
Use Case Realization in Software Reverse Engineering

Yanti Andriyani*, Ibnu Daqiqil Id, Evfi Mahdiyah, Al Aminuddin

Department of Information System, The University of Riau, Pekanbaru - Riau 28293, Indonesia

Corresponding Author Email: yanti.andriyani@lecturer.unri.ac.id

https://doi.org/10.18280/isi.270218 ABSTRACT

Received: 13 January 2022

Accepted: 14 April 2022

The Use Case Diagram (UCD) is a visual form of system design that helps software

developers comprehend the system behavior. Maintaining and updating the system can be

a difficult task when it has no visualization of a system behavior or software requirement

specification document. Reverse engineering is an approach used to extract software

requirement specifications from the existing systems. Research in reverse engineering has

shown various techniques in which the processes are not fully understood. This study

analyzes the University Community Services Information System (UCSIS) as the existing

system in three processes: identifying the system domain process, elaborating system

features by implementing the event table, and constructing the use case realization. The

results showed that a UCD could be generated through the reverse engineering process on

the existing system. Furthermore, a new feature for system improvement can also be

detected using this method. It is expected that the reverse engineering approach in this study

can be used as guidance for the software development team in extracting the use case

diagram from the existing systems.

Keywords:

reverse engineering, use case diagram, event

table, requirement specification

1. INTRODUCTION

The software development process refers to a forward

engineering approach, which follows sequential phases in

developing software, such as analyzing feasibility, eliciting

requirements, modelling system, coding development and

implementation [1]. Each phase in the software development

process generates outputs that are used for the next processes.

For example, the requirement elicitation process generates

specifications specified in software requirement specifications.

The software specifications are also visualized in Use Case

Diagram (UCD) [2, 3].

Identifying the UCD is an important task in the software

development process to understand user requirements [4]. A

UCD is a tool for modelling a system because it provides a

coherent story about how it works [5]. This diagram provides

a comprehensive summary of the system functions or a list of

system functions that define the interactions between an actor

and a system to achieve a goal. Furthermore, this diagram also

provides a forum for domain experts, end-users, and

developers to communicate. Practically, software teams are

not always encountering an ideal situation. For example,

insufficient system requirement specifications in the software

development. This situation can be an obstacle for software

teams in maintaining and updating the implemented system [6,

7]. Software requirement specification that is visualized in the

UCD, is highly required to maintain, and update the system [1].

In this situation, software teams need to extract UCD and the

specification from the existing system.

Software reverse engineering is a backward process that

includes extracting design artifacts, decomposing

requirements, and recapturing or recreating the design [8]. One

of the subareas of reverse engineering is design recovery.

Design recovery in software reverse engineering focuses on

observing the system to identify domain knowledge and

system abstraction. The observation is useful to provide

detailed information about what software does, how it

performs, and why it must be performed [8].

Software reverse engineering is important to understand

since the reverse engineering process is useful for software

maintenance and improvement. Reverse engineering helps the

software developer to understand the system. By

understanding the existing system, which often has lack

documentation, the software developer can identify areas of

improvement in the system [1, 8].

 Chikofsky and Cross [8] explained that the reverse

engineering approach could be implemented by extracting a

higher abstraction level of the existing systems. Furthermore,

reverse engineering can be used to understand how a system

works and transform static information, such as Graphical

User Interface (GUI) into requirement specification. Wu et al.

[9] and Dayton et al. [10] conducted studies to perform reverse

engineering by generating modes from a screenshot and GUI

prototype to identify system requirements. Furthermore,

Ecgonine et al. [6] and Frangulas et al. [7] performed a reverse

engineering approach by recording a website's behavior. The

extracting process captures and analyses the requirements

generated by the UML diagram which attempts to break down

their work reversely.

