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 Many medical applications need to be able to separate and find brain tumor’s using CT scan 

images. There have been a lot of recent studies that used distinguish between benign and 

malignant tumour to find out where and how big a tumour is. Even though they did well at 

segmenting the Medical Image Segmentation Decathlon (MISD) dataset, their complex 

structure requires more time for training and analysis. To build a flexible and efficient brain 

tumour segmentation system, we offer a pre-processing method that only works on a small 

part of the images instead of the whole Image. U-Net with three parameters Deep Learning 

models can be trained more quickly and with less overfitting with this method. Support 

vector machine is used in the second stage because there are fewer brain images for each 

slice. When U-Net+SVM looks at data this way, it can find both local and global features in 

it. The Three parameter method had shown to be more accurate at separating brain tumors 

from healthy parts of the brain than other models. The U-Net+SVM+Three Parameter 

Features method requires the tumour to be in the middle of the model and to be there. A lot 

of testing on the Medical Image Segmentation Decathlon (MISD) dataset showed that our 

model can get good results: Dice scores for overall cancer, more cancer and the core of the 

tumour are all 96%, which is the same for all three. 
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1. INTRODUCTION 

 

The term "brain tumour" refers to the uncontrolled growth 

of brain cells [1]. The two types of tumours are malignant and 

non-cancerous. In addition to primary and secondary brain 

tumours, there are many different types of brain tumours that 

spread from other parts of the body to the brain. Brain tumours 

are categorised by their size and where they are in the brain. 

All of these symptoms happen to people who have this 

condition. They are walking, talking, numbness and sleep are 

all slowed down by this problem. Most brain tumours don't 

have a clear reason [2]. The Epstein-Barr virus, ionising 

radiation, neurofibromatosis, tuberous sclerosis and von 

Hippel-Lindau syndrome are all examples of rare risk factors. 

These are some of the more common risk factors: Vinyl 

chloride, for example, is one example. If you use a cell phone, 

there isn't enough evidence to say that it is bad for you. Most 

glial tumours in adults are meningiomas and astrocytoma’s, 

which are both types of tumours made by cells. Malignant 

medulloblastoma is the type of cancer that most often affects 

young people.  

Many times, a CT scan [3] form the Figure 1 and an MRI 

scan are used together to find out what's wrong with someone 

health. This happens a lot when someone is getting checked 

out by a doctor (MRI). 

A biopsy is often done to make sure the doctor is right. The 

information is used to group the tumours based on the severity 

of the disease. There are a lot of ways to treat this like surgery, 

radiation and chemotherapy. If there is a seizure, 

anticonvulsant medicine might be needed to stop it. People 

who have cancer may need to take dexamethasone [4] and 

furosemide to cut down on the amount of tumour edoema. In 

this case, the rate at which the tumour is growing is important. 

There is now a study of the patient's immune system taking 

place. Depending on what kind and stage of cancer you have, 

the prognosis can be very different, and it can also be very 

good or very bad. Despite the fact that benign tumours only 

start in one place, their size and where they are important 

factors in how likely they are to spread. More than a few 

months after they were diagnosed with GBM (Glioblastoma 

Multiforme) [5], malignant GBM patients only have about 

10% chance of living for more than a few months. There is a 

good chance that meningiomas that are not cancerous will be 

able to survive cancer treatment. There are a lot of people in 

the U.S. who have brain tumours, but most of them live for 

five years or more. In comparison to secondary or metastatic 

brain tumours, primary brain tumours happen four times more 

often than those that spread. People who have lung cancer [6] 

are behind more than half of all brain tumours that spread from 

their bodies and reach the brain. A new brain tumour is found 

in about 250,000 people around the world each year. There are 

less than 2% of all malignant tumours in the body that are this 

type of tumour. There are more young people who get a brain 

tumour than anyone else under the age of 15. People under the 
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age of 15 are most likely to get leukaemia, which is a type of 

cancer. People who are younger than 15 are most likely to get 

acute lymphoblastic leukaemia [7]. 

