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Noise estimation is a crucial stage in speech enhancement (SE), and it commonly 

necessitates the use of prior models for speech, noise, or both. Prior models, on the other 

hand, can be ineffective in dealing with unseen nonstationary noise, especially at low signal 

to noise (SNR) levels. This paper proposes to assess the efficacy of an unsupervised SE 

approach based on weighted low rank and sparse matrix factorization to estimate noise and 

speech when neither is available beforehand by decomposing the input noisy spectrum into 

a low-rank noise component and a sparse speech component. Due to the approximation of 

the actual rank of noise, these techniques are constrained, and they do not directly exploit 

the low-rank property in optimization. Nuclear norm minimization (NNM) is the most well-

known approach, as it can precisely recover the matrix's rank under certain restricted and 

theoretical guarantee conditions. NNM, on the other hand, is unable to reliably estimate the 

matrix rank in many situations. Significant advancements in computer vision and machine 

learning applications have demonstrated that a weighted nuclear norm minimization 

(WNNM), overcomes NNM shortcomings, and achieves a superior matrix rank 

approximation than NNM. Consequently, in this study, we present alternate SE algorithms 

that make use of weighted low rank and sparsity constraints to separate speech and noise 

spectrograms. Following that, they were trained and evaluated on a standard Automatic 

Speech Recognition (ASR) engine to lower the Word Error Rate (WER). Extensive 

investigations on the impact of real-world noise on speech signals show that the proposed 

model outperforms the existing state of art models in terms of objective measures like SDR, 

PESQ, SIG, BAK, OVL, and STOI values in varied noise circumstances under low SNR 

environments. 
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1. INTRODUCTION

The presence of background noise degrades the 

performance significantly in many speech signal processing 

applications including mobile communications, man-machine 

interfaces or hearing aids, low-quality audio devices, ASR 

systems, etc., Hence, they suffer from reduced speech quality 

and intelligibility which make their communication 

troublesome and therefore limit their use. However, for 

reliable speech communication, ASR in real-world 

environments must be robust to significant levels of noise. 

Processing the noisy speech data with each algorithm and 

retraining the ASR engine for each is impractical in general. 

This is especially true when a wide range of acoustic situations 

must be taken into account. One strategy to achieve improved 

accuracy and robustness is through speech enhancement. In 

such situations, Speech Enhancement (SE) aims to improve 

the perceptual quality of speech by separating speech from 

noisy observations to help to increase recognition accuracy. 

There is no prior information about the noise and spatial 

information available in the monaural case. It becomes a major 

challenge to devise an effective SE strategy, especially under 

low SNR conditions and with various non-stationary noises 

frequently experienced in real-life situations.  

Over the past several decades, many SE algorithms for 

monaural recordings have been proposed in the literature to 

enhance noisy speech signals. The traditional algorithms 

include spectral subtraction [1], minimum mean square error 

(MMSE) estimation [2], log minimum mean square error 

(logMMSE) [3], and Wiener filtering (WF) [4]. These 

approaches do not require any prior knowledge of speech or 

noise signals nor any kind of training, therefore they can be 

used in a variety of contexts. However, because these 

algorithms assume the noise is stationary, they are ineffective 

at dealing with nonstationary noise, especially at low SNR. A 

contemporary and alternate technique is signal subspace 

decomposition methods [5-7]. Assuming a low-rank linear 

model for speech and uncorrelated additive noise interference, 

the decomposition is carried out. Enhancement of speech is 

accomplished in the temporal domain by masking the noise 

subspace and then estimating the clean speech signal from the 

remaining signal-plus-noise subspace. Single-channel SE 

systems traditionally make use of the Voice activity detection 

(VAD) stage to estimate and update the noise statistics during 

noise-only segments. A well-designed VAD will improve the 

performance of the SE method in noisy environments in terms 

of accuracy and speed, otherwise, it would degrade the system 

performance. In low SNR conditions, the current VAD 

approaches are imperfect. Furthermore, even if VAD is 

adequately built, alterations in the noise spectrum that occur 
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during active speech segments are unable to affect the noise 

estimate in a timely manner. This would lead to an 

underestimation during long-spoken phrases where there are 

few noise-only portions [8]. Several algorithms are designed 

to improve the speech quality by estimating and reducing 

background noise power spectral density (PSD) for stationary 

or slow varying noise signals with SNR above 0dB. Although 

these methods can enhance the speech quality without any 

prior information about noise type, limited progress is made to 

improve the intelligibility under unseen non-stationary noise 

conditions that cannot guarantee a sufficient noise estimation 

for all scenarios. 

To overcome this limitation, many source separation and 

dictionary learning [9] based noise reduction algorithms have 

been reported. Such methods include principal component 

analysis (PCA) [10], Independent component analysis [11], K-

SVD [12] and Non-negative matrix factorization (NMF) [13]. 

Dictionary learning methods play a successful role in machine 

learning for SE, where the best data vectors (atoms) are 

modeled as sparse linear combinations of basis factors 

(dictionary) [14]. While PCA is highly sensitive to noise, 

corruptions in the data, can estimate the low-rank component 

arbitrarily far from the true model. Recently, methods like 

supervised learning using Gaussian mixture model or deep 

neural network offered better performance with mask estimate. 

For supervised separation, all these methods always need 

either a particular feature or huge initial training. However, the 

discrepancy between diverse real-world noises and training 

noises will result in performance degradation. To solve this 

problem, another very elegant remedy theory, called robust 

principal component analysis (RPCA) [15, 16] was proposed. 

This is an unsupervised method solved via Principal 

Component Pursuit (PCP) [17] that decomposes a matrix into 

low-rank and sparse structures using convex optimization. 

Simultaneously convex relaxation of the rank minimization 

model, the nuclear norm minimization (NNM) problem is 

attracting significant research interest in the recent years. 

One can improve perceived audio quality and/or 

intelligibility with low signal distortion by utilizing the most 

successful algorithm. Instrumental measures have been 

developed since human listener testing is time-consuming and 

expensive. These metrics are designed to estimate how 

effectively new algorithms will perform by modeling human 

responses [18-20]. 