Previous reverse engineering research explored various

techniques for extracting higher-level design from the existing

system. However, much of the studies focused on technical by

using programming tools, and the techniques that underpin the

reverse engineering process are not fully understood. Recently,

various reverse engineering approaches using tools have been

explored, such as applying natural language processing and

heuristic rules [11], using text analysis to generate the diagram

and developing a web application to decompose the system [12,

Ingénierie des Systèmes d’Information
Vol. 27, No. 2, April, 2022, pp. 335-341

Journal homepage: http://iieta.org/journals/isi

335

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.270218&domain=pdf

13]. Di Luca et al. proposed a website for reverse engineering

(WARE), which provides features to generate use cases,

sequences, and class diagrams [13]. This tool emphasizes

using static code as input. Similarly, Shiferaw and Jena [14]

focus on the code generator and java code to analyze and

extract of the UML diagrams involved in the system. These

studies can extract UCD when the systems’ source code of the

system is available.

Another reverse engineering method, which uses the event

table to generate UCD, was proposed by Muhairat and Al-

Qutaish [15]. The event table is a basic table with four

elements: event, source of event, action, and object. The basic

event table is then extended into nine elements: event, general

source, special source, action, object, includes 'action', extends

'action', specializes 'action' and destination.

However, much of the research has been descriptive in

generating diagrams based on the availability of the source

code, and the extracting process of the UCD remains unclear

[1]. Furthermore, this study aims to analyze University

Community Services Information System (UCSIS) as the

existing system. A reverse engineering approach was applied

to decompose UCSIS’ system requirement by implementing

the extended event tables [15] in the analysis process. The

event table is used in this paper as a fundamental to analyze

the system behaviors and to generate the UCD. An important

outcome of this paper is the system requirement in the form of

a UCD.

The remaining part of the work proceeds as follows: Section

2 discusses the research method used: a case study and the

method. Section 3 explains the results and discussion, which

presents a case study on the proposed approach and discusses

the results. Finally, Section 4 concludes the work and presents

potential future work.

2. METHODS

2.1 Data collection

This case study was conducted to elaborate on the existing

University Community Services Information System (UCSIS).

UCSIS is a system to manage community service programs

that involving lecturers and students. The existing system

needs an improvement to fulfill the updated processes. Thus,

UCSIS requires improving and updating the system features.

However, in this case, UCSIS does not have software

requirement documentation and we perform reverse

engineering to identify the existing system requirements and

identify the system features that are required to be improved.

Several examples of UCSIS Portal user interfaces are

presented in Figure 1, Figure 2, Figure 3. These forms were

used as inputs to the capturing process of our proposed

approach.

2.2 Reverse analysis processes

This study aims to generate UCD of the existing system

using a reverse engineering approach. This research is

conducted by implementing three processes (Figure 4). First,

the existing system behaviors (i.e., UCSIS) were analyzed by

observing users (i.e., admin, students, lecturer) in using the

UCSIS. The researcher, who observed the system flows, wrote

the system behaviors as scenarios, and broke them down into

events.

Figure 1. UCSIS interface (Program management page)

Figure 2. UCSIS interface (The page for uploading the task

output)

Figure 3. UCSIS interface (Approval page)

Figure 4. Reverse analysis processes

336

Figure 5. The mapping to event table process

The Events were identified by analyzing the system behaviors

based on each process scenario based on user stories. Sequentially,

the user stories were mapped into the event table. The following

statement was an example of a user story captured from the system

features analysis and mapped into the event table.

(User story) event #1:

As a coordinator, I want to be able to review the uploaded

task, so that I can approve the uploaded task output

Broken down to:

Event : Coordinator approves the task output

General source : Coordinator

Special source : -

Action : Approve task

Object : The task

Includes 'action' : Review the task

Extends 'action' : -

Specializes 'action' : -

Destination : Coordinator, Student and Admin

The example of the event mapping into the even table can

be seen in Figure 5. After mapping the event table, the next

process was identifying the correlations of the attributes in the

event table to generate a UCD.

3. RESULTS AND DISCUSSION

Reverse engineering approach was used to generate UCD in

our case study, University of Riau’s UCSIS Portal. There are

three processes in generating UCD. The following sections

explain the results of our reverse engineering approach.