 

 
 

Figure 1. A brain CT scans showing the metasis of the 

cerebral position with annotations from medical image 

segmentation decathlon 

 

1.1 Research significance in lung cancer segmentation 

 

When cancer is present, it might lead to greater challenges 

and perhaps death. Since the disease's underlying origins are 

still unknown, cancer has become more frequent around the 

world. According to a World Health Organization fact sheet, 

cancer is the biggest cause of mortality in the world. Cancer 

will claim the lives of ten million individuals throughout the 

world in 2020, with the great majority of those deaths 

happening in low- and middle-income countries. Who would 

have imagined that lung cancer would be the most common 

malignancy in the world, with an estimated 2.21 million new 

cases and 1.80 million fatalities every year. There are a large 

number of people in attendance. If lung cancer is detected 

early and treated well, it has the potential to save many lives. 

The use of technology in the detection of cancer has 

substantially improved with MRIs, CT scans, X-rays, PET 

scans, lung biopsies and High-Resolution Computed 

Tomography (HRCT) being among the most effective 

(HRCT). The amount of information that can be measured 

during a clinical CT scan has expanded dramatically as a result 

of developments in CT technology. For lung segmentation and 

fusion, computer-aided design (CAD) technology must be 

linked with computer vision and medical imaging approaches. 

A critical step in the diagnosis and treatment of a lung 

condition is the analysis of computed tomography lung images. 

In this case, it's simple to understand how the pre-processing 

processes are related to the actual picture generating process 

in question. As a result, developing more efficient and reliable 

methods for segmenting CT images of the brain is a 

fascinating and useful issue to investigate. Lung division may 

be performed in a variety of methods, the most common of 

which is by dividing the lung into threshold zones. Among the 

most critical issues that needed to be solved were the four 

items listed below: 

• The primary goal is to build adaptable bio-medical 

image analysis technology that can be scaled up quickly in the 

future. 

• The development of tools and strategies for quickly 

creating ground truth data is the second goal of the project. 

• What is the best method of analyzing medical images 

from a broad variety of data is the third question that has to be 

addressed for lung cancer segmentation. 

• The procedure's progression. Achieving accurate and 

customised representations of the human anatomy and organs 

is critical for medical education. 

The major contributions of the paper are as follows: 

The goal of this study is to devise a method of separating 

and combining images of the brain. Images may be segmented 

more quickly using U-NET semantic segmentation and TPLD 

models that make use of SVMs, both of which are available 

for free. Saving time is a great approach to improve your 

productivity. The proposed solution, which has been shown to 

be fairly efficient in identifying CT scan parts, also makes use 

of morphological approaches and masking techniques. We 

were able to greatly speed up computations while preserving 

accuracy in the most difficult circumstances, and we didn't 

have to do any post-processing because we used a distributed 

computing approach. Strategy: The use of SVM image fusion 

algorithms in conjunction with the three-parameters results in 

improved outcomes and a more effective technique for the 

fusion of medical images in the treatment of lung cancer. We 

took use of three characteristics of the multi-view clinical CT 

scans in order to expedite the process of building the sub-

dictionaries. Brain tumours are difficult to distinguish from 

one another and researchers can't tell how rough their surfaces 

are. Artefacts frequently obscure CT [8] can results. Image 

editing software is required. The research evaluates four 

aspects of brain magnetic resonance image segmentation and 

surface texture analysis. 

1. Brain imaging is discussed in full. 

2. U-Net with three parameters logistic distribution has 

been demonstrated to greatly enhance brain tumour 

segmentation accuracy when compared to earlier models. This 

method is abbreviated U-Net-LD. 

3. The Probability Density Function, there are three 

components in the U-Net structure that must deal with memory 

and processing constraints, as well as class imbalance. 

4. We employed a U-Net, a three-parameter Logistic 

Distribution and a Support Vector Machine to study brain 

tumors segmentation and the detailed comparison of various 

approaches. 

This article will provide an outline of current biological 

image processing research. It will focus on a range of brain 

cancer abnormalities, suggested U-Net segmentation 

technologies and hybrid algorithms that integrate parts of 

exact nodule prediction with spatial imaging processes. 
 

 

2. RELATED WORKS  
 

To properly treat patients, it is important to separate 

cancerous lesions using MR neuroradiological imaging [9]. 

