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The project under study investigates Soret-generated convection in a horizontal rectangular 

cavity filled with a non-Newtonian binary fluid. The cavity's two horizontal walls are 

exposed to uniform fluxes of heat, whereas the two vertical walls are adiabatic and 

impermeable. The study focuses on the effects of different key parameters, including the 

cavity aspect ratio (A), the Lewis number (Le), the buoyancy ratio (N), the power-law 

behavior index (n), the generalized Prandtl (Pr) and thermal Rayleigh (RaT) numbers. The 

mathematical model, describing the Soret-generated convection phenomenon, is presented 

by non-linear differential equations, which are solved numerically on the basis of finite 

volume method. An analytical solution of the problem is proposed derived from the parallel 

flow approximation in the core of the cavity. The degree of agreement of the numerical 

finding and analytical predictions is seen to be good. Representative results for the central 

stream function, Nusselt and Sherwood numbers as well as streamlines, isotherms and iso-

concentrations are depicted as functions of the main parameters mentioned above. For 

opposing flows, the initiation and development of convective motion are explored. The 

fluid flow's behavior was discovered to be highly influenced by the values of n and N. The 

beginning of motion is predicted to be governed by supercritical and subcritical Rayleigh 

numbers.  
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1. INTRODUCTION

Thermal diffusion or the Soret effect appears when a 

mixture is exposed to a temperature gradient. A mass flow is a 

result of a thermal gradient as a response of the system. 

Analytical and numerical investigations of the Soret effect 

have revealed that this phenomenon exhibits much more 

varied behavior in convective motions. This type of convective 

transport has attracted the interest of researchers for several 

decades because of its significance in a variety of natural and 

engineering processes. In nature, we can mention, on a non-

exhaustive basis, the convective movements encountered in 

the oceans and the operation of solar ponds. The most 

recurrent applications of this phenomenon in industry include 

processes for the extraction of fluids in oil and natural gas 

deposits, separation processes in the chemical industry, the 

underground diffusion of nuclear waste and other 

contaminants, melting and solidification binary alloys, water 

desalination operations, crystal growth, etc. 

The majority of research on this topic focuses on the Soret-

generated convection of a horizontal cavity. Bahloul et al. [1] 

and Bourich et al. [2] studied analytically and numerically the 

initiation and development of subcritical and supercritical 

convection in a horizontal porous layer subjected to uniform 

densities of heat and mass fluxes at its horizontal walls. For 

the same configuration, Bourich et al. [3] applied a magnetic 

field on the Soret convection. They used linear stability to 

determine the limits of subcritical, Hopf and stationary 

convection, where various flow patterns may arise. It was 

found that the magnetic buoyancy forces limit heat transfer 

rate. However, it can enhance or reduce mass transfer 

depending on the values of the Hartmann number. Rebhi et al. 

[4] investigated the same problem taking into account the

Dufour effect. Their results show that the Soret and Dufour

parameters affect greatly the heat and mass transfer rates. The

magnetic flux delays the onset of motion. Alloui et al. [5] have

taken up the same problem in pure fluid media. They predicted

numerically the critical Rayleigh number for the start of

Hopf’s bifurcation using stability analysis and the critical

Rayleigh number for the start of convection were anticipated

by the asymptotic model. In the same spirit, Lagra et al. [6]

analyzed Soret-Dufour effects on thermosolutal convection.

Recently, Filahi et al. [7] also studied the effect of Soret and

Dufour parameters on double diffusive convection in

rectangular horizontal Brinkman porous cavity with an

undeformable free top surface, whereas the other walls are

rigid. They declared that the Soret and Dufour parameters

affect strongly the strength of convection and the

corresponding heat and solute transfer rates. Mansour et al. [8]

investigated the problem of double diffusive instability in the

same geometry subjected to vertical fluxes of heat and solute.

They investigated the particular case where the imposed heat

flux on the sides of the cavity is equilibrated by the thermal-

diffusion effects. It was found that the lateral heating has a

significant impact on flow and heat transmissions, but it has

no influence on mass transfer. Wang et al. [9] analyzed

numerically the impact of Dufour and Soret parameters in the

same geometry submitted to the high temperature and
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concentration on its bottom wall. They demonstrated that the 

average Nusselt and Sherwood numbers increase with increase 

of Soret and Dufour coefficients. Wang et al. [10] studied the 

flow structure and the heat and mass transfers of thermosolutal 

convection in the same cavity with coupling-diffusion 

interaction under varying Rayleigh number and buoyancy ratio. 

They showed that the Nusselt and Sherwood numbers 

increased linearly with Soret and Dufour coefficients, 

particularly for high Rayleigh numbers. Another study of the 

Soret-driven convection was investigated by Charrier-Mojtabi 

et al. [11] in a porous cavity submitted to uniform but various 

temperatures on its long surfaces using stability analysis. They 

concluded that the stability of mechanical equilibrium solution 

depends on the normalized porosity and the separation ratio. 

