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Big Data Analysis is a solution that makes it possible to extract valuable information from 

the mass of data by using deep learning algorithms and especially the Convolutional Neural 

Network algorithm. In this article, we have proposed an approach that allows the addition 

of the semantic aspect in the classification layer of the Convolutional Neural Network 

algorithm. The proposed approach helps medical professionals to develop an automatic 

system for identifying various classes of lung cancers. First, the input data are processed to 

reduce the search space, and the image noise, and normalize data. Then, the preprocessed 

data are analyzed to reduce image space by preserving all important features. After that, the 

semantic memory method converts the feature vectors from the analysis layer into semantic 

feature vectors. Finally, the last layer classifies the input image into two classes. We 

evaluate our approach using the LUNA16 dataset. Our study led to better results and 

predictions by reducing false negatives and positives using the Semantic Convolutional 

Neural Network algorithm. In our approach, cancer tissues can be identified with a 

maximum of 97.27% for accuracy and 99.46% for AUC. This model has increased 

efficiency compared with state-of-the-art approaches. 
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1. INTRODUCTION

In recent decades, the quantity of information has increased 

in an exponential manner in various systems. This information 

is required to have a wide range of new solutions and useful 

applications to build organizations and associations [1]. 

In fact, the data that are generated today are more important 

than the generated data just a few years ago. This mass also 

refers to the structural heterogeneity of the data sets. With this 

explosion of data of different structures, the term big data 

emerged and presented as the new oil [2] to designate the 

characteristics defined by Laney (Volume, Velocity, Variety), 

understand, and fully exploit the value of these datasets [3]. In 

this context, we face the main challenges from storage to 

analysis and visualization of these datasets. 

Big Data characteristics have pushed the limits of traditional 

systems. In fact, most data has complex heterogeneous formats 

from different sources, which necessitate new methods of 

storage and analysis. Furthermore, traditional data depend on 

centralized architectures while big data relies on distributed 

architectures. 

However, traditional data management, analysis techniques 

and infrastructures can no longer be used easily to analyze data. 

Therefore, there is a requirement for new tools and specialized 

methods for big data analysis. Big data analysis is the process 

of adding structures to data in order to identify facts, patterns, 

and hidden information [4]. 

In healthcare, we have to analyze massive data related to 

thousands of patients, detect the relations between the datasets, 

and introduce predictive models using machine learning 

techniques [5]. 

An important sub-domain of machine learning is Deep 

Learning (DL), which is used to extract valuable information 

from big data [6, 7]. The use of artificial neural networks in 

the DL domain is one of the most used methods for extracting 

information from complex datasets [8]. It allows 

understanding, detecting relationships between data, 

predicting future instances, and achieving better results. 

Medical imaging is a technique for identifying and treating 

illnesses. In order to help experts diagnose diseases, deep 

learning models are coming forefront for the diagnosis, 

prediction, and detection of diseases like diabetic retinopathy, 

tuberculosis, and lung cancers [9]. 

Moreover, the Convolutional Neural Network (CNN) 

technique has several advantages in image identification, is 

one of the key reasons that allowed the power of deep learning 

to be recognized [10-12]. Because of their outstanding 

performance in computer vision, CNNs have been widely 

accepted by the medical imaging research community in 

recent years. The automatic medical imaging analysis is 

critical for modern medicine [13]; it allows exploiting data at 

different levels with different techniques. Most of these 

medical images are high-resolution images that cannot be 

directly applied to CNN algorithms. However, these images 

require a preliminary pre-processing step before feeding the 

CNN to ensure the quality and high performance of the other 

steps [14].  

Recently, semantic analysis has become an active research 

subject aimed at bridging the gap between the features of low-

level images and high-level semantics [15]. In fact, semantic 

solutions are used to assess, discover new information and 

resolve data inconsistencies coming from an existing 

knowledge base. 

In order to have better results and predictions in the 

classification process, and to take advantage of the semantic 

dimension, we have proposed an approach called Semantic 
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Convolutional Neural Network (SCNN) that introduces the 

semantic aspect via a statistical method, which is called 

Semantic Memory in the big data analysis stage [16]. Thus, 

this statistical method builds a semantic space from the co-

occurrences of the input data by connecting the semantic layer 

to the classification layer to classify the medical images into 

the different existing classes. 