3.1 Identifying system domain process

Identifying the process aims to capture the whole picture of the

system. Domain processes were captured from observing the

processes of the community service program. The community

service program was announced at the beginning of semester. The

process began with students and lecturers registering to join the

community service program, managing the team and allocating

students and lecturers to areas or villages.

The UCSIS's portal functions to manage community

services projects at the University of Riau. UCSIS involves

three system users: admin, lecturer, and student. The admin

acts as a super administrator who can manage all data involved

in the community service project. The lecturer acts as a

coordinator allocated to village or sub-districts. The team

coordinator was used in this case study to represents a lecturer

supervising and coordinating a team. Student is a user that is

responsible for working programs and tasks. Each student

requires to report their activities to UCSIS.

Table 1 shows the domain processes of the UCSIS based on

system behaviors analysis. The description of each domain

process is presented in Table 1. There were four domain

processes identified: community service management,

registration, work program management, and grade

management process. Work program validation is the new

domain process that was not covered in the existing system.

This domain process involves Community Service staff to

validate the work program was performed by the students.

Table 1. Domain process descriptions

Process Description

Community

service

management

This process focuses on managing the data

involved in the community service project,

such as coordinators, students, villages,

teams, work programs, period, and students

report.

Registration
This process focuses on managing process for

student and lecture registrations.

Work program

management

This process involves students in managing

the work programs, tasks, task outputs and

reports. This process also involves

coordinator approving working programs,

task outputs and students' report.

Grade

management

This process involves coordinator in grading

the students’ tasks.

Work program

validation

This process focuses on validation process of

student’s work validation. There are three

actors involved: coordinators, stakeholders,

and Community Service Staff (CS staff).

3.2 Identifying system features

The second process is elaborating system features. System

features were identified by analyzing UCSIS’s portal behaviors and

mapped into the event table.

3.2.1 Identifying use case diagram elements from the event

table

This process aims to identify each use case elements and its

relationships. There are four processes involved, such as:

(1) Identifying actors. In this process, the user’s system was

defined as a source in an event table. Based on the system

analysis, there are three actors included in UCSIS, such as:

admin, coordinator, and student.

(2) Identifying relationships between actors aims to identify

the association between the identified actors from the previous

process. The embodied relationships between actors can be in the

form of generalization or specialization. Generalization and

337

specialization between actors do not always exist. If an actor exists

in the special source, it means there is a relationship between the

actor in the general source. In the case study, the

generalization/specialization between actors are not available.

The relationships between actors (i.e., generalization and

specialization) may depend on the level of the system users and the

complexity of the system.

(3) Identifying the use cases focuses on defining the use case

derived from the domain process. The domain process provides

general scenarios of a system that captures the system or subsystem

behaviors. In this process, the captured behaviors are defined as an

action. In UML it is represented as a use case symbol. Based on

the identification, there are 20 use cases which 8 use cases

related to Admin, 4 use cases related to coordinator and 7 use

cases related to student.

(4) Identifying relationships between use cases aims to

identify the association between the identified use cases from the

previous process. The embodied relationships between use cases

depends on include' action', extends 'action' and specializes 'action'

in the event table. In addition, include 'action' is the action that is

included in the base use case, and it is mandatory to operate the base

use case. The Extend 'action' is the action that is included in the base

action, and it is mandatory to operate the base action before the

include' action'. Specialization' action' is the sub-action of the base

action. Based on the identification, the admin has 2 inclusions

and 3 extends relationships. Coordinator has 2 inclusions and

3 extends relationships. Student has 3 inclusions and has no

extends relationships. In the case study, the specializes 'action'

is not available. Therefore, in the UCD, there is no

generalization and specialization relationship between use

cases.

3.3 Use case diagram realization

The final process is use case realization. Use case realization

embodies the UCD based on the actors, use cases, and the

relationships identified from the previous process. This process

generates two UCDs and one diagram is a UCD with an additional

scenario based on the updated process. Figure 6 and Figure 7

show the result of use case integration based on the

relationships based on Table 2, Table 3, and Table 4.