There are some deep learning approaches that work well with 

the tumours they were trained on, but not all of them do (e.g., 

glioblastoma in brain hemispheres). Even if you've had a lot 

of training on a rare type of cancer, there may not be any 

labelled data that you can use to train or learn from. To make 

the process of identifying and segmenting the lesion easier, it 

can be broken down into two parts: identifying the object and 

separating it from the rest. Networks that have been trained on 

common lesions may be used on unusual lesions without 

needing to be fine-tuned. This study wants to use existing 

detection and segmentation networks to better understand 

cancer lesions. We were able to get good segmentation 

inference while we were training with a rare tumour in a cancer 

context region that wasn't visible. You don't need any more 

training or changes to your network to have Diffuse Intrinsic 

Pontine Glioma score 0.62 on the dice (DIPG). 

GBCAs (Gadolinium-Based Contrast Agents) are very 

important in cancer treatment because they make it easier to 

see the tissues on MRI scans. In research, gadolinium builds 

up in the brain [10]. In clinical trials, it does not. Researchers 
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in neuro-oncology used deep convolutional neural networks to 

see if it was possible and useful to make synthetic postcontrast 

T1-weighted images from pre-contrast T1-weighted images 

(dCNN). MRI data was used to train a deep convolutional 

neural network (dCNN) to make post-contrast T1-weighted 

sequences from pre-contrast T1-weighted, T2-weighted and 

fluid attenuated inversion recovery sequences from the pre-

contrast sequences. During the phase 2 CORE study, 775 

people with glioblastoma at Heidelberg University Hospital in 

Germany were looked at. During the phase 3 CENTRIC study 

(1083 MRI tests, 59 institutions), 260 people with the disease 

were looked at (3147 MRI examinations, 149 institutions). 

The research used training runs and diffusion-weighted 

imaging to see how important different sequences were (for a 

subset). The data from the EORTC-26101 phase 2 and 3 

magnetic resonance imaging trials were looked at by two 

separate groups (521 patients, 1924 MRI examinations, 32 

institutions). 

FDG-PET [11] is used in cancer patients, but only the 

abnormality that is shown on a scan is measured. The goal was 

to make an automated way to figure out how big your brain is 

based on a cancer PET image. 500 [18F] FDG-PET scans of 

cancer patients were used to train and analyse the automatic 

brain extractor, which can do this for you. The method for 

getting the brain's volume was tested with two bounding boxes 

that were drawn by hand on images taken with maximum 

intensity projection. In order to train the model, we used the 

ResNet-50 two-dimensional convolutional neural network 

(CNN). The CNN model was used to automatically restore and 

normalise the volume of the brain after it had been cut. Test: 

We used a two-sample T test on the voxels of 24 patients with 

SCLC to see how well our training model worked. Scientists 

say that the deep learning-based brain extractor can figure out 

the full brain volume with 98 percent of the time. In three-

dimensional bounding boxes, the validation set did better than 

the control set. It did better by 72.9 and 12.5 percent. 

This article talks about the history, technology and clinical 

applications of AI and radiomics in neuro-oncology, as well as 

how they will be used in the future [12]. AI and radiomics were 

used by the researchers to tell the difference between 

inflammatory and demyelinating neurological diseases and 

malignant brain tumours (CNS). It is used to tell gliomas from 

other types of tumours, like lymphomas and illnesses that 

spread. Semi-automatic and fully automated methods have 

been used to make it easier for doctors to plan and follow up 

on radiation treatments. Each type of glioma has a different 

classification, treatment response and prognosis. So, it's 

important to know what each one is. When radio genomics 

made an important discovery, it helped make this discovery 

possible. This breakthrough linked the tumour imaging 

characteristics to its genetic source. AI is also used to 

categorise and stratify patients based on their prognosis. For 

example, extra-axial brain tumours and paediatric 

malignancies can be found with AI. 

Cryo-imaging a whole mouse takes 120 G Bytes of small 

three-dimensional colour anatomy and fluorescence images to 

store [13]. This makes it hard to do a manual metastatic 

assessment. In this study, convolutional neural networks 

(CNNs) are used to separate metastases and correct semi-

automatic classification results. Every animal with breast 

cancer has 5000 candidates in different groups. ROC 

sensitivity, specificity, and AUC values for a random forest 

classifier were 0.8645 0.0858, 0.9738 0.0074, and 0.9709 

0.0182, respectively. The classifier used multi-scale CNN 

features and hand-crafted intensity and morphological features. 

Our MATLAB programme helped an expert with manual 

corrections based on classification results. They also had 225, 

148, 165, and 344 metastases. It took more than 12 hours to 

interact with humans before using a CNN-based segmentation. 