The rest of this article is structured as follows: We review 

the state-of-the-art approaches in section 2. Section 3 provides 

an overview of the proposed approach. In section 4, the 

experimental findings and performance comparison are 

presented. In section 5, we conclude and suggest directions for 

future research. 

 

 

2. RELATED WORKS 

 

Data itself faces the challenges of big data; which presents 

challenges at each stage of the value chain, from collecting to 

visualizing and using the data. The researchers addressed 

issues related to each step of the big data value chain 

(Acquisition, Integration, and Analysis) [17].  

Naturally, the large datasets mostly contain unstructured 

data. Thus, the large-scale processing of these semi-structured 

or unstructured datasets represents a major stake for the 

analysis of big data [18]. As a result, a semantic context is 

required in order to assist scientists access and using data to 

have better results.  

In this section, we enhance the state of the art in Ref. [19] 

by adding approaches that are based on the semantic 

dimension in the analysis of Big Data. Moreover, we classify 

these approaches into two classes: approaches that use 

semantic methods without Deep Learning algorithms and 

others that use semantic methods with Deep learning 

algorithms for analysis. 

 

2.1 Semantic without the use of Deep Learning algorithms 

for analysis 

 

Berat Sezer et al. [20] combined three technologies: IoT, big 

data, and the semantic web to analyze and semanticize its data. 

There are five key layers to this framework: data acquisition, 

extract-transform-load (ETL), semantic-rule reasoning, 

learning, and action layers. The main objective of the semantic 

layer is to use basic inferences through RDF data using the 

rules of reasoning, which are based on the semantic web 

technologies, as well as the specific rules to the users or the 

domain. Jabbar et al. [21] propose an approach in the medical 

field where the data are annotated with RDF schemas to 

achieve semantic interoperability with different IoT devices 

(SIMB -IoT). The datasets are queried using SPARQL queries 

to retrieve patient information.  

Rinaldi and Russo [22] have proposed a semantic approach 

to combine ontological models using OWL and graph models 

implemented in a NoSQL database to take into account 

linguistic, multimedia, and semantic aspects. Barba-González 

et al. [23] proposed an approach called BIGOWL allowing the 

annotation of big data using the RDF repository. BIGOWL 

defines taxonomic relationships and instances representing 

individuals with the aim of maintaining knowledge 

management by covering a large vocabulary of terms and their 

ways of being connected.  

Shakhovska et al. [24] presented a knowledge ontology to 

describe the underlying semantics of data retrieved from 

different sources. The proposed approach allows analyzing a 

large volume of different two-step structures: the first step 

consisted in forming the ontology of medical knowledge and 

the second step allows formalizing the process of the semantic 

classification. Castillo-Zúñiga et al. [25] have proposed a 

framework to explore and discover the benefits of information 

circulating on the internet and models to help with precise 

decision-making. To meet these objectives, they have 

combined Big Data analysis techniques with semantic web 

technologies that allow organizing and classifying information 

using machine learning algorithms.  

Berges et al. [26] proposed a semantic visual query system 

to visualize and explore big data in an Industry 4.0 scenario 

for analysis. This system makes it possible to combine a 

personalized 2D digital representation with semantically 

annotated data which are associated with semantic 

descriptions using ontologies. A workflow has been proposed 

for the purposes of analysis and segmentation of dependencies 

in order to create the semantic web and extract efficient 

information in the field of mechanical, electrical, and 

plumbing (MEP) tasks [27]. To meet these objectives, they 

used several strategies. The first step consisted in collecting 

the MEP corpus using the snowball strategy. Then, the named 

entity recognition (NER) and relationship extraction (RE) 

methods are organized to distinguish whether the segments are 

MEP entities and have a syntactic relationship to generate the 

MEP semantic web. Finally, the strategy of path filtering and 

meta linking has been proposed to detect new relationships. 

The main purpose of these approaches is to improve 

classification results by introducing ontologies, annotating 

data using RDF schemas, representing knowledge with OWL, 

and querying datasets using SPARQL queries. In these 

approaches, certain aspects related to scalability and 

heterogeneity are not taken into account. There are also 

deficiencies in the annotation of new instances and populating 

ontologies in other uses cases. Moreover, these methods need 

an experience in semantic web technologies to lead to the 

choice of a technique often depending on the objective of the 

analysis. 

