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heterogeneous. The use of dynamic scheduling is also being 

considered. 

Aziza and Krichen [19] devised a fitness mechanism that 

aids in the reduction of mission execution costs and 

minimization of makespan. The extension of GA to two 

existing scheduling rules, time-shared and space-shared, 

resulted in two additional policies, TSGA and SSGA. The 

makespan and overall cost of execution are two metrics used 

to measure performance. 

Ibrahim et al. [20] proposed an Integer Linear Programming 

(ILP) model that minimizes energy consumption in a Cloud 

data center to create a dynamic task scheduling algorithm. In 

addition, an Adaptive Genetic Algorithm (GA) is proposed to 

reflect the complex nature of the Cloud world and to provide 

a near-optimal scheduling solution that saves resources. 

Zhou et al. [21] suggested MGGS (modified genetic 

algorithm (GA) combined with greedy strategy) as a new 

algorithm in this article. To maximize the efficiency of 

scheduling, the proposed algorithm uses a revamped GA 

algorithm paired with a greedy approach. MGGS, unlike other 

algorithms, can find an optimal solution with a lower number 

of iterations. 

2.4 Grey wolf optimization 

The grey wolf, also known as the timber wolf [5], is the 

world's largest wild dog. Wolves exist in clans led by an alpha 

wolf, with the rest of the pack adhering to a dominance 

hierarchy. The actions like hunting and finding the location of 

stay are taken by the alpha wolf. The second level of the wolf 

pack is beta and is considered subordinate to the alpha. The 

following levels of the wolves are delta and omega. 

The phases of hunting can be considered as follows. 

1) Tracking, pursuing, and closing in on the prey. 2) Pursue,

encircle, and annoy the prey until it comes to a halt. 3) Attack 

on the prey. 

Grey wolf optimizer is one of the metaheuristic algorithms. 

It was suggested by Mirjalili et al. [5] who proposed an 

intriguing meta-heuristic algorithm that mimicked the 

behavior of grey wolves. 

(1) Hierarchical structure

GWO has been mathematically modeled by taking into

account the social hierarchy. The best location of the search 

agent in the solution space is considered as α wolf, β as the 

second best, and δ as the third. The remaining are known as 

omega wolves [5]. 

(2) Encircling

During the hunting wolves encircle the prey. The equation

for encircling the prey is denoted by in Eq. (1) and Eq. (2) [4, 

5]. Here, the position of the wolves and the prey is represented 

by a vector. In the equation 'Dist' indicates the distance 

between prey and the wolf. GW and Xp correspond to the 

location of the wolf and the placement of prey respectively. 

𝐷⃗⃗ = |𝐶 ∗⃗⃗⃗⃗ ⃗⃗  ⃗ 𝑋 𝑝𝑟𝑒𝑦(𝑡) − 𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗(𝑡)| (1) 

𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗(𝑡 + 1) =  𝑋 𝑝𝑟𝑒𝑦(𝑡) − 𝐴 ∙ 𝐷⃗⃗ (2) 

𝐴 = 2𝑎 𝑟 1 − 𝑎 (3) 

𝐶 = 2 ∙ 𝑟 2 (4) 

Eq. (3) & Eq. (4) are vectors of coefficients. 

r1 and r2 represent random values between [0,1]. 

(3) Prey hunting

Grey wolves' encircling the prey is modeled by Eq. (5) and

Eq. (6). Guided byα, β, and δ wolves, all the remaining wolves 

update their position by Eq. (7). 