The goal of this research was to develop methods for SE in 

low-SNR contexts, specifically in cases where a third-party 

ASR engine is provided either as embedded software or as a 

cloud-based solution, which could not be adjusted. Many 

alternative parameters are evaluated and optimized during 

algorithm development to lower the WER. 

 

1.1 Low-rank and sparse matrix decomposition 

 

From the basic principle of RPCA, the noisy speech 

spectrum is decomposed into low-rank and sparse matrices 

using Principal Component Pursuit (PCP) model. The sparse 

and low-rank components can be approximated and retrieved 

with a high probability by utilizing efficient estimation 

procedures. The low-rank matrix approximation (LRMA) 

method seeks to retrieve the underlying low-rank matrix by 

minimizing the rank of its relaxations from its corrupted 

observations of speech. Unfortunately, rank minimization is 

an NP-hard problem with no known efficient solution. The 

nuclear norm, which contributes to NNM-based approaches 

[21], is the best choice for substituting the rank function with 

its tightest convex relaxation. 

The classical Low-rank matrix Factorization (LRMF) 

method also known as the SVD technique, is capable of 

achieving the optimal rank-r approximation of input data 

matrix M by using a truncation operator on its singular value 

matrix in terms of F-norm fidelity loss. To suppress outliers 

mixed in data, a robust LRMA method called robust principal 

component analysis (RPCA) framework, based on nuclear 

norm minimization (NNM) is introduced. The NNM could be 

solved by the singular value thresholding algorithm [22] using 

the alternating direction method of multipliers (ADMM) [23] 

framework, which also belongs to the augmented Lagrange 

multipliers (ALM) framework. In the time-frequency (T–F) 

domain, noise signals present in different time-frames have 

similar spectral structures and patterns are usually correlated 

with one other and that can be captured with a few basis 

vectors. Therefore, the noise spectrogram is supposed to lie in 

a low-rank subspace. On the other hand, as the spectral energy 

centralizes in a few T-F units, speech signals can be assumed 

to be relatively sparse in T–F domain [24]. The RPCA method 

is a non-parametric method and do not require any specific 

assumptions about the distribution of the spectral components 

of either speech or noise. Because both speech and noise 

spectra can be recovered simultaneously, therefore the process 

of VAD is unnecessary and irrelevant in this framework. This 

method is superior to many traditional SE algorithms that 

depend on the performance of noise estimation algorithms [25, 

26]. The RPCA algorithm has the advantages of few tuning 

parameters and fast processing speed. Moreover, it can 

perform well in strong noise conditions. This favor to denoise 

speech through mask estimate on spectrogram via sparse and 

low-rank decomposition. Sharing similar principles several 

modifications have been investigated, to improve further the 

performance of low rank and sparse models like the SS-GoDec 

[27] algorithm for the SE. 

The most noticeable work is nuclear norm minimization 

(NNM), which can recover the rank of the matrix exactly 

under some restricted and theoretical guarantee conditions. 

However, Nuclear Norm Minimization (NNM) based RPCA 

and SS-GODEC methods may result in undesirable outcomes 

when prior knowledge of the signal source is not utilized. The 

standard NNM regularizes each singular value equally, 

resulting in the simple calculation the of convex norm. This 

restricts its ability and flexibility in dealing with a wide range 

of practical challenges in which the singular values have clear 

physical meanings and should be handled accordingly. Also, 

these algorithms are limited due to the approximation of the 

original rank of noise through NNM, and do not explicitly use 

the low-rank property in optimization. Therefore, for many 

real-world applications, NNM is not able to approximate the 

matrix rank accurately, since it often tends to over-shrink the 

rank components. To rectify the weakness of NNM, recent 

advances have shown that weighted nuclear norm 

minimization (WNNM) had shown to achieve a better matrix 

rank approximation than NNM, which heuristically set the 

weight as inverse to the singular values. It is proved that the 

recently proposed WNNM can replace the traditional nuclear 

norm, as an improved approximation to the rank of a matrix in 

computer vision applications [28]. As RPCA and SS-GODEC 

algorithms explicitly account for deviations of the speech and 

noise time-frequency matrices from the idealistic sparse and 

low-rank model, we propose an alternate SE algorithm for 

speech and noise spectrogram separation by imposing 
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weighted low rank and sparsity constraints. With the help of 

the low rankness of WNNM, the efficacy of enhancement by 

using singular value decomposition, the ADMM, and the 

accelerated proximal gradient line search method is improved. 

Therefore WNNM-based RPCA enhancement model is 

proposed here which takes the advantage of the high 

correlation of the speech signals, showing excellence to the 

NNM-based methods. Further study led to the invention of a 

new RPCA model, the weighted Schatten p-norm 

minimization model, to effectively perform low-rank 

regularization (WSNM). It is demonstrated in [29] that 

WSNM suppresses noise more effectively than state-of-the-art 

approaches and is better at modeling dynamic and complex 

situations. WSNM is a generalized version of WNNM whose 

performance in image denoising was analyzed. 

Motivated by this, the work evaluates and presents the 

results of NNM based RPCA, SS-Go Dec, WNNM based 

RPCA, and WSNM for enhancement of speech signals. The 

best measure for evaluating the performance of SE algorithms 

for ASR is the WER achieved over a specific set of data. In 

the first experiment, the performance of SE algorithms on a 

diverse range of acoustic conditions is evaluated using BSS-

eval metrics. These evaluations are conducted on the standard 

set of test speech signals that include: NOIZEUS [30], TIMIT 

[31], and LIBRI [32] databases. Substantial experiments 

conducted exploit the influence of these algorithms for a wide 

range of nonstationary real-world noise conditions. The 

induction of masks in Speech Enhancement has shown a lot of 

promise in improving speech intelligibility. Therefore, binary 

T-F masks and log-sigmoid soft masks are also considered for 

the enhancement algorithm and experimented with it. Further, 

the results are analyzed to investigate the suitability of the low-

rank and sparse model for speech and noise signals. Finally, 

the performances of the baseline SE methods like KSVD, 

NMF are compared with RPCA, SS-Go Dec, WSNM, and 

WNNM models. 

