressor, as the cooling 

source, needs to be adjusted accordingly. During the thermal 

management simulation, the speed of the compressor can be 

adjusted. This study fits the charging rate change curve of the 

power battery under different compressor speeds, using the 

least squares method. Let SEN be the compressor speed, and Sd 

be the charging rate of the power battery. Then, the fitting 

curve can be expressed as: 

 
3 24987 16734 20772 10723EN d d dM S S S= − + −  (9) 

 

Formula (9) shows that the compressor speed increases 

nonlinearly with the charging rate. 

If the cooling source boasts sufficient cooling capacity, the 

condenser fan speed can be adjusted to improve system 

performance and lower system energy consumption. During 

the simulation of thermal management, we adjusted the speed 

of the condenser fan, and fitted the change curve of the 

compressor speed with the charging rates. Let MSP denote the 

speed of the condenser fan. Then, the fitting curve can be 

expressed as: 

 
2254 712SP dM S= +  (10) 

 

Formula (10) shows that the speed of the condenser fan 

increases linearly with the charging rate. 

Under actual charging conditions, the thermal load is very 

complex, resulting in complex changes in both the starting and 

ending values of the charging current. To obtain the overall 

law of compressor following features, this study simulates and 

analyzes multiple variable current charging processes of the 

power battery of new energy vehicles. The compressor speed 

change rate is denoted by mEN, the current change rate by x, 

and the charging current by X. Through least squares fitting, 

the change law of compressor speed with currents can be 

expressed as: 
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(11) 

 

Under the actual condition of dynamic load charging, the 

speed following requirement on the condenser fan was defined 

as minimizing system energy consumption, while ensuring the 

working temperature features required by the battery. Let MSP 

be the change rate of the condenser fan speed. Through least 

squares fitting, the change law of condenser fan speed with 

currents can be expressed as: 
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(12) 

 

Based on the main controlling factors, the thermal 

management model tracking the current magnitude of the 

power battery of new energy vehicles cannot precisely control 

the charging/discharging process with nonlinearly changing 

current. To solve the problem, we monitored the current 

change rate of the power battery from the start time to the end 

time, and decided to perform battery thermal management 

under nonlinear current, with the correspondence between 

battery current change rate and the two main controlling 

factors (compressor speed and condenser fan speed) as the 

control objective. 

During the fast-charging simulation of the power battery, 

the current undergoes an exponential decay. Let Zp denote the 

instantaneous current of the battery, Z0 be the current at the 

start of the nonlinear change, and z be the current change index. 

Then, we have: 

 

0

zp

pZ Z o−=  (13) 

 

The above fitting formulas are combined. Let MEN0 be the 

compressor speed at the start; MSP0 be the condenser fan speed 

at the start. Then, the controlled values of the compressor 

speed and condenser fan speed can be respectively obtained as: 
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 (16) 

 

The above formulas show that the required speed can be 

obtained through integration of the correlations of the current 

change rate of the power battery with the compressor speed 

and condenser fan speed. 

 

 

4. HEALTH STATE ASSESSMENT 

 

This study combines the BPNN with AGA to establish a 

nonlinear model of the relationship between the health state 

indices for the power battery of new energy vehicles and the 

battery capacity, and uses the model to evaluate the health state 

of the battery. Figure 2 shows the roadmap of battery health 

state estimation. 
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Figure 2. Roadmap of battery health state estimation 

 

Firstly, the data were collected from the constant voltage 

charging of the power battery, including the charging current, 

charging voltage, operating time, and battery capacity. These 

data were compiled into an index series for health state 

assessment. The series was then optimized and verified. After 

that, the capacity of the power battery was estimated by our 

model, and the health state of the battery was further estimated. 

The proposed AGA-optimized BPNN works in the 

following steps: 

Step 1. Preset the population size, and ensure that the 

dimension of each chromosome is consistent with the number 

of parameters in the health state assessment problem of the 

power battery. 

Step 2. Solve the fitness of individuals in the population, 

and judge if the number of iterations has reached the maximum. 

Step 3. Perform crossover and mutation of high-fitness 

chromosomes. 

Step 4. Perform crossover between two good chromosomes, 

with s being the weight: 
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 (17) 

 

Step 5. Introduce new chromosomes to enhance the random 

search ability. 

Step 6. Produce a new population of chromosomes through 

crossover and mutation, and return to Step 2. Figure 3 shows 

the flow of the AGA-optimized BPNN. 
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Figure 3. Flow of our algorithm 

 

To enhance the adaptability of the proposed model, the 

AGA was adopted to adjust td and tn prior to crossover and 

mutation. The adjustment functions of the two parameters can 

be given as: 
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(18) 
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(19) 

 

The adaptive control parameters are denoted by l1, l2, l3, and 

l4, the maximum fitness in the population by gmax, the mean 

fitness in the population by g*, and the fitness of a mutated 

chromosome by g. 

From formulas (18) and (19), it can be learned that, when 

gmax-g’≈0, td and tn are approximately zero. This would lead to 

local convergence. To solve the problem, elite retention 

strategy was incorporated to the AGA. Then, the adjustment 

functions of td and tn can be revised into: 
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(20) 
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(21) 

 

If the individual fitness of a large chromosome differs 

slightly from gM, td and tn will be very large. In the opposite 

scenario, the two parameters will be very small. Then, high-

quality chromosomes will mutate, and poor-quality ones will 

undergo crossover. To prevent this problem, arctan function 

was adopted to improve the algorithm. Then, the adjustment 

functions of td and tn can be revised into: 
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The proposed AGA-optimized BPNN reduces the 

dispersion of td and tn values, which enhances the global search 

ability. As a result, our algorithm can accurately estimate the 

health state of the power battery of new energy vehicles. 