Table 2. Event table generated from system behaviour and elaboration of system domain process (Admin)

Event
General

Source

Special

Source
Action Object

Includes

'Action'

Extends

'Action'

Specializes

'Action'
Destination

Admin manages

coordinator data
Admin -

Manage

coordinator

data

Coordinator

data
- - - Admin

Admin manages

faculty data
Admin -

Manage

faculty data
Faculty data - - - Admin

Admin manages

student data
Admin -

Manage

student data
Student data - - - Admin

Admin manages

the type of work

program's output

Admin -

Manage the

type of work

program's

output

The type of

work

program's

output

- - - Admin

Admin manages

villages data
Admin -

Manage

village data
Village data - - - Admin

Admin manages

period of

community

service program

Admin -
Manage

period
Period

Manage

village data

Choose

village
- Admin

Admin classifies

students as a

team and

identify team's

coordinator

Admin -
Manage

teams’ data

Students and

coordinator

data

Manage

student and

coordinator

data

Choose

students and

coordinator

-

Admin,

student,

Coord

Admin manages

the reports
Admin -

Manage

reports
Reports - - - Admin

Table 3. Event table generated from system behaviour and elaboration of system domain process (Coordinator)

Event
General

Source

Special

Source
Action Object

Includes

'Action'

Extends

'Action'

Specializes

'Action'
Destination

Coordinator manage

teams
Coord -

View team

members

Team

members
- - - Coord

Coordinator views

and approves the

task output

Coord -
View the

task output

The task

output

Upload the

task output

Approval the

task output
-

Coord,

Student,

Admin

Coordinator views

and approves the

final report

Coord -
View the

final report

The final

report

Upload the

final report

Approval the

final report
-

Coord,

Student,

Admin

Coordinator grades

the final reports
Coord -

Add

student

grades

Student

grades
-

Print student

grades report
-

Coord,

Admin,

Student

338

Table 4. Event table generated from system behavior and elaboration of system domain process (Students)

Event
General

Source

Special

Source
Action Object

Includes

'Action'

Extends

'Action'

Specializes

'Action'
Destination

Student makes a

registration
Student -

Make a

registration
Registration

Upload

documents

required

- - Student

Student makes a

registration
Student -

Make a

registration
Registration Update profile - - Student

Student views

team members

and coordinator

Student -

View team

members and

coordinator

Team

members
- - - Student

Student manages

work program for

their team

Student -
Manage work

program data

Work

program

Manage task

in work

program

- - Student

Student manages

task for their team
Student -

Manage task in

work program
Task - - - Student

Student manages

village profile
Student -

Manage village

profile

Village

profile
- - - Student

Student upload

the task report
Student -

Upload the task

report

The task

report
- - - Student

Student upload

the final report
Student -

Upload the final

report

The final

report
- - - Student

Table 5. Event table generated from new domain process (Community Service Division/Staff)

Event
General

Source

Special

Source
Action Object

Includes

'Action'

Extends

'Action'

Specializes

'Action'
Destination

CS staff

view the task

output

CS Staff -
Validation the

task output

The task

output

Upload the

task output

Validate the

task output
-

Coordinator

and Student

CS staff

view the

final report

CS Staff -
Validation the

final report

The final

report

Upload the

final report

Validate the

final report
-

Coordinator

and Student

Figure 6. UCD derived from the event table (admin)

Figure 7. UCD derived from the event table (student and

coordinator) based on the existing system

339

Figure 8. Improved UCD by adding new process

This process also visualizes the areas of improvement to

show the features required to be added to the UCSIS. Table 5

describes the scenario of the additional domain process into

the event table. As shown in Figure 7, there is no CS staff

(Community Service staff) in the UCD. The new use case is

generated based on the additional domain process and the

mapping on the Table 5 (Figure 8). Figure 8 Shows the areas

of improvement (using red line) in the form of UCD.

Visualizing the new UCD shows that there are requirements to

add menu for CS staff to view the task output and final report

to validate the task output and final report.