𝐷⃗⃗ 𝛼 = |𝐶 ∗ 𝑋 𝛼(𝑡) − 𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗(𝑡)|

𝐷⃗⃗ 𝛽 = |𝐶 ∗ 𝑋 𝛽(𝑡) − 𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗(𝑡)|

𝐷⃗⃗ 𝛿 = |𝐶 ∗ 𝑋 𝛿(𝑡) − 𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗(𝑡)|

(5) 

𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗
1(𝑡 + 1) = 𝑋 𝛼(𝑡) − 𝐴 ∙ 𝐷𝑖𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝛼

𝐺𝑊2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑡 + 1) = 𝑋 𝛽(𝑡) − 𝐴 ∙ 𝐷𝑖𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝛽

𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗
3(𝑡 + 1) = 𝑋 𝛿(𝑡) − 𝐴 ∙ 𝐷𝑖𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝛿

(6) 

𝐺𝑊(𝑡 + 1) =
∑ 𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗

𝑖(𝑡 + 1)3
𝑖=1

3
(7) 

(4) Searching & attacking the prey

The prey gets attacked by grey wolves only when it stops

progress. It is described mathematically with a vector 'A' 

employed in Eq. (3). 'A' is a random vector and contains the 

values in [-a, a] [4, 5], with 'a' decreasing from 2 to 0 during 

the iterations using Eq. (8). 

|A| < 1 will lead the wolf to assault the prey with movement 

towards it and |A| > 1 lead the wolf to move away from the 

prey [1]. The position of α, β and δ wolves decide the direction 

of search for the prey. Global (exploration) and local 

(exploitation) searches rely on A and C vectors. 

𝑎 = 2 − (2 × 𝑡/𝑀𝑎𝑥𝑖𝑡𝑒𝑟) (8) 

The range of random values for the C vector is [0, 2], which 

is critical for preventing local optima stagnation. The values 

of the C vector show random behavior, in turn this helps to 

explore globally. 

Algorithm 1: Grey-wolf-Optimization [4, 5] 

1. grey wolves (search agents) initialized

2. Pops(i=1,2,...,n)

3. set the values of a, A and C

4. All individual Search agent's (Wolf) fitness has to be

calculated

5. GWα = The first high-quality search agent/wolf

6. GWβ = The second high-quality search agent/wolf

7. GWδ = The third high-quality search agent/wolf

8. repeat

9. { 

10. (j< Max) 

11. for all search agents

12. modify the location of all the search agents using Eq. 7

13. end for

14. modify a, A, C

15. all the search agent's fitness has to be calculated

16. modify GWα, GWβ, GWδ

17. j=j+1

18. } until(j>Max)

19. end loop

20. return GWα

The GWO suffers from poor local search and slow 

convergence rate [22]. 

329



 

2.5 Crow search algorithms 

 

Crows are intelligent creatures. They have the biggest brain 

in proportion to their body size. Experiments proved that they 

show self awareness ingenuity. Crows may use tools to 

interact in complex ways, and remember the location of their 

food for many months. Crows watch other birds, observing the 

place of food storage, and then stealing it after actual bird 

leaves. If a crow was a victim of theft before, it will take 

special care including changing hiding areas to prevent being 

a victim again. This behavior of cleverness is mimicked in 

finding the optimal solution using a natural-inspired algorithm 

by Askarzadeh [6]. CSA's operation is based on four important 

principles: herd living, recall the place of secret food, pursue 

another individual of their genus, and ultimately protect their 

accumulation from arbitrary plundering. 

(1) Mathematical model for CSA 

The position of each crow is represented by an M 

dimensional vector. Searching for the optimal solution starts 

from an initial population. Initialize the upper bound of 

iterations, count of crows, flight length and awareness 

probability. The fitness will be calculated.  

The notation CPopk represents the initial population of the 

crow and [CPopj1, CPopj2, CPopj3, ...,CPopjM] indicates the 

position of crow 'j'.  

Cpopi,t indicates the initial location of 'ith' crow at time 't'. 

Whereas 'ri,' and 'fl' indicate a random number, and flight 

length respectively. The secret place is 'sp'. 

If jth crow wants to visit the secret place where the food is 

hidden, ith crow plans to find the secret place of the crow j. This 

leads to either of the following. First awareness probability is 

compared with a random number. The crow updates its 

position by Eq. (9) [3, 6] if the awareness probability is larger. 

Otherwise it updates its position with a random crow's position. 

 

𝐶𝑝𝑜𝑝(𝑖+1,𝑡+1) = 𝐶𝑝𝑜𝑝𝑖,𝑡 + 𝑟𝑖 × 𝑓𝑙𝑖,𝑡 × (𝑠𝑝𝑖,𝑡-𝐶𝑝𝑜𝑝𝑖,𝑡) 

if AP>rj 
(9) 

 

Algorithm 2 shows the pseudo code for CSA. 