 

2.2 Semantic with the use of Deep Learning algorithms for 

analysis 

 

The models in the study [28] presented an image caption 

system. They develop two neural networks that convert images 

and text fragments into a single vector representation. The 

cosine similarity between the related vectors is used by the 

authors to determine how similar the images and text are. The 

sentences are reclassified using the cosine similarity score. 

Finally, an entity recognition model identifies celebrities, 

monuments and a classifier to estimate the confidence score 

for each exit legend.  

Burel et al. [29] propose a semantically improved Dual-

CNN deep learning model to target the problem of detecting 

events in crisis situations using social media data. The tweets 

processed are symbolized in words which are therefore entered 

as input to the word integration phase. Then, it initializes the 

word vectors using word embeddings techniques. Afterward, 

it extracts the concepts and initializes the semantic vectors; 

because of their short duration and noisy nature, tweets 

frequently lack context. After that, they represent extracted 

entities and semantic types as a vector using the words 

embeddings approach. As a result, the semantic representation 

of documents is represented as a semantic integration matrix, 
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which is used for the training of the proposed Dual-CNN 

model. The last phase aims to train the Dual-CNN model from 

the built-in semantic word matrix.  

Zheng et al. [30] have proposed a model based on the CNN 

algorithm, the LIME algorithm, and the retrieval of external 

information from medical ontologies in order to detect the 

semantic similarity between pairs of imaging reports and 

extract the semantic features of texts. Roccetti et al. [31] 

attempted to train a recurrent neural network with a large 

quantity of fifteen million water meter readings. The proposed 

approach allows for predicting output which water meters are 

faulty according to water consumption readings. The semantic 

dimension is introduced in the analysis of big data in order to 

clean the training data and transform them from a statistical 

point of view using the semantics of the X factor.  

Lin et al. [32] presented an approach that identifies semantic 

similarity between different address records using deep 

learning algorithms. First, they converted the address records 

to vectors using the word2vec model. Then, they applied an 

in-depth text matching model that can determine if two 

addresses match. They calculated the similarity after training 

the vectors between the address pairs. Finally, they applied the 

Random Forests and Support Vector Machine algorithms to 

predict the output. Ahmed et al. [33] proposed a system based 

on deep learning algorithms to semantically segment, classify 

and detect cancerous regions in MRI medical images. The first 

step allows removing all existing noise in order to reduce the 

false-positive rate. Then, they used transfer learning 

techniques with the pre-trained ResNet model to classify the 

images. After that, they semantically segmented only nodular 

areas in cancer patients using the two algorithms DeepLab and 

Mask RCNN.  

The model in Ref. [34] is a combination of a deep 

convolutional network with a Word2Vec technique to analyze 

unstructured data to improve classification results. In fact, the 

Word2Vec technique is a two-layer neural network: an input 

layer and an output layer. These layers represent documents as 

sequences of words that will be converted into feature vectors 

that detect semantic and syntactic relationships between 

vectors of different lengths. Alam et al. [35] propose a model 

that allows combining CNN algorithms with different 

architectures by testing their models with remote sensing 

images. They proposed a SegNet model which is in fact an 

improvement of the convolutional neural network with the 

index pooling technique. Furthermore, they applied the U-net 

architecture for multi-target semantic segmentation.  

Du et al. [36] propose a framework that combines the CNN 

algorithm with the PnP algorithm in order to obtain the 6D 

attitude of the pose. For this, they established and labeled a 

dataset of non-cooperative satellite images. Then, they 

designed a CNN network with the PnP algorithm to detect the 

key points to capture the targets in rotations with their 

corresponding characteristic points. Finally, they trained the 

BiSeNet model to semantically segment the satellite 

components in real-time. Guo [37] proposed a model that 

allows the analysis of semantic texts using deep learning 

algorithms (DLSTA) in order to detect human emotions using 

Word embeddings which combines syntactic and semantic 

features. These characteristics are converted into features 

vectors, which will be connected in a support vector machine 

algorithm in order to identify the emotional state of the person. 

These approaches propose models by combining the 

semantic dimension with deep learning algorithms to achieve 

better results in classification, decision-making, and prediction. 