3.4 Discussion

The findings related to the reverse engineering approach

were discussed and it was reported that there are three

processes needed to be included in extracting UCD for the

system that the source code is not available. A reverse

engineering approach was presented by adding several

processes and combining them with event table [15]. The

processes are identifying the system domain process,

elaborating system features, and use case realization.

Identifying the system domain process involves domain

process descriptions. The domain process is considered as the

initial process in this approach because it is a crucial aspect in

software process [1-3]. Identifying the system domain process

includes descriptions of the domain process. Furthermore, the

domain process is considered as initial process in this approach

because it is a crucial aspect in software process [2, 3]. Not all

domain process of the software is well written and well

understood. This study confirms that domain process in

software engineering is associated with important knowledge

in software development that can be reused [16, 17]. In

addition, previous research has suggested that a reverse

approach should be carried out directly and that the actors

should be identified [15, 17].

This approach seems to work for generating UCD as well,

but it can be difficult in specifying the details of the system

behaviors when the domain process is not well understood.

Adding domain process identification in the reverse

engineering is useful as it is also an important aspect of the

software development process [3, 18].

Elaborating system features process includes the process of

creating an event table that consists of actors, use cases, the

relationships between actors and the relationships between use

cases identification. This process attempts to understand the

higher-level abstraction of the system from the system

behaviors. The addition of system features elaboration in the

reverse engineering approach is in line with previous study [8].

As explained by Chikofsky & Cross [8], design recovery is

part of the reverse engineering process, which focuses on

observing the subject system from design documentation. The

design recovery needs to produce all information related to

details of system features and behaviors.

In the use case realization process, the output of the previous

process is structured into UCD. This process is related to the

restructuring sub-area in reverse engineering [8].

Restructuring is the transformation of software form to

modelling form where the changes can be used as references

for understanding the system or software modifications.

4. CONCLUSION

Previous studies focused on reverse engineering method,

with little focus on how to extract UCD in reverse engineering

approach for the software or system with no source code

available. One of the key contributions of this work is to

present a reverse engineering approach based on system

behaviors without no access to the source code. The reverse

engineering approach focuses on three processes and the

integration of the event table into the processes.

In general, this study reiterates the idea that reverse

engineering should be able to provide high level system

abstraction even when the source code is not available. The

proposed reverse engineering approach applied in this research

integrates an extended event table and the process in the

requirement engineering. As depicted in Figure 9, the

proposed approach discussed in this research starts with

identifying the domain process of the system, elaborating

system features and use case realization. Identifying the

domain process aims to specify the important processes of the

existing system. By generating domain process descriptions,

system features can be identified respectively.

The second stage of the reverse engineering approach is

elaborating system features. Elaborating system features

focuses on system details from the actors, use cases, and

relationships. By having detail of the system, software

developers can visualize the UCD. The UCD generated from

the reverse engineering process would be useful for

identifying areas for improvement of the system features.

Figure 9. Reverse engineering approach to extract UML use

case diagram

340

This research implies that the results shows that the

approach presents a new reverse engineering strategy to

generate a UCD using system behaviors analysis. Software

practitioners, such as software developers, business analysts,

system analyst or software project managers, can use this

approach to elaborate software requirement specifications

without source code. In the future work, this approach can be

further analyzed and extended to other UML diagrams, such

as class, activity, sequence diagrams and their relationship.

ACKNOWLEDGEMENTS

This research is supported and funded by Lembaga

Penelitian dan Pengabdian Masyarakat (LPPM) University of

Riau with the contract number:

702/UN.19.5.1.3/PT.01.03/2021.

REFERENCES

[1] Canfora, G., Di Penta, M., Cerulo, L. (2011).