The purpose of the second experiment is to determine the 

effectiveness of different realizations proposed for SE under 

low SNR with least WER using the standard kaldi ASR system 

[33]. For mobile communicating devices, in particular, the 

variations in performance due to a wide range of acoustic 

conditions are taken into account. The results illustrate that the 

performance of our proposed approach is better than those of 

existing state of art methods. 

With the proposed model under low SNR conditions, 

promising results were obtained in our experiments in terms of 

better objective measures such as: SDR, PESQ, SIG, BAK, 

OVL, and STOI values when compared with baseline methods. 

The important thing to note from the findings is that for all 

types of noises and all masks, the proposed approach achieves 

an output SDR that is significantly higher than the input SDR. 

Specifically at -10dB input SNR level, using the WSNM 

model, an improvement of 8.14 dB and 6.17 dB in output SNR 

is observed with Traffic & Car and Wind noise, respectively. 

For the same settings PESQ scores of 2.51 and 2.27 

respectively were achieved. For input noise specifically 

between -10 to 0 dB, it is observed that the proposed WSNM 

algorithm with a binary T-F mask increased speech 

intelligibility. In all noise situations, the trained ASR with libri 

speech corpus performed effectively in low SNR levels (< 0 

dB) and significantly decreased WER when compared to 

baseline techniques. Overall, the results demonstrate that the 

performance of our proposed approach is better than those of 

existing state of art methods. 

The paper is organized as follows: Section 2 provides the 

overview of the SE Methods using RPCA, SS-Go Dec. It also 

contains algorithmic frameworks for implementations of these 

matrix decompositions. Section 3 describes the proposed 

WNNM, and WSNM based SE algorithm step by step and 

explains the STFT process and the time-frequency masking 

process. All information about the experimental setup and the 

methodology for this work, results, and analysis of these 

results are presented in sections 4 and 5. Section 6 presents the 

discussions and conclusions. 

 

 

2. OVERVIEW OF RPCA FOR SPEECH 

ENHANCEMENT FRAMEWORK 

 

RPCA breaks down noisy speech into low rank and sparse 

components in T-F domain based on convex optimization. The 

benefits of adopting RPCA are expressed by the fact that non-

stationary noise is frequently less spectrally diverse than 

foreground speech in SE. Noise signals are assumed to be low-

rank components because their spectrograms in time frames 

are correlated, but speech signals are considered to be sparse 

components due to their sparseness in the frequency domain. 

Based on alternating projection algorithm, speech and noise 

magnitude spectrograms are subjected to sparsity and rank 

constraints in order to enhance noisy speech [34]. In this work, 

the RPCA based methods will be evaluated regarding their 

ability to enhance speech signals. The RPCA algorithm first 

performs an STFT via the overlap-add method on the noisy 

speech input signal XNS. Then RPCA is solved via PCP, 

decomposes magnitude matrix |XNS| ∈  Rn1×n2, i.e. the 

spectrogram, into low-rank L and sparse S components, where 

L∈ Rn1×n2 and S∈ R n1×n2, While the phase information is 

stored for the reconstruction later on. Xmixed contains the 

spectrograms of a pair of original speech and noise 

contributions.  

Next, as in the studies [7, 8], L and S are used to create a 

mask: M ∈ Rn1×n2 with 0 ≤ M (m, n) ≤ 1 ∀ m,n. 

The final noise and speech estimates |Xˆnoise | ∈ Rn1×n2 and 

|Xˆspeech| ∈  Rn1×n2 are calculated with the help of time-

frequency (T-F) mask. This T-F masking step was taken into 

consideration as a way to possibly further improve the 

enhancement results. The time-domain estimates xˆspeech[k] 

and xˆnoise[k] are then calculated via overlap & add inverse 

STFT. The separation that is performed by this RPCA driven 

algorithm is based upon recognizing the clean speech by its 

sparsity and identifying the noise by its low-rank character. 

That is, the spectral structure of the speech component varies 

quickly with time while the noise component is usually either 

fixed or varies slowly. Such property signifies that clean 

speech is sparse while noise part appears to be low rank [35]. 

Therefore extracting the sparse component in the noisy speech 

matrix tends to enhance the noisy speech by reducing the noise. 

While the accuracy of the low-rank assumption for the noise 

will depend to great extent on the kind of noise that is present 

in the signal. A stationary and repetitive noise, like the noise 

of a machine, for example, would much rather be assumed to 

exhibit a low-rank character than a dynamic and varying 

crowd noise. 

However, it is observed from several experiments that the 

sparsity assumption seems to be appropriate for the speech 

signal. Assessing the suitability of the low-rank and sparse 

model and its influence on the enhancement results will be an 

important aspect of the evaluation in this work and will be 
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done in Section 4.2. The results that will be presented there do 

indeed show that the low-rank assumption for a certain type of 

noise signal is problematic. Many different T-F 

representations are depending on the combination of 

parameters that are chosen for the calculation of the STFT. The 

STFT length can be adjusted and the STFT window type can 

be chosen. Further on, the hop size can be selected, i.e. the 

number of samples by which the window is shifted between 

two consecutive FFTs. 

However, for all reasonable choices of the parameters, the 

resulting spectrogram matrix together with the associated 

phase matrix contains all the information about the 

transformed signal and the signal can exactly be reconstructed 

via ISTFT. Despite this, different ways of calculating the 

STFT have different effects on the success of the SE algorithm. 

The effects of different STFT settings that were found in the 

results of the experiments for this paper are described in detail 

in Section 4.1 

 

2.1 SE method using NNM based RPCA 

 

RPCA aims to find sparse version and a low-rank version 

from a noisy speech data matrix [35, 36]. It is robust to outliers 

and therefore finds extensive applications in image 

enhancement, modeling of images, separation of background 

in images, videos, and different machine learning purposes. 

There are several algorithms to solve RPCA problem such as: 

PCP, Inexact ALM (IALM), ADMM etc. RPCA solved via 

PCP decomposes a data matrix M, represented in Eq. (1) as 

follows: 

 

M=L0+S0 (1) 

 

where, L0 is the low-rank matrix and S0 is the sparse matrix.  