It took less than two hours. We found that 4T1 breast cancer 

had spread to the lungs, liver, bone, and brain. In combination 

with cryo-imaging, our method can help us look at future 

cancer imaging and treatment methods by measuring the size 

and spread of metastatic tumours. Using a pancreatic 

metastatic cancer model, researchers showed how the strategy 

can be used in many different ways. 

 

 

3. PROPOSED METHODOLOGY  

 

3.1 U-Net architecture 

 

A network called U-Net was used to separate images of 

cancerous images [14]. It uses a shrinking trail for context and 

a long straight trail to show where it is. When you choose a 

route, think about the three convolutional layers. Dropout 

layers [15] and pooling are also part of this type of stacking. 

Skip connections are used to connect channels that grow and 

shrink. Convolutional kernels appear in each of the three 

layers and there are nine of them in each. Second layer: It has 

twice as many filters as the first layer. When we did this, we 

used Adam's method [16] of optimising things and 

normalising things to do it. The loss function was also cross-

entropy-weighted to make sure it was accurate. Finally, the 

model was ready to go. It had been trained for four iterations 

at a rate of 0.001. 

This work came up with an ensemble model that was better 

at segmenting and had less model variance (see Figure 2). 

(majority) People learned about a lot of things on their own as 

part of their training. The model's performance on the 

validation set was used to figure out how many training runs 

were needed. In one of the models, each voxel had a class. The 

majority rule was used to figure out which class each voxel 

belonged to. These images can show quantitative data about 

the features of brain tumours. This can help people learn more 

about them. In addition to the whole tumour, EDOEMOMA 

has non-enhanced solid cores, necrotic or cystic areas and the 

whole tumour area. Figure 3 shows the detailed architecture of 

the proposed architecture.  

 

 
 

Figure 2. Feature extraction of the U-NET architecture 

 

3.1.1 Block diagram of the proposed architecture 

In Figure 3, the steps in our proposed solution for the brain 

tumour segmentation task are image pre-processing, the 

extraction of patches, the training of many models using a 

generic U-Net structure with configurable hyper-parameters 

and Logistic three parameters. The deployment of each model 

to predict the full volume of a tumour and the final ensemble 

phase. The steps in the survival prediction challenge are 

feature extraction, model fitting, and deploying the model. 
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Figure 3. Block diagram of the proposed architecture 

 

3.2 Logistic distribution with three parameters 

 

The logistic type mixture distribution based on three-

parameters consist of leptokurtic distribution for specific 

values of the shape parameter ‘p’. In developing the 

segmentation model, the most important task is performing the 

estimation of model parameters. An effective methodology in 

estimating the parameters of mixture distribution is utilizing 

Expectation Maximization algorithm. The efficiency of EM 

algorithm [17] depends on the initial values of the parameters 

and number of mixture components in the model. K-means 

algorithm for obtaining initial values of the model parameters. 

the performance comparison taken by k-means algorithm and 

hierarchical clustering algorithm; it is required to assign an 

initial value to the number of image regions. To overcome this 

disadvantage the hierarchal clustering algorithm is used for 

obtaining the number of components in the mixture model and 

initializing the model parameters. In this paper, it is assumed 

that the pixel intensities of the image regions follow a logistic 

type distribution based on three-parameters as a result, the 

whole image is considered by a k-component mixture with 

logistic type distribution which was based on three parameters. 

The probability distribution function (P.D.F) [18] of the 

current model logistic type distribution which was three 

parameters is given in Eq. (1). 

The frequency curves associated with logistic type 

distribution for three parameters are shown in Figure 4. 

𝑓(𝑦, 𝜇, 𝜎2) =
[

3
(3𝑝 + 𝜋2)

] [𝑝 + (
𝑦 − 𝜇

𝜎
)

2

] 𝑒−(
𝑦−𝜇
𝜎

)

𝜎 [1 + 𝑒−(
𝑦−𝜇
𝜎

)
]
2  (1) 

 

where, −∞ < 𝑦 < ∞, −∞ < 𝜇 < ∞, 𝑝 ≥ 4. 