Achievements and challenges in software reverse

engineering. Communications of the ACM, 54(4): 142-

151. https://doi.org/10.1145/1924421.1924451

[2] Dingle, A. (2021). Object-Oriented Design Choices. First

edition. | Boca Raton: CRC Press, Chapman and

Hall/CRC, 2021.

https://doi.org/10.1201/9781003013488

[3] O’Regan, G. (2018). Object-oriented paradigm. In the

Innovation in Computing Companion, Cham: Springer

International Publishing, 213-215.

https://doi.org/10.1007/978-3-030-02619-6_45

[4] Sabir, U., Azam, F., Haq, S.U., Anwar, M.W., Butt, W.H.,

Amjad, A. (2019). A model driven reverse engineering

framework for generating high level UML models from

java source code. IEEE Access, 7: 158931-158950.

https://doi.org/10.1109/ACCESS.2019.2950884

[5] Fowler, M. (2004). UML Distilled: A Brief Guide to The

Standard Object Modeling Language. Addison-Wesley

Professional, 2004.

[6] Čeponienė, L., Drungilas, V., Jurgelaitis, M., Čeponis, J.

(2018). Method for reverse engineering UML use case

model for websites. Inf. Technol. Control., 47(4): 623-

638. https://doi.org/10.5755/j01.itc.47.4.21264

[7] Drungilas, V., Čeponienē, L., Jurgelaitis, M. (2018).

Reverse engineering of UML use case model from

website usage records. In International Conference on

Information Technologies, IVUS., pp. 54-60.

[8] Chikofsky, E.J., Cross, J.H. (1990). Reverse engineering

and design recovery: A taxonomy. IEEE Software, 7(1):

13-17. https://doi.org/10.1109/52.43044

[9] Wu, J., Zhang, X., Nichols, J., Bigham, J.P. (2021).

Screen parsing: Towards reverse engineering of UI

models from screenshots. In the 34th Annual ACM

Symposium on User Interface Software and Technology,

pp. 470-483. https://doi.org/10.1145/3472749.3474763

[10] Dayton, T., Mcfarland, A., Kramer, J. (2018). Bridging

user needs to object oriented GUI prototype via task

object design. In User Interface Design, CRC Press, 15-

56.

[11] Abdelnabi, E.A., Maatuk, A.M., Abdelaziz, T.M.,

Elakeili, S.M. (2020). Generating UML class diagram

using NLP techniques and heuristic rules. In

International Conference on Sciences and Techniques of

Automatic Control and Computer Engineering (STA),

130: 277-282.

https://doi.org/10.1109/STA50679.2020.9329301

[12] Narawita, C.R., Vidanage, K. (2018). UML generator –

use case and class diagram generation from text

requirements. International Journal on Advances in ICT

for Emerging Regions (ICTer), 10(1): 1.

https://doi.org/10.4038/icter.v10i1.7182

[13] Di Lucca, G.A., Fasolino, A.R., Tramontana, P. (2004).

Reverse engineering Web applications: the WARE

approach. Journal of Software Maintenance and

Evolution Research and Practice, 16(12): 71-101.

https://doi.org/10.1002/smr.281

[14] Shiferaw, M.K., Jena, A.K. (2018). Code generator for

model- driven software development using UML models.

In Second International Conference on Electronics,

Communication and Aerospace Technology (ICECA),

pp. 1671-1678.

https://doi.org/10.1109/ICECA.2018.8474690

[15] Muhairat, M.I., Al-Qutaish, R.E. (2009). An approach to

derive the use case diagrams from an event table.

Conference: Proceedings of the 8th International

Conference on Software Engineering, Parallel and

Distributed Systems (SEPADS'09). At: University of

Cambridge, Cambridge, UK.

[16] Oveh, R.O., Egbokhare, F.A. (2019). Harvesting and

informal representation of software process domain

knowledge. In Intelligent Computing-Proceedings of the

Computing Conference, 2019, pp. 936-947.

[17] Osis, J., Donins, U. (2017). Topological UML modeling:

An improved approach for domain modeling and

software development. Elsevier, 2017.

[18] Ivanova, L.S., Sokolov, D.A., Zmeev, O.A. (2021). UML

representation of object-oriented design antipatterns. in

2021 International Conference on Information

Technology (ICIT), pp. 98-103.

https://doi.org/10.1109/ICIT52682.2021.9491660

341