As a result, the equilibrium solution was strongly affected by 

the normalized porosity and the separation ratio. Recently 

Mojtabi [12] developed a new process developing the species 

separation of a binary medium under microgravity by using a 

rectangular layer. The resulting convection of a binary fluid 

was engendered by regular velocities applied on the two 

horizontal walls of the layer that are subjected to constant but 

different temperatures. As a result, the species separation is is 

much enhanced compared to that of thermo-gravitational 

vertical columns (TGC). Mutschler and Mojtabi [13] extended 

the problem of Soret-generated convection in a horizontal 

porous layer filled with a binary fluid to an n-component 

mixture. The first part of the paper included an analytical and 

numerical investigation of the onset of Soret-generated 

convection. The research was based on the Darcy-Boussinesq 

equations, which allowed for a mechanical solution in the pure 

double-diffusive regime. The separation was expressed in 

terms of the governing parameters of the problem in the 

second portion, which included the asymptotic solution for the 

unicellular flow. 

Indeed, in the most of the chemical and allied processing 

industries, the fluid flow shows a non-Newtonian behavior. 

Considerable efforts have been devoted to the analysis of 

various convection processes in non-Newtonian fluids, 

although the results obtained are still few compared to that of 

the Newtonian case. Benhadji and Vasseur [14] used the Darcy 

model to investigate the double-diffusive convection flows in 

rectangular layer saturated with a power-law fluid saturated 

porous medium. The cavity is supposed heated and salted from 

all boundaries. They examined the effect of the main 

governing parameters including thermal Rayleigh number, 

Lewis number and buoyancy ratio on the strength of 

convection and heat and mass transfer characteristics. The 

onset of double-diffusive and Soret-generated convection in 

the same geometry heated and salted from below was 

investigated by Khelifa et al. [15]. The reported results show 

that the flow behavior is highly influenced by the value of 

power-law index and buoyancy ratio. The onset of convection 

is supercritical for a dilatant fluid for aiding buoyancy forces 

while it is subcritical for opposing buoyancy ratio. Convection 

occurs via subcritical bifurcation for a pseudo-plastic one 

independently of the value of buoyancy ratio. In pure fluid 

media, Rebhi et al. [16] focused on the study of bistability of 

bifurcation in the same geometry filled with a non-Newtonian 

fluid obeying Carreau-Yassuda model. They showed that the 

bistability convection is influenced by the buoyancy ratio. 

Saeed et al. [17] investigated double-diffusive transport in 

Casson fluid flows under magnetic field. It has been 

demonstrated that changing the fluid properties, the magnetic 

field, and its angle of incidence greatly increases the Nusselt 

number in the thin-wall limit. In this sense, Amari et al. [18] 

published an analytical and numerical study of non-Newtonian 

fluid natural convection in a horizontal porous layer heated 

from the side-walls, or from the horizontal ones. The flow and 

temperature fields, as well as the Nusselt numbers, are clearly 

expressed in terms of the modified Rayleigh number and the 

power-law index. It was found that the velocity fields and the 

temperature distribution, as well as the Nusselt numbers, are 

affected by the power-law index. Recently, Bihiche et al. [19] 

studied the effects of double-diffusive convection in 

rectangular enclosure of power-law fluids with lateral heat and 

mass fluxes. As a result, the existence of a multiple steady 

states is proved in the case of opposing flows. Recently, Li et 

al. [20] investigated the bifurcation phenomenon of 

thermosolutal convection arising when the flow loses its 

symmetry with an internal thermal and solutal source in a 

horizontal layer. The results presented show that the symmetry 

of the system can be destabilized by increasing buoyancy ratio 

also the strong couple diffusion effect delays the onset of 

motion. In the case of a square cavity, a numerical study was 

performed by Makayssi et al. [21] to examine the influence of 

a magnetic field on natural double-diffusive convection of an 

electroconductor non-Newtonian binary fluid. Consequently, 

the magnetic field only appears to have a significant impact on 

the Nusselt and Sherwood numbers only at moderate thermal 

Rayleigh numbers.  

Kefayati and Tang [22] simulated heat and mass transfer of 

three dimensional double diffusive natural convection and 

entropy generation of a non-Newtonian Carreau-Yasuda fluid 

in a cubic layer. They examined the effect of the main 

controlling parameters including Carreau number, Carreau-

Yasuda parameter, power-law indexes, Lewis number, 

thermal Rayleigh number and buoyancy ratio on the entropy 

generations and heat and mass transfers. 