 

 
 

Figure 4. Frequency curve of logistic type distribution with 

three parameter 

 

The distribution function of the current model with μ and 

the model is symmetric as, 

 

𝐹(𝑋) =
3𝑒−(

𝑦−𝜇
𝜎

)

𝜎2(12 + 𝜋2)
 

[[4 + (
𝑦 − 𝜇

𝜎
)

2

] [2 (
𝑦 − 𝜇

𝜎
) − 1] 𝑒−(

𝑦−𝜇
𝜎 )

2

− [(
𝑦 − 𝜇

𝜎
) − 1]

2

]

[1 + 𝑒−(
𝑦−𝜇
𝜎 )

2

]

2  

(2) 

 

where, k is the number of regions 0 ≤ 𝛼𝑖 ≤ 1 are weights such 

that ∑𝛼𝑖 = 1  and 𝑓𝑖(𝑥, 𝜇, 𝜎2)  is given in Eq. (1). 𝛼𝑖  is the 

weight associated with ith region in the whole region.  

The image region pixel intensities are considered as feature 

of the image. Here, the logistic type distribution based on 

three-parameter is assumed for modelling the image region 

pixel intensities. The probability density function (p.d.f) of the 

pixel intensities is of the form 

 

𝑓(𝑦, 𝜇, 𝜎2, 𝑧) =
[

3
(3𝑧 + 𝜋2)

] [𝑧 + (
𝑦 − 𝜇

𝜎
)

2

] 𝑒−(
𝑦−𝜇
𝜎

)

𝜎 [1 + 𝑒−(
𝑦−𝜇
𝜎

)
]
2  (3) 

 

where, −∞ < 𝑦 < ∞,−∞ < 𝜇 < ∞, 𝑧 ≥ 4, 𝜎2 > 0. 

For the whole image, the mean pixel intensity represented 

as, 

 

𝑝(𝑦) = ∑𝛼𝑖

𝑘

𝑖=1

𝑓𝑖(𝑦, 𝜇, 𝜎2) (4) 

 

Here k is the number of regions 0 ≤ 𝛼𝑖 ≤ 1 are weights 

such that ∑𝛼𝑖 = 1 and 𝑓𝑖(𝑦, 𝜇, 𝜎2) is given in Eq. (1). 𝛼𝑖is the 

weight associated with ith region in the whole image. The pixel 

intensities on images are correlated with each other in normal 

cases. These correlations could be identified and processed 

with the help of various spatial sampling models like or spatial 

averaging. For the whole image, the mean of pixel intensity is 

represented as  
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𝐸(𝑋) = ∑ 𝛼𝑖𝜇𝑖

𝐾

𝑖=1

 (5) 

 

For the current parameter based logistic type distribution, 

the likelihood equation is nonlinear and there is no solution by 

analytic means. Consequently, we use some iterative 

procedure like EM algorithm for obtaining the estimates of the 

parameters. For Expectation Maximization (EM) algorithm, 

the updated equations of the model parameters are the 

likelihood of the function of model is 

 

𝐿(𝜃) = ∏𝑝

𝑁

𝑆=1

(𝑥𝑠 , 𝜃
(𝑙)) (6) 

 

𝐿(𝜃) = ∏(∑𝛼𝑖𝑓𝑖(𝑥𝑠, 𝜃
(𝑙)

𝑘

𝑖=1

)

𝑁

𝑠=1

 (7) 

 

This implies 

 

𝑙𝑜𝑔 𝐿 (𝜃) = ∑𝑙𝑜𝑔 (∑𝛼𝑖𝑓𝑖(𝑥𝑠, 𝜃
(𝑙))

𝑘

𝑖=1

)

𝑁

𝑆=1

 (8) 

 

where, 𝜃 = (𝜇𝑖, 𝜎𝑖
2, 𝛼𝑖; 𝑖 = 1,2, . . . . . . . . . . . . . . . . 𝑘) is the set of 

parameters, therefore, three parameter logistic type 

distribution:  

 
𝑙𝑜𝑔 𝐿 (𝜃)

= ∑ 𝑙𝑜𝑔

[
 
 
 
 

∑𝛼𝑖

[
3

(3𝑝 + 𝜋2)
] [𝑝 + (

𝑥𝑠 − 𝜇𝑖

𝜎𝑖
)
2
] 𝑒

−(
𝑥𝑠−𝜇𝑖

𝜎𝑖
)

𝜎𝑖 [1 + 𝑒
−(

𝑥𝑠−𝜇𝑖
𝜎𝑖

)
]
2

𝑚

𝑖=1
]
 