The RPCA is calculated using Eq. (2) as follows: 

 

arg min (||L||
∗
 + λ ||𝑆||

1
) under the constraint M=L+ 

S 
(2) 

 

where, λ is a positive constant that regulates the relative weight 

between the rank minimization and l0-norm. 

The approximated values of L̂, Ŝ are calculated using Eq. (3) 

as follows: 

 

L̂, Ŝ = 𝑎𝑟𝑔 𝑚𝑖𝑛𝐿,𝑆 ||𝐿||
∗

+  λ||S||
1
 s. t M-L-S = 0 (3) 

 

By using the Lagrange method, a Lagrange multiplier Y is 

associated to produce an unconstrained function. The optimum 

values of L and S are found in an iteration using the Y value 

from the last iteration. Thus, in this way, the values of L, S, 

and Y are updated to reach the global optimum. 

 

2.2 SE method using SS GODEC 

 

From the preliminary experiments, it is observed that the 

RPCA model is not effective and robust to extract the formant 

structure of original speech. Thus, RPCA method is modified 

to use the GO-Dec algorithm by representing spectrogram of 

the real-world noisy speech M as the superposition of L, S, and 

E, that is, M = L+ S + E, where L and S are the low-rank and 

Sparse components and E is a noise term that perturbs the ideal 

low-rank and sparse character. Following this, the 

optimization objective function is formulated in Eq. (4) as 

follows: 

arg 𝑚𝑖𝑛
𝐿,𝑆

ǁ 𝑀 −  𝐿 –   𝑆ǁ2 𝑠. 𝑡 𝑟𝑎𝑛𝑘(𝐿)  ≤  𝑟 

𝑎𝑛𝑑 𝑐𝑎𝑟𝑑(𝑆)  ≤  𝑚 
(4) 

 

And yields low-rank and sparse estimates �̂� and �̂� [19]. So, 

L and S have to be chosen such that they meet the predefined 

conditions on their rank and cardinality of their support set 

while the noise power ǁEǁ2 = ǁ M − L − SǁF
2 

is minimized.  

As the cardinality S is hard to estimate, by using soft 

threshold λ for matrix decomposition, the optimization 

problem is formulated in Eq. (5) as follows: 
 

𝑎𝑟𝑔 𝑚𝑖𝑛 ǁ𝑀 − 𝐿 − 𝑆ǁ2 + 𝜆ǁ𝑆ǁ1 𝑠. 𝑡 . 𝑟𝑎𝑛𝑘 (𝐿)  ≤  𝑟 (5) 
 

 

3. RPCA BASED WEIGHTED NUCLEAR NORM 

MINIMIZATION (WNNM) FOR LOW-RANK 

ESTIMATION 
 

The goal of NNM decomposition is to recover the 

underlying low-rank matrix L from its degraded observation 

matrix M, by minimizing ||L||∗. But the main problem with the 

above formulation of NNM-RPCA is that the optimization 

function is non-convex and the problem falls under NP-hard 

problems, which are computationally expensive. Moreover, 

the technique assigns equal weights to all the singular values 

or rank components resulting in biased estimate of low rank 

and sparse components, restricting its flexibility in practical 

applications. The singular values of a matrix in the context of 

speech processing are closely associated with the physical 

properties of the speech signal. Large singular values account 

for prominent features of speech such as short-term zero 

crossing and energy, whereas smaller ones correspond to noise 

components. Therefore, large singular values must be treated 

differently from the smaller ones and must be preserved to 

reproduce high-quality speech. To improve the performance 

of NNM, in the last few years, numerous applications based 

on NNM have been proposed, such as video enhancement, 

background extraction, and subspace clustering. However, the 

nuclear norm is generally adopted as a convex surrogate for 

matrix rank. The singular value thresholding (SVT) model for 

NNM treats different rank components equally, leading to over 

shrink the rank components, and hence the estimation of the 

matrix rank is inaccurate. As a result, it is obvious that the 

traditional NNM model, as well as the accompanying SVT 

approaches, are insufficiently adaptable to deal with such 

problems. The methods such as truncated nuclear norm 

regularization (TNNR) and the partial sum minimization 

(PSM] among N singular values, keep the largest ‘r’ (rank of 

the matrix) singular values unchanged and only minimize the 

smallest (N-r) ones. TNNR and PSM, on the other hand, are 

not flexible enough because they make a binary decision on 

whether or not to regularize a particular singular value or not. 

While could produce an over-fitting solution due to the noise 

effects. 

Inspired by the singular values that have distinct physical 

implications proposed the weighted nuclear norm 

minimization (WNNM) model. WNNM generalizes NNM and 

improves the flexibility of NNM significantly. To improve the 

flexibility of nuclear norm, in this work we propose to 

investigate the weighted nuclear norm and evaluate its 

minimization strategy. The weighted nuclear norm of a matrix 

M is defined in Eq. (6) as follows: 

 

|| 𝑀 || 𝑤,∗ = (∑|| 𝑤𝑖  𝜎𝑖(M)|| 1 (6) 
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where, vector w = [w1, w2 ..., wn] and wi ≥ 0 is a non-negative 

weight assigned to 𝜎𝑖. The rational weights rules for weighting 

can be specified depending on the prior knowledge and 

understanding of the problem, which will greatly improve the 

representation capability of the original data from the 

corrupted input. From prior knowledge, it is understood that 

the higher singular values of M are more essential than the 

smaller ones in natural speech because they indicate the energy 

of the major components of M. The larger the individual 

values are, the less they should be shrunk while denoising. As 

a result, it's a natural assumption that the weight given to σi(M), 

i-th singular value of M, should be inversely proportional to σi 

(M). WNNM is a non-convex problem that is more complex 

to solve than NNM. So far the WNNM problem has got very 

little attention in this work. We investigate in depth the 

WNNM problem using F-norm data fidelity. The solutions are 

examined under various weight conditions. 