It is clear that so far, the resulting natural convection of non-

Newtonian fluid confined in rectangular cavity, except for the 

study carried out by Khelifa et al. [15] in the case of a porous 

media, the Soret effect have been neglected while it has 

demonstrated that they have a significant impact on heat and 

mass transports. Thus, the present study focuses on the 

problem of the onset of convection and the resulting Soret-

generated convection of a non-Newtonian binary fluid in pure 

fluid rectangular cavity subject to vertical fluxes of heat.  

 

 

2. MATHEMATICAL FORMULATION OF THE 

PROBLEM 

 

Figure 1 depicts the flow configuration under study. It 

consists of a horizontal rectangular layer of height H′ and 

length L′ saturated with a power-law non-Newtonian binary 

fluid. The horizontal walls of the cavity are subject to constant 

fluxes of heat while the short vertical ones are impermeable 

and adiabatic. The Prandtl number is fixed at Pr = 100.  

For a simple formulation of the mathematical model, we 

will consider some approximations which are often used in the 

study of natural convection. We then assume that: 

• The fluid velocities are low enough that the flow can 

be classified as laminar. Due to modest temperature 

gradients, fluid circulation is slow in most buoyancy-

driven motions [23]. 

• The fluid is incompressible. With a good 

approximation for pressures approaching 

atmospheric, liquids can be termed incompressible 
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fluids. 

• The work of the viscous forces is negligible. This 

approach, according to Turki [24], is valid for 

polymer solutions that are faintly concentrated. 

• The cavity's third dimension is large enough to make 

the problem two-dimensional. 

• The thermophysical properties of the considered fluid 

are constant except for the density for which the 

Boussinesq approximation remains valid. It depends 

on both the local temperature and concentration by 

the state equation:  

 

 = 
0

[1 − 
T

(T′ − Tc
′)−βS(S′ − Sc

′ )] 

 

where, 
0
 is the fluid mixture density at T′ = Tc

′ and S′ = Sc
′  

and 
T

 and 
S
 are the thermal and concentration expansion 

coefficients, respectively. 

 

 
 

Figure 1. Geometry of the present study 

 

Several mathematical models have been presented in the 

literature to model the behavior of non-Newtonian fluids. In 

this work, we are particularly interested in fluids with time-

independent behavior and more particularly in dilatant and 

pseudoplastic fluids. For these types of fluids, the empirical 

power law model proposed by Ostwald-de Waele (1925) is the 

most widely adopted in the literature. The following statement 

expresses this law in the Cartesian coordinates system, in term 

of laminar apparent viscosity, is, 

 

μa
′ = k [2 [(

∂u′

∂x′
)

2

+ (
∂v′

∂y′
)

2

] + [
∂u′

∂y′
+

∂v′

∂x′
]

2

]

n−1
2

 (1) 

 

where, k and n are two empirical parameters known as the 

consistency factor and power-law index of the fluid, 

respectively. It's worth noting that these values have no 

physical significance. For 0 < n < 1, the fluid is considered 

to be pseudo-plastic (or shear-thinning). However, the fluid is 

referred to be dilatant (or shear-thickening) for n > 1. The 

case n = 1 corresponds to the Classical Newtonian behavior.  

Considering the simplifying assumptions stated above, the 

basic equations governing the flow and the heat and mass 

transfers within the cavity considered are given by: 

 
∂u

∂x
+

∂v

∂y
= 0 (2) 

 
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −

∂p

∂x
 

+Pr [μa (
∂2u

∂x2
+

∂2u

∂y2
) + 2

∂μa

∂x

∂u

∂x
+

∂μa

∂y
(

∂u

∂y
+

∂v

∂x
)] 

(3) 

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −

∂p

∂y

+  Pr [μa (
∂2v

∂x2
+

∂2v

∂y2
) + 2

∂μa

∂y

∂v

∂y

+
∂μa

∂x
(

∂u

∂y
+

∂v

∂x
)]

+ RaTPr(T + NS) 

(4) 

 

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

∂2T

∂x2
+

∂2T

∂y2
 (5) 

 

∂S

∂t
+ u

∂S

∂x
+ v

∂S

∂y
=

1

Le
[(

∂2S

∂x2
+

∂2S

∂y2
)

− (
∂2T

∂x2
+

∂2T

∂y2
)] 

(6) 

 

Solving the system of the Eqns. (2)-(6), requires a certain 

number of boundary conditions defined as follows: 

 

u = v = 0 ,
∂T

∂x
=

∂S

∂x
= 0 for x = 0 and A (7) 

 

u = v = 0,
∂T

∂y
= −1,

∂S

∂y
=

∂T

∂y
= −1 for y

= 0 and 1 

(8) 

 

where, μa  is the dimensionless apparent viscosity, that is 

defined for the two-dimensional Cartesian coordinates as: 

 

μa = [2 [(
∂u

∂x
)

2

+ (
∂v

∂y
)

2

] + [
∂u

∂y
+

∂v

∂x
]