 

Algorithm 2: CSA Algorithm [3, 5] 

1. CPopk (k=1,2,...,n) is initialized 

2. fitness of all the crows calculated 

3. Initialize reminiscence of crows  

4. repeat  

5. { 

6. for all crows 

7. Awareness probability (AP) is defined 

8. 'rand' is a randomly generated number 

9. if rand >= AP 

10. modify the location of crow with equation (9) 

11. else 

12. take the location of the crow randomly 

13. end if 

14. end for 

15. find the viability of the latest solution 

16. find the fitness of each search agent 

17. modify the memory of the crows 

18. i=i+1 

19. } 

20. until (i>Max) 

21. return the best solution crow 

 

The Crow search algorithm also suffers from slow 

convergence speed and can be trapped into local optima. 

 

 

3. POSED PROCEDURE TO UPDATE THE POSITION 

OF SEARCH AGENTS 

 

3.1 GWOCSA 

 

Hasty convergence is a flaw in GWO algorithm. This is 

attributable to the alpha, beta, and delta positions of the search 

agent's updates. This has a small potential to be exploited as 

well. By combining the GWO with the CSA, these flaws can 

be overcome. This strikes an appropriate balance between 

discovery and exploitation. The proposed algorithm 

effectively maximizes the advantages of the two algorithms, 

resulting in broad universal applicability. The CSA algorithm 

uses flight [3, 6]as a control parameter. This helps in both ways, 

i.e., in global and local searching. Small values guide to go for 

local search and large values for global search. 

The poor global searching capability can be overcome by 

accommodating a constant. This is adapted from CSA. Eq. (10) 

and Eq. (11) represent this scenario. The constant 'fl' guides to 

search in the global space and local space based on the selected 

value. This helps to stabilize both exploration and exploitation.  

Algorithm 3 represents the pseudo-code for GWOCSA. In 

the GWO based approach, updating of the search agent's 

position will be done in view of α, β, and δ wolves location. 

However, in the proposed hybrid model, the update of the grey 

wolf is done in accordance with Eq. (10). This helps greatly in 

avoiding local optima and helps to search in the global space. 

 

Algorithm 3: GWOCSA [3] 

1. Initialize the grey wolves GWi (i=1,2,...,n) 

2. a, A, and C initialized. 

3. find the fitness of all the search agents (Wolf) 

4. find GWα and GWβ 

5. while (t<Max) 

6. for all the search agents 

7. if AP>random number 

8. modify the location of the present search agent by Eq. 

(10) 

9. else 

10. modify the location of the present search agent by Eq. 

(11) 

11. end if  

12. end for  

13. modify AP using Eq. (12)  

14. modify 'a' using Eq. (13) 

15. modify A, C  

16. modify the fitness of all search agents. 

17.  modify GWα, GWβ  

18. t=t+1  

19. end while  

20. return GWα 

 

However, to modify the location of the search agent is done 

based on an adaptive parameter. If AP is greater than a 

randomly generated number, Eq. (10) helps to calculate latest 

location of the agent. Otherwise, Eq. (11) is used to update the 

position. Eq. (12) shows the adaptive balance probability. 

 

𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗
(𝑖𝑡𝑒𝑟+1) = 𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗ + 𝑓1. 𝑟𝑎𝑛𝑑. ((𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗

1 − 𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗)

+ (𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗
2 − 𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗))/2 

(10) 

 

330



 

𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗
(𝑖𝑡𝑒𝑟+1) = 𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗ + 𝑓𝑙 × 𝑟𝑎𝑛𝑑((𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗

1 − 𝐺𝑊⃗⃗⃗⃗⃗⃗  ⃗)) (11) 

 

𝐴𝑃 = 1 − (
1.01 × 𝑡3

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛3
) (12) 

 

In the proposed model, a new update method is adopted. 

Instead of using Eq. (8), to change the value of 'a', Eq. (13) is 

used. This helps to improve the overall performance. 