We implement the proposed WNNM algorithm to SE as a 

significant application. SE aims to estimate the hidden clean 

speech from its noisy observation. As a classical and 

fundamental problem in low SNR conditions, SE has been 

extensively explored for many years; however, it remains a 

prominent research area since enhancement is an ideal testbed 

for investigating and evaluating the statistical speech modeling 

techniques. The use of speech Nonlocal self-similarity (NSS) 

has improved significantly the SE performance in recent years. 

The NSS prior refers to the fact that for a given local frame in 

a natural speech, one can find many similar frames to it across 

the speech signal. The nonlocal similar frame vector is stacked 

into a matrix, which must be a low-rank matrix with sparse 

singular values. As a result, enhancement algorithms can be 

designed using low-rank matrix approximation method. This 

research provides a two-fold contribution. First, we examine 

the WNNM optimization problem in-depth and propose 

solutions for various weight conditions. Second, we 

demonstrate the potential of the proposed WNNM algorithm 

for SE in low SNR situations.  
 

3.1 Problem formulation for WNNM model 
 

RPCA attempts to identify a low-rank version and a sparse 

version from a single matrix and has a wide range of 

applications. In this section, we propose reformulating Eq. (1) 

using the weighted nuclear norm, resulting in the WNNM 

based RPCA (WNNM-RPCA) model represented in Eq. (7) as 

follows: 
 

arg min ( ||𝐿||
𝑤,∗

+ 𝜆 ||𝑆||
1

 ) 

𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑀 = 𝐿 + 𝑆 
(7) 

 

The ADMM is used to solve the WNNM-RPCA problem, 

just like it is in NNM-RPCA. By using the ALM method, a 

Lagrange multiplier Y is associated to produce an 

unconstrained function represented in Eq. (8) as follows: 

 

𝑎𝑟𝑔 𝑚𝑖𝑛
𝐿,𝑆

||𝐿||
𝑤,∗

 + 𝜆 ||𝑆||
1
+ <  𝑌, 𝑀 − 𝐿 − 𝑆 

>  + 
𝜇

2
 ||𝑀 − 𝐿 − 𝑆||

𝐹
2  

(8) 

 

where, μ=1/2k. 

The optimum values of L and S are found in an iteration 

using the Y value from the last iteration. Then again, the value 

of Y is updated in the current iteration with the new optimum 

L and S values. 

Lk, Yk, and Sk are local variables and represent the local 

optimum in the kth iteration is represented in Eq. (9) and Eq. 

(10) as follows: 

 

𝑆𝑘+1  =  𝑎𝑟𝑔𝑚𝑖𝑛 𝑓(𝑆, 𝐿𝑘, 𝑌𝑘)       
=  𝑎𝑟𝑔𝑚𝑖𝑛𝑆  𝜆|| 𝑆 ||1

+  
𝜇

2
|| 𝑀 + (𝑌𝑘/𝜇) − 𝐿𝑘 − 𝑆 ||𝐹

2  

(9) 

 

similarly 

 

𝐿𝑘+1  =  𝑎𝑟𝑔𝑚𝑖𝑛
𝐿
 𝜆|| 𝐿 ||

𝑤,∗

+  
𝜇

2
|| 𝑀 +  (𝑌𝑘/𝜇) − 𝐿

− 𝑆𝑘+1 ||
𝐹
2  

(10) 

 

For the weight wi of each group Mi, large singular values of 

each frame group mj in M usually offer significant information, 

and vice versa, inspired by singular values that have clear 

physical implications. As a result, we usually shrink large 

singular values less and smaller singular values more. To put 

it in other words, the weight wi of each group mj in M is set to 

be inverse to the singular values, and so as in the study [15], 

the weight is heuristically set as: 

 

𝑤𝑖,𝑗 =  c / (σ𝑖,𝑗  +   ϵ ), 

 

where, c and ϵ are the small constants. 

Solving the above equation, we obtain Eq. (11) as follows: 

 

𝑌𝑘+1 = 𝑌𝑘 + 𝜇
𝑘
(𝑀 −  𝐿𝑘+1 − 𝑆𝑘+1) (11) 

 

Thus, in this way the values of L, S and Y are updated to 

reach the global optimum. 

 

Algorithm 1 SE by WNNM-RPCA 

Input: Noisy speech data M, weight vector w 

1: Initialize μ0>0, λ>0, ρ>1, θ>0, k=0, L0=M, Y0= 0;  

2: do 

3: 𝑆𝑘+1 =  𝑎𝑟𝑔𝑚𝑖𝑛𝑆 𝜆|| 𝑆 ||1 + 
𝜇

2
|| 𝑀 +  (𝑌𝑘/𝜇) − 𝐿𝑘 − 𝑆 ||𝐹

2;  

4: for each frame mj in M do  

5: Find similar frame group Mj  

6: Estimate weight vector w  

7: 𝐿𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐿 𝜆|| 𝐿 ||𝑤,∗ +  
𝜇

2
||𝑀 +  (

𝑌𝑘

𝜇
) − 𝐿𝑘 − 𝑆𝑘+1 ||𝐹

2;  

8: Yk+1 = Yk + μk (M − Lk+1 − Sk+1);  

9: Update μk+1 = ρ ∗ μk; 

10: k = k + 1; 

11: while ||M − Lk+1 − Sk+1||F / ||M||F > θ; 

12: Output Matrix L = Lk+1 and S = Sk+1; 

 

3.2 Problem formulation for WSNM model  

 

WSNM is a generalized variant of Weighted Nuclear Norm 

Minimization, whose image denoising performance has been 

studied in Refs. [13, 14]. WSNM Low-rank approximation 

tends to carry out low rank regularization effectively wherein 

we employ the loss function expressed in Eq. (12) as follows: 

 

𝑎𝑟𝑔 𝑚𝑖𝑛
𝑆,𝐿

 || 𝑆 ||
1

+ || 𝐿 ||
𝑤,𝑆𝑝

𝑃  𝑠. 𝑡 𝑀 = 𝐿 + 𝑆 (12) 

 

Using Augmented Lagrangian function, we get Eq. (13) as 

follows: 
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𝐿(𝐿, 𝑆, 𝑍, 𝜇)  =  || 𝑆 ||1 + || 𝐿 ||𝑤,𝑆𝑝
𝑃 + 