2

]

n−1
2

 (9) 

 

The flow pattern can be examined by introducing the stream 

function, ψ, defined as: 

 

u =
∂ψ

∂y
 and v = −

∂ψ

∂y
(ψ = 0 on all boundaries) (10) 

 

The dimensionless control parameters that appear are: 

 

A =
L′

H′
 , Le =

α

D
, N =

βS∆S∗

βT∆T∗
, Pr

=
(

k
ρ

) H′2−2n

α2−n
 and  

 RaT =
gβTH′2n+2q′

(k/ρ)αnλ
 

(11) 

 

The group A is the aspect ratio of the enclosure. The Lewis 

number Le compares the mass diffusivity with the thermal 

diffusivity. The buoyancy ration N is a measure of the relative 

contribution of concentration and thermal diffusion to the 

variation of the density which drives convective flow. The two 

last dimensionless groups are the Prandtl and thermal Rayleigh 

numbers, respectively. 

The Newtonian expressions for Pr and RaT are obtained by 

setting in the above expressions n = 1 and k = . 

The local Nusselt and Sherwood numbers are defined to 

express the heat and mass transports. They are defined as 

follows: 
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Nu̅̅ ̅̅ =
1

𝐴
∫

1

∆T(x)

1

0

dy and Sh̅̅ ̅ =
1

𝐴
∫

1

∆S(x)

1

0

dy (12) 

 

where, ∆T(x) = T(x, 0) − T(x, 1)  and ∆S(x) = S(x, 0) −
S(x, 1)  are the dimensionless local temperature and 

concentration differences. 

 

 

3. NUMERICAL SOLUTION 

 

The governing equations (2)-(6) related to the boundary 

conditions (7)-(8), are solved numerically on the basis a finite 

volume method using SIMPLER algorithm [25]. Thereafter, 

the discretized equations for each control volume in the flow 

domain can be solved easily by a generalization of the 

tridiagonal matrix (TDMA) algorithm with relaxation. The 

solution procedure is repeated until the convergence criteria is 

attained when  ∑ |fi,j
k+1 − fi,j

k |i,j < 10−5 ∑ |fi,j
k+1|i,j , where fi,j

k  

represents the value of u, v, p, T or S at the node (i, j) for the 

kth iteration level in the plane (x, y). 

The effects of the flow behavior index, n, on the flow 

structure, temperature and concentration distributions, are 

illustrated in Figure 2 for A = 24, Pr = 100, Le = 2, N = -0.02, 

RaT = 103. It should be noted that the resulting flow pattern can 

be either clockwise or counterclockwise. The numerical 

results presented here were obtained for the positive value of 

ѱ𝐶. As can be seen from this figure, it is clear that isotherms 

and iso-concentrations become less inclined, while decreasing 

n, which proves, thus, that the flow intensity is a decreasing 

function of power-law index, n.  

 

 

 

 
n = 0.6 

 

 

 

 
n = 1.0 

 

 

 

 
n = 1.4 

 

Figure 2. Streamlines (top), isotherms (middle) and iso-

concentrations (bottom) for A = 24, Pr = 100, Le = 2, N = -

0.02, RaT = 103 and different power-law indexes values of n 

Several tests, for different mesh sizes, are carried out in 

similar conditions for the purpose of determining the suitable 

grid field to conduct accurately the present study in terms of 

running time and precision of the computations.  

Hence, the grid size of 381x121 is jugged sufficient to 

model accurately the present study with an aspect ratio A = 24. 

The values of time-step are varied from 10-5 to 10-3, depending 

on the controlling parameters of the study. The present 

numerical code can be validated for the case studied by Alloui 

et al. [5] for the particular case of Newtonian fluid (the 

convection induced purely by Soret effect can be found by 

replacing j = 0 in the reference of Alloui et al. [5]. In this case, 

the results obtained by our code are brought to the same 

conditions held by the reference). The numerical results 

obtained by these authors as well as our results are grouped in 

Table 1. The comparison between these results shows that the 

maximum error is around 4%. In addition, the analytical 

solution which will be discussed in the next section also made 

it possible to validate the numerical code. 

 

Table 1. Validation of the numerical code, for n = 1, in terms 

of ψmax, Nu̅̅ ̅̅  and Sh̅̅ ̅ 

 
Alloui et al. (2010) Present study 

ψmax Nu̅̅ ̅̅  Sh̅̅ ̅ ψmax Nu̅̅ ̅̅  Sh̅̅ ̅ 

1.29 1.29 3.20 1.24 1.284 3.197 

 

 

4. PARALLEL FLOW ANALYSIS 

 

The numerical results illustrated in Figure 2 show that the 

flow is parallel in the central part of the enclosure, i.e. v = 0, 

thus we have: 

 