The semantic aspect has often been introduced via statistical 

methods or semantic segmentation with the aim of improving 

classification results with different metrics. However, these 

methods make it possible to work with matrices; and their 

decompositions require too many calculations. In addition, the 

similarity of documents that are used in some approaches is 

not bidirectional and does not consider hierarchical 

relationships. 

 

 

3. PROPOSED APPROACH 

 

In this paper, we propose an approach based on the CNN 

algorithm enhanced by adding a semantic dimension via the 

semantics memory statistical method, which is presented in 

Figure 1. It allows analyzing a large number of medical images 

in order to classify lung cancer into two classes nodule, and 

non-nodule to obtain better results of analysis and prediction 

in terms of accuracy, AUC, and F-score. 

The proposed approach consists of four main layers: The 

preprocessing layer, the analysis layer, the semantic layer, and 

the classification layer. 

 

 
 

Figure 1. General architecture of our approach SCNN 

 

3.1 Preprocessing layer 

 

The preprocessing layer is a method used to reduce the 

search space, the image noise, and normalize data by removing 

regions of low intensity. In order to manage these anomalies 

and to detect regions of interest, we pre-process the 3D scans 

using segmentation techniques and data augmentation. 

 

3.1.1 Data segmentation 

The segmentation is a basic step in image processing which 

is based on the classification of objects. In the literature [38], 

the most used approaches to segment 3D images are the 

thresholding, the watersheds, and the clustering approach. On 

the one hand, clustering techniques have not led to better 

results in the segmentation process. On the other hand, the 

watershed technique has given good results but it is a lot time-

consuming.  

Therefore, we use the most frequently used thresholding 

method in the segmentation of the medical images because it 

is the most efficient technique to convert a multi-level image 

into a binary image by dividing its pixels into several zones 

using the definition of a certain threshold. This technique 

analyzes the context of the foreground image by removing the 

background of the image to reduce the complexity of the data 

and speed up the process of the segmentation; it does not need 

any prior information. It allows only lung tissue to be left to 

the classifier and ignores other parts to simplify image 

recognition and classification. However, candidate regions 

with nodules are located inside the lung, we hide data that 

makes our images noisy such as outside air, blood vessels, 

bones, and other normal anatomical structures. 
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The unit of measure for medical CT scans is the Hounsfield 

Unit (HU), which is a measure of the radiodensity. The 

thresholding method allows us to slice the image range of the 

scan between -1000 and +400 HU. If the radiodensity of the 

image is greater than the fixed threshold, the substances are 

not taken into consideration.  

Table 1 shows the typical radiodensities of different parts of 

a CT scan with the different attenuation values of each tissue 

which is measured in HU [39, 40]. 
 

Table 1. HU radiodensities of different substances 

 
Substances Radiodensity (HU) 

Air -1000 

Lung -500 to -900 

Fat -50 to -100 

Water 0 

Cerebrospinal Fluid +15 

Kidney +30 

Blood +40 

Muscle +10 to +40 

Grey Matter +43 

White Matter +46 

Liver +40 to +60 

Bone +1000 

 

The bone radiodensity is around +1000 HU,  

The blood, water, and other substances are around 0 HU, 

The air radiodensity is around -1000 HU,  

The lung tissue radiodensity is generally around -500 HU to 

-900 HU.  

For this purpose, we hide the pixels of the image between -

1000 HU and +400 HU to have only the lung tissue as the 

segment. 

 

3.1.2 Data augmentation 

Training a deep neural network on very few images is often 

a challenge: as the model only has access to a limited number 

of observations, it will tend to be overfitting. Overfitting refers 

to a position in which a model learns statistical irregularities 

of the training dataset by memorizing irrelevant noise instead 

of learning the signal. Thus, it negatively impacts the model 

performance over time.  

In order to reduce overfitting, several methods have been 

proposed. Among these methods are batch normalization, 

regularization, random oversampling, and data augmentation, 

as well as architecture complexity reduction. The best method 

is to have more training data which will allow a better 

generalization, although this is not always feasible in medical 

imaging due to the lack of labeling of the data. 

In order to remedy the overfitting problems, we opted for 

the technique of data augmentation [41]. Data augmentation is 

most often used when the data are represented by a set of 

images. For each observation, we create several variants. Thus, 

the data volume is artificially multiplied. The increase of data 

size consists of rotations, distortions, cropping, color changes, 

the addition of noises.  