<  𝑌, 𝑀 − 𝐿 − 𝑆 >   

                               + 
𝜇

2
 ||𝑀 − 𝐿 − 𝑆||2

𝐹 

(13) 

 

where, Y is Lagrangian multiplier, μ is positive scalar. The 

values of the weighted vectors are defined in Eq. (14) as 

follows: 

 

𝑤𝑖 = 𝐶√(𝑚𝑥𝑛)/(ϭ𝑖(𝑀) +  𝜖) (14) 

 

Algorithm 2 SE by WSNM-RPCA 

Input: Noisy speech data M, weight vector w, power p 

1: Initialize μ0 > 0, ρ > 1, k = 0, L0 = M, Y0 = 0;  

2: do 

3: 𝑆𝑘+1 =  𝑎𝑟𝑔𝑚𝑖𝑛𝑆 𝜆|| 𝑆 ||1 + 
𝜇

2
||𝑀 + (

𝑌𝑘

𝜇𝑘
) −  𝐿𝑘𝑆𝑘 ||𝐹

2;  

4: 𝐿𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐿 || 𝐿 ||𝑤,𝑆𝑝
𝑃 + 

𝜇

2
||𝑀 + (

𝑌𝑘

𝜇
) − 𝐿−𝑆𝑘+1 ||𝐹

2;  

5: Yk+1 = Yk + μk (M − Lk+1 − Sk+1);  

6: Update μk+1 = ρ ∗ μk; 

7: k = k + 1; 

8: while ||M − Lk+1 − Sk+1||F / ||M||F not converged; 

9: Output Matrix L = Lk+1 and S = Sk+1; 

 

 

4. EXPERIMENTAL SETUP AND METHODOLOGY 

 

This section provides an experimental setup and methods 

for evaluating the suggested noise reduction methods' 

performance and suitability. The results of these experiments 

are of high informative value for assessing the possibilities and 

limitations of the enhancement method. They also allow 

estimating the influence of the parameters that were 

considered in Sections 2 and 3. Because of many uncertainties 

and complicated relations, the theoretical discussion in the 

previous section did not suffice to make a reliable prediction 

of the performance of the speech recovery procedure. On the 

contrary, the results of the experiments show how well the 

algorithms have already performed in tests, and the 

assumption is justified that they will perform similarly in 

identical situations. Therefore, the following section contains 

very valuable information about the potential of the SE method 

in practical use. Even more so as the number of test signals 

that were used is rather high. 

The standard Noizeus corpus [30] was used in studies. The 

speech signals available as wav-files with a sampling rate of 8 

kHz. A total of 20 clean sentences were chosen for this study 

The noisy stimuli were created by adding clean phrases with 

five different signal-to-noise ratio levels, including -10, -5, 0, 

5 and 10 dB. The noise signals obtained from a noise 

collection available as waveforms with a sampling rate of 8 

kHz as well. Five noise recordings: The cheering of a crowd 

of people, a bubbling stream of water, wind, machine, and car 

driving in traffic were selected for the evaluation. AWGN is 

simulated and added to the clean speech. This resulted in an 

overall number of 5 • 20 • 6 = 600 mixed test signals, which 

are all about 3 seconds long. 

Low-rank, sparse and noise matrix decomposition 

algorithms needs to be given the parameter r and λ. r 

determines the rank of the low-rank component while λ is used 

to trade off the desire to minimize the cardinality of the sparse 

component against the desire to minimize the energy of the 

noise component. It is important to tune the two parameter. If 

λ is chosen too small, then parts of the noise will leak into the 

speech estimate because the urge to minimize cardinality of 

the sparse component is not high enough to eliminate all 

relevant noise contributions from the sparse component. If λ is 

chosen too big on the other hand, the urge to minimize the 

cardinality of the sparse component is so dominant that parts 

of the speech will be eliminated from speech estimate which 

is counterproductive of course. It should be pointed out that 

apart from the parameters that were changed in order to 

evaluate their influence on the performance of the SE method 

all settings were left as they were. The best value in this 

investigated is an average output SDR of 2.89 dB which was 

achieved by setting r = 1 and λ = 1. Therefore, this will be the 

setting that will be used in the following comparison of the 

performances in the speech denoising methods. 

 

4.1 Influence of binary and log-sigmoid time-frequency 

masking 

 

In order to illustrate the time-frequency masking step and 

the influence of different masks, Figure 1 contains plots of all 

matrices that are relevant for example masking step. The 

spectrogram of the noisy speech input signal is shown in 

Figure 1a. Figures 1b and 1c show the low-rank and sparse 

components that decomposed the input spectrogram by 

WNNM-RPCA algorithm. Figure 1d depicts the binary mask 

derived from the low-rank and sparse components, whereas 

Figure 1e display the final speech estimate after applying the 

binary mask. Figure 1f shows the log-sigmoid mask calculated 

from the low-rank and sparse components and Figure 1g is the 

final voice estimate after applying the log-sigmoid mask. 

Figure 1h shows the final speech estimate spectrogram when 

no mask is applied. The SE algorithm with RPCA matrix 

decomposition was applied to all 600 test signals. With fixed 

STFT settings of M = 1024, hop-size = 256 using Hanning 

windowing, the enhancement methods were tested with binary 

masks, log- sigmoid masks and without masks in order to 

experimentally evaluate and compare the influences of the 

masks. 

For all five noise types, all five speech to noise energy ratios 

in the input signal and all three different masks (no mask, 

binary mask and log-sigmoid mask), the mean speech to 

distortion energy ratio is obtained by averaging the resulting 

SDR values of all 20 speakers. The most obvious and most 

important thing that can be learned from these results is that 

for all noises and all that for all noises and all masks, the 

approach with the settings as specified above achieves a 

speech to distortion energy ratio (SDR) in the speech estimate 

that is considerably higher than the speech to noise energy 

ratio in the input signal. 