ψ(x, y) = ψ(y), u(x, y) = u(y) T(x, y)
= CT(x − A/2)
+ θT(y) and S(x, y)
= CS(x − A/2) + θS(y) 

(13) 

 

where, CT  and CS  are unknown constant temperature and 

concentration gradients respectively, in the x-direction (see for 

instance Refs. [21, 26, 27]). On the basis of these 

simplifications, Eqns. (2)-(6) reduce to the following systems 

of equations: 

 

d2

dy2
[|

du(y)

dy
|

n−1 du(y)

dy
] = (CT + NCS)RaT (14) 

 

d2θT(y)

dy2
= CTu(y) and 

d2θS(y)

dy2

= (LeCS + CT)u(y) 

(15) 

 

u = 0,
dθT

dy
= −1,

dθS

dy
=

dθT

dy
= −1 for y = 0 and 1 (16) 

 

with 

 

∫ u(y)dy

1

0

= 0, ∫ θT(y)dy = 0 and 

1

0

∫ θS(y)dy = 0

1

0

 (17) 

 

as return flow and mean temperature and concentration 

conditions, respectively (see for instance Refs [21, 26]). 
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Because of the high coupling and nonlinear character of the 

governing equations, integrating Eqns. (14) and (15) with 

conditions (16) and (17) is difficult and necessitates a 

particular numerical approach. In reality, due to the non-linear 

rheological effect of the fluid behavior and the change in the 

velocity gradient sign, the velocity expressions alter 

depending on whether 0 ≤ y ≤ y0, y0 ≤ y ≤ y1  or y1 ≤ y ≤
1 where y0 and y1 are the y-coordinates for which du/dy = 0. 

They are obtained from Eq. (17), which is numerically 

resolved by combining Gauss-Legendre integration and 

Regula-Falsi iteration methods [28, 29]. The function f(y) =
(y2 − y + y0y1)/2  is introduced to simplify the velocity, 

temperature, and concentration expressions. As a result,u(y), 

θT(y) and θS(y) can be expressed as: 

 

u(y) = RaT
1/n(CT + NCS)1/nF(y) (18) 

 

θT(y) = CTRaT
1/n(CT + NCS)1/n [G(y) − ∫ G(y)dy

1

0

]

− [𝑦 −
1

2
] 

(19) 

 

θS(y) =
LeCS + CT

CT

θT(y) + [
(LeCS + CT)

CT

] [𝑦 −
1

2
] (20) 

 

where, the functions F(y) and G(y) are defined as: 

 

- 0 ≤ y ≤ y0 

 

F(y) =  ∫[f(y)]1/ndy

y

0

 (21) 

 

G(y) =  ∫ [∫ [∫[f(y)]
1
ndy 

y

0

] dy 

y

0

] dy

y

0

 (22) 

 

- y0 ≤ y ≤ y1 

 

F(y) =  ∫ [f(y)]1/ndy 

y0

0

+ ∫ [−f(y)]1/ndy 

y0

y

 (23) 

 

G(y) =
(y − y0)2

2
∫ [f(y)]

1
ndy

y0

0

+ ∫ [ ∫ [∫ [−f(y)]
1
ndy

y0

y

] dy

y

y0

] dy

y

y0

 

+ (y − y0) ∫ [∫[f(y)]
1
ndy

y

0

] dy

y0

0

+ ∫ [∫ [∫[f(y)]1/ndy

y

0

] dy

y

0

] dy 

y0

0

 

(24) 

 

- y1 ≤ y ≤ 1 
 

F(y) =  ∫ [f(y)]
1
ndy 

y0

0

+  ∫ [−f(y)]
1
ndy 

y0

y1

+ ∫[f(y)]1/ndy 

y

y1

 

(25) 

 

G(y) =
1

2
(y − y1)(y + y1

− 2) [∫ [f(y)]
1
ndy

y0

0

+ ∫ [−f(y)]
1
ndy 

y0

y1

]

+ ∫ [∫ [ ∫[f(y)]
1
ndy

y

y1

] dy

y

1

] dy

y

y1

+
1

2
(y1 − y0)2 ∫ [f(y)]

1
ndy 

y0

0

+ (y1 − y0) ∫ [∫[f(y)]
1
ndy

y

0

] dy

y0

0

+ ∫ [ ∫ [∫ [−f(y)]
1
ndy

y0

y

] dy

y

y0

] dy

y1

y0

 

+ ∫ [∫ [∫[f(y)]1/ndy

y

0

] dy

y

0

] dy

y0

0

 

(26) 

 

At this stage, it is advisable to introduce the current function 

at the center of the cavity in order to be able to measure the 

intensity of the convection. Its expression can be deduced 

simply by integrating Eq. (10) and considering the associated 

boundary conditions. We then obtain: 

 

ψc = ψ (y =
1

2
) =

RaT
1/n(CT + NCS)1/n

Dn

 (27) 

