[23] Hassen, W., Borjini, M.N., Ben Aissia, H. (2012). Enhanced heat transfer by unipolar injection of electric charges in differentially heated dielectric liquid layer. FDMP, 8(4): 381-395.

NOMENCLATURE

$C = \frac{q_0 \times L^2}{\varepsilon_0 \times \Delta v}$	Dimensionless number which measure
$C - \frac{1}{\varepsilon_0 \times \Delta v}$	the injection strength
E	Dimensionless electric field
g	Acceleration of gravity, m/s ²
K_0	Ionic mobility of ions in the fluid, m ² /sV
$M = \frac{1}{k_0} \left(\frac{\varepsilon_0}{\rho} \right)^{0.5}$	dimensionless number characterizing
$k_0(\rho)$	EHD properties of the fluid
Pr	Prandtl number
q	electric charge density, C/m ³
$R = \frac{T}{M^2}$	Electric Reynolds number

$Ra = \frac{g \times \beta \times \Delta \theta \times L^3}{1 + 1 + 1}$	Thermal Rayleigh number
$T = \frac{\varepsilon_0 \times \Delta V}{\rho \times \nu \times K_0}$	Electric Rayleigh number
U	Dimensionless velocity
V	Dimensionless electric potential
L	Collector width, m
W	Chimney tower width, m
h	Height of the collector, m
\tilde{p}	Modified pressure including pressure

Greek symbols

0	001 1 1 1 1 1 1 1 1
β	coefficient of thermal expansion, K ⁻¹
$arepsilon_0$	Electric permittivity of vacuum, F/m
θ	Dimensionless Temperature
μ, ν	Dynamic and kinematic viscosity, Pa/s,
	m^2/s
ρ	Density, kg/m ³