The most obvious and most important thing that can be 

learned from these results is that for all noises and all masks, 

the approach with the settings as specified above achieves a 

speech to distortion energy ratio (SDR) in the speech estimate 

that is considerably higher than the speech to noise energy 

ratio in the input signal. This is true for all entries with input 

SNR levels of -5dB, 0dB and 5dB and most of the entries with 

input SNR of -10dB. Only for some entries at the already high 

input SNR of 10dB, the enhancement method fail to produce 

a further increase in the speech quality and decreased it instead. 

From the results, it is observed that all three masks achieve 

very similar results for low values of the input SNR and that 

the output SDR values become slightly more spread out for 

higher values of the input SNR. For high SNR values, the SE 

algorithm without any mask does perform best, log-sigmoid 
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masking is second best and binary masking is last with a 

performance that is about 1dB worse than that without 

masking. This suggests that the WNNM-RPCA 

decomposition already achieves a good separation of speech 

and noise, which cannot be further enhanced with the masks 

used here. Instead, the masks cause undesired alterations that 

deteriorate the results. 

For low values of the SNR on the other hand, the results are 

closer together with log-sigmoid masking performing best. So, 

in very noisy conditions, masking can help improve the 

outcome of the speech recovery a little bit. Another aspect that 

results reveal is that log-sigmoid masking does constantly 

perform about 0.4dB better than binary masking. This is not 

only true on average but can also be verified by comparing 

corresponding individual entries. It can be realized that the 

behaviour of the three different mask types for the individual 

noise types does not deviate significantly from the average of 

overall noise signals. This means that none of the tested noise 

signals has a mask type that is particularly suitable and 

performs significantly better than all other mask types. 

 

 
 

Figure 1. Plots of relevant matrices for the time-frequency masking step using WNNM-RPCA Based SE algorithm: a) 

Spectrogram of noisy speech signal b) Low-rank component. c) Sparse component d) Binary mask e) Speech estimate after 

binary masking f) Log-sigmoid mask g) Speech estimate after Log-sigmoid mask h) Speech estimate without masking 

 

 
 

Figure 2. Performance comparison of the proposed SE algorithms with baseline methods in terms of SDR values using standard 

NOIZEUS data base 
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4.2 Evaluation of the weighted low rank and sparse 

decomposition models for SE 

 

This section contains the evaluation results that were 

achieved with the WNNM-RPCA (WRPCA) and WSNM-

RPCA (WSRPCA) based enhancement procedure for different 

settings of the parameters which were discussed in Sections 

3.1 and 3.2. The 600 test signals were decomposed with the 

SE algorithm that uses NNM-RPCA at its core. The results 

indicate how well the WSRPCA based SE algorithm will 

perform for different noise types. The suggested SE algorithms 

are evaluated and validated against the baseline state-of-the-

art SE algorithms using objective evaluation metrics such as: 

SDR, PESQ, STOI, SIG, and BAK. The results of experiments 

revealed that WSRPCA outperforms state-of-the-art 

enhancement algorithms not only in terms of PESQ and STOI 

index but also in local structure preservation, leading to 

listening more pleasant. 

Figure 2 shows the performance comparison of the 

proposed and baseline SE algorithms in terms of SDR. At -

10dB, using the suggested WSRPCA approach, an 

improvement of 8.14 dB and 6.17 dB in SDR was observed 

with Traffic & Car and Wind noise, respectively. The 

weighted low rank and sparse models have shown 

improvements in all SNR levels and noise environments. The 

proposed methods are also examined with AWGN as a 

stationary noise case. 

The performance study of the proposed algorithms versus 

KSVD, NMF, RPCA, and SS-GODEC in terms of PESQ [37] 

for all SNR levels is depicted in Figure 3. PESQ was improved 

the most in noisy unprocessed speech at -10 dB traffic and car 

noise (∆PESQ = 0.49) and the least with 10 dB AWGN 

(∆PESQ = 0.27). When compared to the baseline techniques, 

the suggested speech enhancement algorithms showed a 

considerable improvement in PESQ at all SNR levels and 

noise situations. At -10 dB noise levels, the greatest PESQ 

scores were obtained in traffic and car noise, wind noise, and 

AWGN, with PESQ = 2.51, 2.27, and 2.43, respectively. 

 

 
 

Figure 3. Performance comparison of the proposed SE algorithms with existing methods in terms of PESQ values using standard 

NOIZEUS data base 

 

 
 

Figure 4. Performance comparison of the proposed SE algorithms with existing methods in terms of STOI using standard 

NOIZEUS data base 
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(a)                                                       (b)                                                        (c) 

 

Figure 5. Performance comparison of the proposed SE algorithms with existing methods in terms of Objective metrics: a) BAK 

b) OVL c) SIG 

 

 
 

Figure 6. Performance comparison of proposed speech enhancement algorithm in terms of Word Error Rate (WER) over noisy 

and baseline algorithms 

 

According to the results of the previous investigations on 

proposed algorithms, using a binary T-F mask improved 

speech intelligibility in strong noisy conditions (-10 to 0 dB). 

Figure 4 demonstrates the improved speech intelligibility with 

binary mask using STOI [38] measure. For SNR = 10 dB, all 

noise sources resulted in the highest intelligibility scores 

(STOI > 0.86). 

To determine the speech distortion and back ground residual 

noise introduced by the recommended algorithms, measures 

like SIG, BAK, and OVL must be taken into account. For the 

proposed algorithm's speech distortion (SIG), residual noise  

(BAK) and Overall quality with similar are measured and 

are shown in Figures 5 (a-c). The offered strategies provides 

low residual noise and consistently produces high BAK and 

OVL values at all SNR levels and noise conditions. In all noise 

situations, the algorithm performed effectively in low SNR 

levels (-10 dB) and significantly decreased residual noise 

when compared to baseline techniques. The proposed 

approach produces high SIG values at all SNR levels and noise 

situations, demonstrating its usefulness in terms of speech 

content preservation. 

When compared to baseline techniques, in low SNR 

situations (< 0dB) the proposed approach produced the 

greatest SIG values, demonstrating its usefulness in terms of 

speech content preservation. The approach outperformed in 

Traffic & car noise at all SNR levels by introducing less 

speech distortion and also very little residual noise in all noise 

settings. 