Despite this, we applied the data augmentation method by 

rotating the existing image a few degrees but we still have a 

class imbalance in our data. In order to solve this problem, we 

use random oversampling to duplicate the minority class 

samples at random and add them to the training dataset [42]. 
 

3.2 Analysis layer 
 

This layer allows extracting the high-level features 

following the repeating pattern: the convolutional layer, the 

max-pooling layer, and the ReLu activation functions that are 

detailed in the next subsection. 

 

3.2.1 Convolution layer 

The convolution layer allows detecting the most important 

features of an image by extracting the features of the input. 

These features are learned using a convolution operation, 

which is in fact a linear mathematical operation involving the 

product of a set of weights called a window, filter, or kernel 

with the input image [43]. This operation produces a feature 

map which will be the input of the next layer and so on. 

 

3.2.2 Pooling layers 

The pooling layers are placed between successions of 

convolutional layers in the CNN architecture. It uses the max 

operation to spatially reduce the input data (width and height) 

without affecting the depth [44]. The maximum value of the 

part of the image covered by the filter is returned by the max 

operation while preserving all the important information of the 

image. 

 

3.2.3 ReLu activation function 

Rectified Linear Unit (ReLU) is a non-linear activation 

function most frequently used in CNN for learning complex 

relationships in data.  

The advantage of the ReLU function is that it does not 

enable all the neurons to be activated at the same time. It only 

activates neurons, which have feature map values greater than 

a certain quantity. Otherwise, neurons will be disabled if the 

input values are less than zero and the output will be zero. The 

ReLU function is mathematically defined as [45]: 

 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (1) 

 

Eq. (1) is linear for all positive values and zero for all 

negative values. Therefore, the ReLU function is better than 

the non-linear functions [46]. 

 

3.3 Semantics layer 

 

The input of this layer is a set of feature vectors that will be 

connected to the Semantic Memory method.  

The semantic Memory (also called Hyperspace Analogue to 

Language) was introduced by Lund and Burgess [16] to 

produce large-dimensional semantic spaces and group the 

neighboring words one beside the other. 

The semantic Memory allows creating an n×n matrix of co-

occurring where all the unique n words are defined in the form 

of rows and columns. It defines a sliding window size 𝑙 , which 

is applied to these different words of size n by calculating a 

weighting l-d+1 with d that represents the distance between 

two words in the sliding window [47]. A co-occurrence matrix 

is generated after going through all the words and the union of 

the row with the column is represented to deduce the co-

occurrence vectors.  

The last step of this method calculates the distance between 

different pairs of vectors using the cosine similarity measure. 

When the magnitude of the vectors does not matter we use the 

cosine similarity as a metric to calculate the distance. It's a 

measure of similarity between two non-zero n-dimensional 

vectors in an internal product space that takes into account the 

measurement of the cosine of the angle between the vectors. 

The cosine similitude helps to better understand the 
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semantics of each vector. The vectors that have the same 

direction are considered as similar in the space; it is given by 

the following formula:  

 

𝑐𝑜𝑠(𝜃) =
�⃗�. �⃗⃗�

||�⃗�|| ||�⃗⃗�||
 (2) 

 

𝑐𝑜𝑠(𝜃) =
∑ 𝑎𝑖 

𝑛
1 𝑏𝑖

√∑ 𝑎𝑖
2 𝑛

1 √∑ 𝑏𝑖
2 𝑛

1

 (3) 

 

where, 

�⃗�. �⃗⃗� = ∑ 𝑎𝑖 𝑏𝑖  
𝑛
1 = 𝑎1𝑏1 + 𝑎2𝑏2 + ⋯ + 𝑎𝑛𝑏𝑛 is the product 

of vector α and vector b. 

||�⃗�||||�⃗⃗�|| = √∑ 𝑎𝑖
2𝑛

1  √∑ 𝑏𝑖
2𝑛

1  is the product of the lengths 

(or magnitudes) of the two vectors 𝛼 and 𝑏. 

The cosine similarity is advantageous, unlike the Euclidean 

distance that allows capturing the orientation of the vectors 

and not the magnitude. According to the cosine similarity, 

there is a small angle between two vectors if they are similar. 