 

where, 

 

Dn = [(
1

2
− y0) ∫ [f(y)]1/ndy

y0

0

+ ∫ (∫[f(y)]1/ndy

y

0

) dy

y0

0

+ ∫ (∫ [−f(y)]1/ndy

y0

y

) dy

1/2

y0

]

−1

 

(28) 

 

Therefore, taking into consideration the Eq. (27), u(y) , 

θT(y) and θS(y) can be expressed as: 
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u(y) = DnψcF(y) (29) 

 

θT(y) = CTDnψc [G(y) − ∫ G(y)dy

1

0

] − [𝑦 −
1

2
] (30) 

 

θS(y) = LeCSθT(y) + [
LeCS

CT

− 1] [𝑦 −
1

2
] (31) 

 

Obviously, the boundary conditions in the x-direction, 

given by Eqns. (7) and (8), cannot be fulfilled with the parallel 

flow solution. It is then necessary, for calculating the gradients 

CT  and CS , to make energy and mass balances on a control 

volume connecting the region of the parallel flow to an edge 

of the cavity [30]. We then have: 

 

∫ uTdy

1

0

= ∫
∂T

∂x
dy

1

0

 and Le ∫ uSdy

1

0

= ∫
∂S

∂x
dy

1

0

 (32) 

 

Using the approximations, Eq. (13), together with the 

conditions (7) and (8), Eq. (32) becomes: 

 

∫ uθTdy = CT

1

0

 and Le ∫ uθSdy

1

0

= CS (33) 

 

Substituting Eqns. (29), (30) and (31) into Eq. (33) and 

integrating, considering the conditions (17), CT and CS can be 

obtained as: 

 

CT =
BnDnψc

1 − An(Dnψc)2
 and CS =

LeBnDnψc

(1 − Le2An(Dnψc)2)
 (34) 

 

where, 

 

An =  ∫ F(y)G(y)dy

1

0

 and Bn =  − ∫ yF(y)dy

1

0

 (35) 

 

Thus, when CT  and CS  are replaced with their respective 

expressions into Eq. (27), we end up with the following 

transcendental equation: 

 

[An
2 Le2Dn

4ψc
4 − An(Le2 + 1)Dn

2ψc
2 + 1]Dn

nψc
n

+ RaT[AnBnLe2Dn
3ψc

3

− Bn(1 + N + NLe)𝐷𝑛ѱ𝑐] = 0 

(36) 

 

The values of the coefficient An, Bn and Dn are given with 

those of y0 in Table 2. 

 

Table 2. Coefficients y0, An, Bn and Dn for different values of 

n 

 
n y0 Dn An Bn 

0.6 0.19915 2904.6982 -0.484910-7 0.186010-3 

0.8 0.20608 824.6777 -0.599810-6 0.650710-3 

1.0 0.21132 383.9999 -0.275610-5 0.138910-2 

1.2 0.21544 229.6020 -0.767910-5 0.231010-2 

1.4 0.21877 158.5755 -0.160410-4 0.333010-2 

 

The value of ψc can be evaluated by solving Eq. (36) with 

the Newton-Raphson method, and the values of CT and CS are 

determined from Eq. (34), for any combination of the 

governing parameters Le, N, n and RaT. 

Finally, considering Eq. (12), the final form of the average 

Nusselt and Sherwood numbers are as follows: 

 

 Nu̅̅ ̅̅ =
1

2θT(0)
 and Sh̅̅ ̅ =

1

2θS(0)
 (37) 

 

 

5. RESULTS AND DISCUSSION 

 

The main purpose of this research is to illustrate the effect 

of the control parameters on the Nusselt and Sherwood 

numbers as well as on the flow structure. Several researchers 

(see for instance Refs. [26, 31, 32]) have demonstrated that the 

convection is largely immune to Pr variations if this number is 

large enough. Therefore, Pr is kept at a constant value Pr = 100. 

The thermal Rayleigh number RaT, the power-law index n, the 

Lewis number Le and the buoyancy ratio N are therefore the 

parameters regulating the problem. 

 

5.1 Effect of 𝐑𝐚𝐓 and n  

 

The effect of the power law index and thermal Rayleigh 

number on the onset of motion and heat and mass transfer rates 

are examined in this section for the case of opposing flows. 

Figure 3 shows the values of ψc versus RaT for -0.5  N  0 

for which the destabilizing thermal influence competes with a 

stabilizing solutal influence. The behavior of ψc  depend 

strongly on the values of N and n and present significant 

changes as displayed in Figure 3. The case of Newtonian fluid 

will be discussed first. As observed from Figure 3, for N ≥ N∗, 

where N∗ = −0.067 , the pitchfork bifurcation curve is 

obtained at a supercritical Rayleigh number RaTC
Sup

=

901.1251  and 742.2693 for N = −0.067  and N = −0.01 , 

respectively. For N  N∗, convection becomes subcritical and 

occurs with a finite amplitude convection. Thus, the problem 

presents a multiplicity of solutions for the same value of the 

governing parameters in comparison with that of N ≥ N∗ . 