 

 

5. EXPERIMENT RESULTS ON ASR 

 

According to WER at various input SNR’s, the human 

ability to recognize speech contents remains resilient. 

However, in the presence of strong background noise, the 

accuracy of single channel ASR systems decreases 

significantly. In fact, most single-channel speech enhancement 

(SE) approaches (denoising) have only provided marginal 

performance improvements over state-of-the-art ASR back 

ends trained on multicondition training data. One of the best 
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ways to improve robustness to a speech recognition system is 

to include a noise reduction (SE) stage.  

Testing the performance of each SE algorithm throughout 

the complete spectrum of acoustic circumstances takes a long 

time. As a result, it is preferable to estimate WER scores using 

more easily computed metrics during the development of the 

SE algorithm, where the clean speech reference is available. 

Predicting the performance of the SE algorithm is beneficial 

to correlate the improvements in WER with improvements in 

bss_eval metrics. The denoised speech signals from the first 

experiment are used in the second experiment to test and 

evaluate WER employing the kaldi ASR repository. Among 

the speech processing schemes experimented, particularly the 

proposed speech enhancement algorithms performed well in 

terms of the WER over noisy speech, depicted in Figure 6. 

 

 

6. DISCUSSIONS AND CONCLUSIONS 

 

This paper proposes two convex optimization-based speech 

enhancement approaches that don't require any prior 

knowledge of speech or noise. Using a low rank sparse matrix 

decomposition model, the approach decomposes the input 

noisy speech magnitude spectra into low rank noise and sparse 

speech components. We feel that the provided algorithms will 

be a new feasible direction for the SE problem under low SNR 

conditions due to their superior features. The suggested 

methods are non-parametric strategies that do not require any 

assumptions about the spectral component distribution in 

speech or noise. In the T-F domain, it only requires low-rank 

noise and sparse speech. The VAD approach is irrelevant and 

unnecessary in this SE framework since speech and noise 

components can be obtained simultaneously [39, 40]. 

The contribution of this research is to provide an 

unsupervised speech denoising strategy under diverse, strong, 

and unseen real-world nonstationary noisy settings that uses 

low rank and sparse decomposition models with a different 

objective function than the conventional RPCA approaches. 

For each noisy input, all the regularization parameters are 

automatically modified and updated. Although the existing 

methods such as KSVD and NMF methods can eliminate most 

interferers, under low SNR conditions (< 0dB) part of the 

recovered speech formant structures are lost during the matrix 

decomposition process, resulting in speech distortion. To 

alleviate speech distortion, we intend to build a novel low-rank 

and sparse matrix decomposition model by placing appropriate 

constraints on the sparse part. The present study assessed 

several objective measures widely used for evaluating speech 

quality. 

In the first experiment, we have evaluated the performance 

metrics of RPCA, SS-GODEC, WNNM and WSNM and 

compared with KSVD and NMF in a wide range of acoustic 

conditions. The test conditions included speech signals from 

the Noizeus data bases and five real world noise at five SNR 

levels (-10 dB, -5dB, 0 dB, 5 and 10 dB). Acoustic conditions 

with stationary noise at various SNR levels are included in our 

experiments that has shown excellent performance. With the 

proposed model, promising results have been obtained in our 

experiments in terms of better objective measures like SDR, 

PESQ, SIG, BAK, OVL, and STOI values when compared 

with baseline methods such as KSVD, NMF, RPCA and SS-

GoDEC. 

Second experiment is conducted to investigate and compare 

the presented SE algorithms with the RPCA models for speech 

recognition. In this, enhanced speech signals from the first 

experiment are trained and evaluated WER using kaldi ASR 

repository. We examined the generalization capability of SE 

methods using Noizeus, Libri, TIMIT data bases and ASR 

backends. The ASR results shows that the performance of our 

proposed approach with libri database produced the lowest 

WER values. 

SS-GoDec algorithm is determined to have a negative 

impact on WER when compared to other algorithms studied. 

The solutions are investigated under various weight conditions 

of nuclear norm, and the proposed WNNM and WSNM 

algorithms outperforms the NNM problem. Since the 

algorithms tested here use standard data bases, any change in 

the spatial properties in the acoustic channel (closed room) 

may likely degrade the performance.  

Some thoughts should be elaborated here in order to 

conclude the presented evaluation of the influence that 

different STFT parameters have on the results of the RPCA 

based SE methods. First of all, it should be emphasized that 

the presented studies of the effect of changes in the STFT 

settings are of course not at all exhaustive. Numberless values 

for each parameter could be tested and for an infinite number 

of combinations of parameters the performance of the SE 

algorithm could be evaluated. Absolutely remarkable is the 

performance of the WSNM-RPCA based unsupervised and 

untrained approach is successful even when applied for 

challenging unsteady noises such as the sound of a bubbling 

stream of water, people cheering of the crowd of people. The 

improvement can be achieved even under very noisy 

conditions with low input SNR values. Then, even more, 

extensive test signal corpora and more elaborate objective 

speech quality measures could be used. It should also be 

investigated further which noise types the performance of the 

SE method tends to be good for and which noise types are too 

challenging. The good results of the WSNM based RPCA 

approach for some noise types could motivate the 

development of real-time realizations of this algorithm, which 

could be interesting for hands-free mobile communication in 

cars or hearing aids, for example. At low SNR levels, the 

proposed algorithm offered minimal speech distortion, and 

little residual noise was found in speech processed by the 

proposed algorithm, as shown by high BAK and SIG values, 

respectively. The spectrogram and time-domain analysis 

further revealed that the suggested algorithm's output speech 

had low residual noise. Our study demonstrated that the use of 

convex optimization methods like: WNNM and WSNM has 

greatly improved the performance of SE under low SNR 

conditions.  

The proposed SE methods, however, are unable to 

completely remove background noise since the convex 

optimization techniques are inaccurate in estimating exact low 

rank. The problem of developing robust speech enhancement 

algorithms that can effectively remove background noise yet 

maintaining good quality and intelligibility in highly 

nonstationary and adversely noisy situations has yet to be 

solved. For Superior performance, models to estimate exact 

low-rank and noise type are to be explored. 
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