 

 

5. EXPERIMENTS AND RESULTS ANALYSIS 

 

To reveal the heat production difference between charging 

and discharging, this study simulates the heat production rate 

of the power battery during the two processes at different 

charging/discharging rates. The heat production rates of the 

two processes are compared in Figure 4. When the charging 

rate equaled the discharging rate, the heat production rate of 

the power battery in the charging process was lower than that 

in the discharging process. At a low charging/discharging rate, 

the power battery needed to absorb heat from the surroundings, 

after the battery percentage fell below 40%. With the growth 

of the charging/discharging rate, the power battery started to 

emit heat, but the heat production rate during charging was 

lower than that during discharging. 

Next, the thermal management and cooling of the power 

battery during charging and discharge were simulated to 

disclose the regulation difference between compressor speed 

and condenser fan speed. Figure 5 presents the compressor 

speed and condenser fan speed curves at different rates. It can 

be learned that, during the discharging process, the compressor 

speed and condenser fan speed increased linearly, with the 

growth of the discahrging rate. The compressor speed changed 

more significantly than the condenser fan speed. 

Figure 6 compares the fitness curves of different 

optimization algorithms. Our algorithm converged after 22 

iterations. The fitness curve was clearly nonlinear, a sign of 

high precision. Table 1 provides the battery health states 

estimated by the original BPNN and the proposed AGA-

optimized BPNN. It can be observed that our model is more 

accurate than the original BPNN in estimating the health state 

of the power battery of new energy vehicles: The mean 

average error (MAE) of our model was 0.22 lower than that of 

BPNN, and the mean squared error (MSE) of our model was 

0.089 lower than that of BPNN. To better demonstrate the 

effectiveness of our model, Figure 7 illustrates the health state 

estimation of the power battery. 

Table 2 shows the correlations between the indices of 

battery health state and battery capacity. It can be observed 

that the charging current, charging voltage, and operating time 

of the power battery all have a strong correlation with battery 

capacity. Hence, the selected indices are feasible for indirectly 

estimating the health state of the battery. 

Figure 8 displays the correlations of battery health level 

with constant voltage charging capacity and number of 

charging/discharging cycles. It can be seen that the battery 

health gradually deteriorated with the growing number of 

charging/discharging cycles. The constant voltage charging 

capacity slowly increased with that number, and oscillated 

significantly between the 45th to 75th iterations. This confirms 

the correlations between the charging capacity of the power 

battery and the health state. 

 

 
(1) Charging 

 

 
(2) Discharging 

 

Figure 4. Heat production rates of the power battery during 

charging and discharging 

 

 
 

Figure 5. Compressor speed and condenser fan speed curves 

at different rates 
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Figure 6. Fitness curves of different optimization algorithms 
 

 
 

Figure 7. Health state estimation of the power battery 

 

 
 

Figure 8. Correlations of battery health level with constant 

voltage charging capacity and number of 

charging/discharging cycles 

 

Table 1. Battery health states estimated by different methods 

 
Metric BPNN Pre-evolution Post-initial evolution Our model 

MAXE 4.9528 4.3962 5.7418 4.1261 

MINE 5.1427e-5 4.0358e-4 8.9265e-2 3.0748e-8 

MAE 0.9152 0.8347 0.7529 0.6935 

MSE 1.2515 1.2235 1.2485 1.1625 
Note: MAXE and MINE are short for maximum error and minimum error, 

respectively 

Table 2. Correlations between indices and battery capacity   

  
Battery Group 1 Group 2 Group 3 Mean 

Charging current -0.9185 -0.9362 -0.9487 -0.9152 

Charging voltage -0.9134 -0.9608 -0.9741 -0.9861 

Operating time -0.9473 -0.9185 -0.9618 -0.9346 

 

 

6. CONCLUSIONS 

 

This paper mainly deals with the battery thermal 

management and health state assessment of new energy 

vehicles. Firstly, we analyzed a typical phenomenon of the 

power battery: the fast charging is very likely to cause 

overheating. By analyzing this phenomenon. On this basis, we 

determined that the battery thermal management can be 

optimized through the comprehensive control of the charging 

and discharging processes. After that, we collaboratively 

controlled the main controlling factors for the thermal 

management, and detailed the collaborative control standards 

and energy consumption laws of the system. Then, the BPNN 

was combined with the AGA to model the nonlinearity 

between health state indices and battery capacity of the power 

battery of new energy vehicles. The model was then applied to 

estimate the health state of the battery.   

To reveal the heat production difference between charging 

and discharging, this study simulates the heat production rate 

of the power battery during the two processes at different 

charging/discharging rates. Next, we plotted the compressor 

speed and condenser fan speed curves at different rates, and 

verified that: during the discharging process, the compressor 

speed and condenser fan speed increased linearly, with the 

growth of the discharging rate. The compressor speed changed 

more significantly than the condenser fan speed. Furthermore, 

the fitness curve of our improved optimization curve was 

presented. It was found that our algorithm converged after 22 

iterations. The fitness curve was clearly nonlinear, a sign of 

high precision. Finally, we provided the results on the 

correlations between the indices of battery health state and 

battery capacity, which confirm that the selected indices are 

feasible for indirectly estimating the health state of the battery. 
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