The last step allows sorting the feature vectors according to 

the similarity measure to have classified semantic vectors, 

which will be connected to the classification layer. 

 

3.4 Classification layer 

 

The classification layer is a fully connected layer (FC) that 

is used to classify the input images. It receives a semantic 

vector as input and produces a new vector as output [48]. 

These images will be smaller than the original inputs due to 

the image reductions made in the previous operations. 

In this layer, we scan the reduced images and transform each 

of the values into a 1-D vector of a size N, where N 

corresponds to the class number of our binary classification 

problem. By assigning weights that are dependent on the 

image and the class, each element of the vector indicates the 

probability that the input image belongs to certain a class. 

In order to calculate these probabilities, we multiply each 

image by weight then we apply the Sigmoid activation 

function; it is given by the following formula: 

 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 (4) 

 

This activation function predicts output probabilities 

between a scale of [0, 1] in binary classification problems. 

 

 

4. EVALUATION  

 

A significant role is played by datasets in the field of deep 

learning. The key advantage of DL is the ability to process and 

analyze massive amounts of data of different structures, which 

influence the performance of the model. For this, we evaluate 

our approach using the LUNA16 benchmark [49], which will 

be discussed in detail in the subsections that follow. 

 

4.1 Dataset 

 

The data contained in the LUNA16 dataset are collected 

from the LIDC-IDRI database [50] for analyzing the lung 

nodule. In the LUNA dataset, the radiologist annotators ignore 

nodules that have a radius greater than 3 mm. It consists of 888 

CT scans with a total of 1186 lung nodules in MetaImage 

(mhd/raw) format. Each .mhd file is stored with a separate .raw 

binary file for pixel data.  

The images have a different resolution depending on the 

used scan with a size of (z, 512, 512) pixels where z is the 

number of slices in the scan greater than 2.5 mm. A slice of 

this image is presented in Figure 2.  

 

 
 

Figure 2. Example of lung cancer nodules shown in a 2D 

slice of a CT scan 

 

The 3D images contained in the LUNA dataset have 

multiple slices; each 3D image consists of several numbers of 

2D images shown in Figure 3. 

 

 
 

Figure 3. 3D image in the form of a succession of 120 slices 

2D 

 

4.2 Evaluation measures 

 

To assess the quality and the performance of our approach, 

we used several metrics (like accuracy, specificity, sensitivity, 

precision, recall, and F-score) which are defined in Table 2. 

 

Table 2. Metrics computed from confusion matrix 

 
Metrics Formula 

Accuracy 
TP + TN

TP + TN + FP + FN
 

Specificity 
TN

TN + FP
 

Sensitivity 
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 

Precision 
TP

FN + TP
 

Recall 
TP

FN + TP
 

F-score 2 ×
Precision × Recall

Precision + Recall
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Figure 4 represents the confusion matrix of our tests 

allowing the description of the complete performance of the 

classifications based on the test data representing the totality 

of 1836 nodules (918 nodules and 918 non-nodules).  

The confusion matrix includes four base numbers that are 

used to define the classifier metrics. These four numbers are: 

True Positive (TP): Represents the number of images that 

have been correctly classified to have nodules (patients that 

have lung cancer).  

True Negative (TN): Represents the number of images 

correctly classified to have non-nodule (patients that do not 

have lung cancer). 

False Positive (FP): Represents the number of 

misclassified images that should have nodules, but are actually 

classified to have non-nodule.  

False Negative (FN): Represents the number of 

misclassified images that were predicted to have non-nodule 

but are actually classified to have nodules. 

 

  

 

 

 

Figure 4. Confusion matrix in our test 

 

4.3 Results and discussion 

 

In this section, we evaluate the results of our approach using 

the LUNA16 benchmark (see Figure 5). Such images with a 

resolution of 512 x 512 cannot be introduced directly into a 

CNN architecture due to the high computational cost which 

leads to poor feature learning. 

To this end, before introducing the data into the CNN 

architecture, we preprocessed the CT in order to locate the 

regions most likely to have lung cancer by segmenting the 

images with a threshold of -1000 to +400. Then, we used a 

CSV file to split the data into two sets: a set that contains 

nodules and another that does not contain nodules. The CSV 

file contains the list of candidate nodes, the x, y, and z 

positions of each candidate, and their corresponding class. 