Therefore, the corresponding critical Rayleigh number is now 

RaTC
Sub = 1464.028  and 2015.309 for N = −0.27  and N =

−0.5, respectively. For this particular case, i.e. for n = 1, it can 

be easily proved that the subcritical Rayleigh number for the 

start of motion is given by: 

 

RaTC
Sub =

An
2 Le2Dn

4ψcc
4 − An(Le2 + 1)Dn

2ψcc
2 + 1

Bn(1 + 𝑁 + 𝑁𝐿𝑒) − AnBn(Le2)Dn
2ψcc

2
 (38) 

 

where, 

 

ψcc = [
Le(1 + 𝑁 + 𝑁𝐿𝑒) − [C1]

1
2

AnLe4Dn
2

]

1
2

 (39) 

 

where, 

 

C1 = Le2(1 + 𝑁 + 𝑁𝐿𝑒)2 + Le4

− (Le2 + 1)Le2(1 + 𝑁 + 𝑁𝐿𝑒) 
(40) 

 

The condition N  N∗ must be fulfilled for the presence of 

subcritical convection. The corresponding results obtained for 

the case of a dilatant fluid are reported in Figure 3. Here, when 
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N ≥ N1
∗, where N1

∗  = −0.2335, any Rayleigh number greater 

than zero can cause convection (RaTC
Sup

= 0). On the other 

hand, for N2
∗ < N < N1

∗, where N2
∗  = −0.34, RaTC

Sup
 is always 

zero but the problem now presents three solutions for a given 

RaT. For N ≤ N2
∗, the convection becomes subcritical. It is also 

shown that the number of multiple solutions is reduced to two 

instead of three for a given RaT. However, for a pseudoplastic 

fluid, contrarily to case of Newtonian and dilatant fluids, ψc 

presents the same behavior whatever the value of N. In fact, as 

it can be seen from Figure 3, convection occurs as a result of a 

subcritical bifurcation for all the selected value of N. It should 

be pointed out that, for all graphs of this study, the analytical 

solution represented by the solid (stable solution) agree closely 

with numerical predictions depicted by blackened symbols. 

Numerical solutions for the unstable branch were not available 

(dashed line). Figures 4 and 5 illustrate the corresponding 

Nusselt and Sherwood numbers, Nu̅̅ ̅̅  and Sh̅̅ ̅, as a function of 

RaT, for Le = 2, N = -0.5 and different value of n. Here again, 

the analytical predictions agree well with the numerical 

simulations. It is observed that convection is only attainable if 

the Rayleigh number reaches a subcritical value RaTC
Sub =

528.19 , 2015.309  and 7061.414  for n = 0.6, 1 and 1.4 

respectively. Here again, the analytical predictions agree well 

with the numerical simulations.  

It is observed from this figure that, Nu̅̅ ̅̅  increases by 

increasing RaT  while Sh̅̅ ̅  increases considerably at the 

beginning with RaT until it reaches a maximum, for a given 

value of RaT, then decreases to reach an asymptotic value.  

The profile of horizontal velocity at the mid-length of the 

layer (x = A/2) is shown in Figure 6. It is noticed that the 

numerical simulations agree well with their analytical 

counterparts. It is noted also from Figure 6 that, for the 

parameters considered here, the rest state is reached only for 

the case of Newtonian fluid and it is never reached for a 

dilatant and pseudoplastic fluid, which is in agreement with 

the results obtained above. In fact, for the parameters 

considered here, namely Le = 2, RaT = 901.125, n = 1 and 

different values of N such as 0  N ≤ -0.5. The corresponding 

buoyancy ratio for the start of motion is given by N = -0.067 

as predicted by Eq. (38). Thus, the start of motion is 

conditioned by N  -0.067. 

 

 

 
 

Figure 3. Bifurcation diagram in term of ѱ𝐶 versus RaT for Le = 2 and different values of n and N
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Figure 4. Bifurcation diagram in term of Nu̅̅ ̅̅  versus RaT for Le = 2, N = -0.5 and different values of n 

 

 
 

Figure 5. Bifurcation diagram in term of Sh̅̅ ̅ versus RaT for Le = 2, N = -0.5 and different values of n 
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Figure 6. Effect of N on the horizontal velocity profiles for Le = 2 and different values of n and RaT 

 

 
 

Figure 7. ψc as a function of N for Le = 2 and different values of RaT and n 
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function is illustrated on Figure 7 in terms of ψc variations vs. 