 

𝑎 = 2 − 𝑐𝑜𝑠 (𝑟𝑎𝑛𝑑( )) ×
1

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 (13) 

 

 

4. EXPERIMENTAL RESULTS 

 

The proposed algorithm is checked in MATALB R2020A 

software for its efficiency on Intel core™i7 CPU@1.80-GHz 

with 8 GB of RAM using synthetic data. As it is an NP-

Complete problem, the algorithm gives various outputs based 

on the random numbers. In this setup five jobs and five 

heterogeneous virtual machines are considered. Table 1 

presents the initial population. Table 2 represents the 

execution time of each job on every VM. Table 3 shows the 

final allocation of the algorithm. 

 

Table 1. Initial population 

 
Initial population 

Job2 Job3 Job5 Job4 Job1 

Job3 Job2 Job1 Job5 Job4 

Job4 Job2 Job3 Job5 Job1 

Job1 Job3 Job5 Job4 Job2 

Job4 Job3 Job1 Job5 Job2 

Job3 Job5 Job2 Job4 Job1 

Job4 Job5 Job1 Job3 Job2 

Job1 Job3 Job2 Job5 Job4 

Job3 Job4 Job1 Job2 Job5 

Job4 Job3 Job2 Job1 Job5 

Job1 Job5 Job3 Job2 Job4 

Job3 Job4 Job1 Job2 Job5 

Job2 Job4 Job1 Job3 Job5 

Job5 Job1 Job2 Job3 Job4 

Job4 Job5 Job2 Job1 Job3 

Job3 Job2 Job5 Job1 Job4 

Job3 Job4 Job5 Job1 Job2 

Job1 Job4 Job2 Job5 Job3 

Job5 Job3 Job2 Job1 Job4 

Job3 Job5 Job1 Job2 Job4 

 

Table 2. Execution times of jobs on VMS 

 

 VM1 VM2 VM3 VM4 VM5 

JOB1 28 26 28 24 17 

JOB2 17 16 24 25 24 

JOB3 28 20 15 25 15 

JOB4 28 27 26 20 18 

JOB5 21 26 28 24 15 

 

Table 3. Final allocation-GWOCSA 

 
VM1 VM2 VM3 VM4 VM5 Completion time 

JOB5 JOB2 JOB3 JOB4 JOB1 89 

 

The best makespan of the given problem after 10 iterations 

calculated by GWOCSA=124, with GWO=122 and with 

CSA=128. After iteration 120, the best makespan is 89. 

GWOCSA algorithm converges quickly. GWO and CSA 

suffer from slow convergence. Based on the values obtained 

from results it can be concluded that the proposed algorithm 

competes with GWO and CSA algorithms. It has proven that 

at times its efficiency is better than the other two algorithms. 

Figure 1 shows the comparison of the GWOCSA with 

GWO and CSA. From the figure, it can be observed that at the 

initial stages GWO shows a better solution. CSA algorithm 

does not converge quickly. However, the proposed algorithm 

balances the exploration and exploitation and reaches an 

optimal solution. The makespan after 20 iterations was 123 

with GWO,130 with CSA, and 120 with GWOCSA. 

GWOCSA converges to the optimal solution after 120 

iterations. The convergence of the GWO algorithms takes after 

160 iterations, and with CSA algorithm happens after 180 

iterations. 

 

 
 

Figure 1. Comparison of makespan 

 

 

5. CONCLUSION 

 

Present paper discusses the drawbacks of existing meta-

heuristic algorithms. GWO and CSA algorithms are 

considered to enhance the drawbacks of the algorithms when 

considered individually. Exploration and exploitation are 

balanced with the help of hybridization. This work can be 

further enhanced by applying a multi-objective function, in 

which multiple objectives can be addressed. The proposed 

algorithm is tested on MATLAB. The proposed algorithm 

converges quickly when compared with GWO and CSA 

algorithms. The present work can be extended further. 

Interested researchers may test on real clouds like 

OPENSTACK and CLOUDSTACK to check for the 

efficiency.  
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