After that, the data sets are divided into two sets, 80% for 

training data and 20% for validation data. 

Figure 6 depicts the steps of the CNN algorithm that are 

used in our experimentations. The input to the algorithm was 

a set of images that were reduced to a size of [48, 48, 48]. Each 

hidden layer from the five layers contains two convolutional 

layers followed by a max-pooling layer. 

We applied a RELU activation function Eq. (1) in the 

hidden layers and a Sigmoid activation function Eq. (4) for the 

last FC layer. The convolution layer consists of 16, 32, 64, 128, 

256 filters for each hidden layer with the convolution kernel 

size of [3,3,3] and [5,5,5]. 

 

 
 

Figure 5. Semantic Convolutional Neural Network 

 

In addition, the kernel size for max-pooling layers is [2,2,2] 

applied with a stride of 2 pixels, and the FC has an output with 

1024 neurons. 

 

 
 

Figure 6. Diagram of the CNN architecture 
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Our tests have been trained using cloud computing services 

offered by Google Colab pro with Deep Learning Tensorflow 

library (CPU: Intel(R) Xeon(R) CPU @ 2.20GHz; RAM: 

25.46 GB; GPU: Tesla P100-PCIE-16GB with CUDA 11.2).  

In order to determine the best architecture for the SCNN, 

several experiments have been conducted. The learning 

process was trained for 50 epochs and optimized by Adam’s 

algorithm [51] with a learning rate of 0.0001. Binary Cross-

Entropy was used to train the model with a batch size of 64. 

Table 3 describes the classification performance using four 

tests. In the first two tests, we used a CNN model with a filter 

size of [3,3,3], [5,5,5] respectively. In the last two tests, we 

used the SCNN model with a filter size of [3,3,3], [5,5,5] 

respectively.  

Using a filter of [3,3,3], the proposed SCNN achieved better 

performance in our tests in terms of specificity of 99.12%, 

sensitivity of 95.42%, precision of 95.59%, recall of 99,13%, 

and accuracy of 97.27% for the classification of CT scans of 

lung cancer into the nodule and non-nodule classes.  

On the other hand, the CNN model achieved a specificity of 

91.06%, sensitivity of 87.25%, precision of 87.72%, recall of 

91,07%, and accuracy of 89.16%. Similarly, the proposed 

SCNN obtained better performance results compared with the 

CNN model in terms of specificity, sensitivity, precision, 

recall, and accuracy using a filter of [5,5,5]. Therefore, our 

approach outperformed the CNN model on various tests of the 

LUNA dataset. 

 

Table 3. Performance of our models with different kernel sizes 

 
Model Kernel Specificity % Sensitivity % Precision % Recall % Accuracy % 

Test 1 (CNN) 3x3x3 91.06 87.25 87.72 91.07 89.16 

Test 2 (CNN) 5x5x5 88.88 85.72 86.17 88.89 87.30 

Test 3 (SCNN) 5x5x5 94.55 92.81 92.93 94.55 93.86 

Test 4 (SCNN) 3x3x3 99.12 95.42 95.59 99.13 97.27 

To further show the efficiency of our proposed model, we 

plotted the Receiver Operating Characteristic (ROC) curves 

depicted in Figure 7. The curve depicts the true positive rate 

(Sensitivity) versus the false positive rate (1-Specificity) to 

calculate the area under the curve (AUC). It also indicates the 

extent to which the model is able to distinguish between the 

two classes. In Figure 7, our approach achieved an AUC of 

0.9531, 0.9431, 0.9815, and 0.9946 in test 1, test 2, test 3, and 

test 4, respectively. As the AUC values are between 0.94 and 

1.0, the proposed model has a better diagnostic performance. 

 
 

 

 

 

Figure 7. Receiver operating characteristic curve (ROC curve) 

 

Another metric that is used in the evaluation of our approach 

is the F-score measure, which is a combination of both recall 

and precision metrics.  

Figure 8 depicts the performance of the proposed technique 

in terms of F-score and AUC metrics. In test 4, the model 

achieved the highest F-score of 97.33% and AUC of 99.46%. 

In all tests, the F-score values are between 87% and 100%, 

which means that the performance of our approach is relatively 

stable over the different tests of the LUNA dataset. 