N for Le = 2 and different values of n and RaT. For the case of 

pure thermal convection (N = 0), the ensuing flow, driven only 

by the imposed temperature gradients, proceeds counter-

clockwise. For n = 0.6, the results presented in Figure 7 are 

obtained for RaT = 500. According to this figure, convection is 

only attainable if the buoyancy ratio reaches a subcritical value 

NC
Sub = −0.4326, above this critical value, the strength of the 

flow intensity is enhanced by an increase of N. For the 
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Newtonian fluid, the behavior of ψc depend strongly on the 

value of RaT. In fact, as shown in Figure 7, when RaT ≤ RaT
∗ , 

the convection is supercritical and the corresponding 

supercritical buoyancy ratios are NC
Sup

= −0.067 for RaT =

RaT
∗ = 901.125 and NC

Sup
= 0.267 for RaT = 400. 

For RaT > RaT
∗  the start of convection corresponds to a 

subcritical bifurcation arising when NC
Sub = −0.493  for 

RaT = 2000 . Here also, above these critical values, the 

strength of the flow intensity is enhanced by an increase of N. 

The corresponding results obtained for the case of a dilatant 

fluid (n = 1.4) is now considered. As observed from Figure 7, 

the convection is supercritical for any RaT and the presence of 

multiple solutions is noticed for RaT > RaT
∗ , where RaT

∗ =
3793.835 . Thus, with the same values of the controlling 

parameters, three solutions of ψc are seen to be theoretically 

possible (indicated by solid and dashed lines) for Nc
2 < N <

Nc
1  while the numerical results (depicted by blackened 

symbols) presented only two solutions for the same values of 

the controlling parameters.  
 

5.3 Effect of Le and n on fluid flow 

 

The influence of the Lewis number Le on the convection 

intensity ψc is shown in Figure 8 for N = -0.01, RaT =  103 

and different values of n. Note that for low Lewis values (Le 

< 10-2), the stream function is independent of this parameter. 

Then, by increasing Le, ψc  decreases passing through a 

minimum at Le = 0.07, 0.95 and 32.0 for n = 0.6, 1 and 1.4 

respectively, then increases and tends towards a constant value 

depending on n. For high Lewis values (Le > 102), the flow 

intensity again becomes independent of these values. 

 

 

 

 
 

Figure 8. ψc as a function of Le for N = -0.01, RaT = 103 and different values of n 
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aspect ratio, A, the buoyancy ratio, N, The Lewis number, Le 

and the power law index, n, on the flow intensity and heat and 

mass transfer characteristics is analysed. The summary of the 

significant findings is: 

1. The parallel flow approach verified in this 

investigation for the case of shallow layer (A >> 1) allowed us 

to develop an analytical solution for different governing 

equations of the problem. 

2. The behavior of the fluid flow was found to be 

strongly dependent of the values of N and n. It has been proved 

that for: 

- a dilatant fluid (n > 1): The convection phenomenon 

occurs for any value of 𝑅𝑎𝑇 greater than zero provided 

that N ≥ N1
∗ . In the range of N2

∗ < N < N1
∗ , three 

solutions are observed to be possible for a given RaT. 

For N ≤ N2
∗, convection becomes subcritical. 

- a Newtonian fluid (n = 1): Convection is supercritical 

for N ≥ N∗ . When N ≤ N2
∗ , the convection becomes 

subcritical, for which the corresponding flow bifurcates 

from the rest state through convection state. 

- a peudoplastic fluid (n < 1): Convection occurs via 

subcritical bifurcation regardless of the value of N. 
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NOMENCLATURE 

 

A aspect ratio of the enclosure 

CT 
dimensionless temperature gradient in the x-

direction 

CS 
dimensionless concentration gradient in the 

x-direction 

D  isothermal diffusion coefficient, m2/s 

g gravitational acceleration, m/s2 

H′ height of the layer, m 

k  consistency index of the fluid, Pa.sn 

Le Lewis number 

L′ length of the rectangular enclosure (m) 

N buoyancy ratio 

n  power-law index 

Nu̅̅ ̅̅  average Nusselt number  

Pr Prandtl number 

q′ constant heat flux per unit area, W/m2 

RaT thermal Rayleigh number 

S dimensionless concentration 

Sc
′  

reference concentration at the geometric 

center of the enclosure, kg/m3 

∆S∗ characteristic concentration, kg/m3 

Sh̅̅ ̅ average Sherwood number  

T  dimensionless temperature 

Tc
′ 

reference temperature at the geometric 

center of the enclosure, K 

∆T∗ characteristic temperature, K 

 

Greek symbols 

 

 fluid thermal diffusivity, m2. s-1 

𝜆 fluid thermal conductivity, W.m-1.K -1 

μa dimensionless apparent viscosity of fluid 

ρ density of fluid, kg/m3 

ψ dimensionless stream function 

 

Subscripts 

 

 

c value relative to the centre of the cavity  
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