Finally, we compare the performance of our approach with 

existing approaches, which have been tested using the LUNA 

and LIDC-IDRI datasets, with 2D and 3D images of both filter 

sizes 3 and 5. 
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Figure 8. Comparison of F-score and AUC values 

 

Table 4 depicts a comparison between the proposed 

approach and the state-of-the-art approaches. In order to 

increase the comparability, we mentioned that the existing 

approaches evaluate the performance using both accuracy and 

AUC metrics.  

We observe that several approaches in Refs. [52-54] have 

been evaluated using the LUNA dataset. Other approaches 

[54-57] have used the LIDC-IDRI dataset to evaluate their 

performances. Most of the existing approaches have used 3D 

images with a filter size [3,3,3] and [5,5,5] except for studies 

[54, 55, 57] which have used 2D images. 

In our approach, we used 3D images since 3D CNN can 

encode richer spatial information from CT images to learn 

more distinguishable features of both filters [3,3,3] and [5,5,5]. 

As can be shown in Table 4, our approach provides a 

significant performance improvement with a filter size [5x5x5] 

between 6.55% and 15.15% of AUC compared to existing 

methods. Similarly, the proposed approach shows an 

improvement between 7.08% and 9.53% in accuracy 

compared to existing approaches. On the other hand, our 

approach also brings an important performance improvement 

between 2.36% and 12.46% of the AUC compared to existing 

approaches with a filter size [3x3x3]. In the same way, the 

proposed approach shows an improvement between 2.61% 

and 9.33% in accuracy compared to existing approaches.  

In conclusion, our experiments show that the proposed 

approach effectively addressed the problem of big data 

analysis by adding the semantic dimension. However, this 

allowed the analysis of a large amount of unstructured data 

represented as medical images, which resulted in an 

improvement in the classification process in terms of accuracy, 

F-score, and AUC. 

 

Table 4. Comparison of the proposed with other methods 

 
Authors DataBase Samples CNN Filters Auc Accuracy (%) 

Song et al. [56] LIDC-IDRI 5024 3D 5x5x5 0.916 84.15 

Alakwaa et al. [52] LUNA16 30% 3D 5x5x5 0.83 86.6 

Our Approach (SCNN) LUNA16 1836 3D 5x5x5 0.9815 93.68 

Shen et al. [55] LIDC-IDRI 1375 2D 3x3 0.93 87.94 

Monkem et al. [57] LIDC-IDRI 2635 2D 3x3 2x2 0.87 88.28 

Banu et al. [54] LUNA16 460 2D 3x3 0.971 91.32 

Zhang et al. [53] LUNA16 1004 3D 3x3x3 0.9563 91.67 

Banu et al. [54] LIDC-IDRI 409 2D 3x3 0.9158 94.66 

Our Approach (SCNN) LUNA16 1836 3D 3x3x3 0.9946 97.27 

 

 

5. CONCLUSION AND FUTURE WORK 

 

In this paper, we have presented a deep learning approach 

for big data analysis using semantic technologies. Our 

approach used deep learning algorithms to analyze massive 

amounts of unstructured data. Moreover, we used the 

Convolutional Neural Network algorithm, which has proven 

to be quite successful for medical image recognition and 

classification. The semantic memory method's goal is to 

improve our findings and allow us to make better predictions. 

We tested our approach using data from the LUNA16 

benchmark, which contained lung cancer CTs for a binary 

classification into nodule and non-nodule classes. The 

experimental study used the CNN and SCNN architectures. 

The two algorithms were tested with the same CNN 

architecture and the same hyperparameters. Hence, we 

obtained the highest accuracy and f-score with the SCNN 

algorithm. The results that are presented in this paper have 

shown that we have improved the process of data analysis by 

reducing the false positives and negatives.  

The main drawback of our approach is the lack of the 

availability of large labeled medical data. In the future, we 

plan to use other similarity measures and semantic 

segmentation methods. Additionally, due to the limitation of 

labeled medical data and class imbalance, we will test other 

augmentation and transfer learning techniques. Furthermore, 

we will perform several experiments by modifying the 

network architecture and the hyper-parameters that define the 

network structure to further improve the results of our 

approach. So, we will implement this architecture in a real-

time data analysis platform such as SPARK to improve 

processing and analysis time. 
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