 
 
 𝑁

𝑆=1

 
(9) 

 

The process of estimating the likelihood function on sample 

observations is considered as the first step of the EM algorithm 

and is obtained as, 

E-STEP: - 

In the expectation (E) step, the expectation value of log 

𝐿(𝜃) with respect to the initial parameter vector 𝜃(0) is 

 

𝑄(𝜃, 𝜃(0)) = 𝐸𝜃(0) [
𝑙𝑜𝑔 𝐿 (𝜃)

𝑥
] (10) 

 

Given the initial parameters 𝜃(0) . One can compute the 

density of pixel intensity X as 

 

𝑃(𝑥𝑠, 𝜃
(𝑙)) = ∑𝛼𝑖

𝑘

𝑖=1

𝑓𝑖(𝑥𝑠, 𝜃
(𝑙)) (11) 

 

𝐿(𝜃) = ∏𝑝

𝑁

𝑆=1

(𝑥𝑠 , 𝜃
(𝑙)) (12) 

 

This implies 

 

𝑙𝑜𝑔 𝐿 (𝜃) = ∑𝑙𝑜𝑔 (∑𝛼(𝑙)
𝑖𝑓𝑖(𝑥𝑠, 𝜃

(𝑙))

𝑘

𝑖=1

)

𝑁

𝑆=1

 (13) 

 

The provisional likelihood which goes to region ‘k’ is 

𝑃𝑘(𝑥𝑠 , 𝜃
(𝑙)) = [

𝛼𝑘
(𝑙)𝑓𝑘(𝑥𝑠,𝜃

(𝑙))

𝑝𝑖(𝑥𝑠, 𝜃
(𝑙))

] (14) 

 

𝑝𝑘(𝑥𝑠, 𝜃
(𝑙)) = [

𝛼𝑘
(𝑙)𝑓𝑘(𝑥𝑠,𝜃

(𝑙))

∑ 𝛼𝑖
(𝑙)𝑓𝑖(𝑥𝑠, 𝜃

(𝑙))𝑘
𝑖=1

] (15) 

 

For the samples, the log likelihood function is 

 

𝑄(𝜃, 𝜃(𝑙)) = 𝐸𝜃(𝑙)[𝑙𝑜𝑔 𝐿 (𝜃)/𝑥] (16) 

 

Therefore, for Three parameter logistic type distribution:  
 

𝑓𝑖(𝑥𝑠, 𝜃
(𝑙))

=

[
3

(3𝑝 + 𝜋2)
] [𝑝 + (

𝑥𝑠 − 𝜇𝑖
(𝑙)

𝜎(𝑙) )

2

] 𝑒
−(

𝑥𝑠−𝜇𝑖
(𝑙)

𝜎𝑖
(𝑙)

)

𝜎𝑖
(𝑙) [1 + 𝑒

−(
𝑥𝑠−𝜇𝑖

(𝑙)

𝜎𝑖
(𝑙)

)
]

2  
(17) 

 

M-STEP: - 

In order to get the model parameters estimation, one should 

increase 𝑄(𝜃, 𝜃(𝑙)) such that ∑𝛼𝑖 = 1. This estimation could 

be achieved by using the first order Lagrange type function 

 

𝐹 = [𝐸 (𝑙𝑜𝑔 𝐿 (𝜃(𝑙))) + 𝛽 (1 − ∑𝛼𝑖
(𝑙)

𝑘

𝑖=1

)] (18) 

 

where, 𝛽 is Lagrangian multiplier which combines both the 

log likelihood functions which needs to be maximized. The 

two steps mentioned above are repeated based on the necessity 

which every iteration is used to increase the log likelihood of 

the model and the model is used to converge with a likelihood 

function. 

The Updated equations of 𝛼𝑖: 

To find the expression for 𝛼𝑖 , we solve the following 

equation 

 
𝜕𝐹

𝜕𝛼𝑖

= 0 (19) 

 

∑
1

𝛼𝑖

𝑁

𝑖=1

𝑃𝑖(𝑥𝑠 , 𝜃
(𝑙)) + 𝛽 = 0 (20) 

 

After adding on both sides, 𝛽 = −𝑁. 

Therefore, 

 

𝛼𝑖 =
1

𝑁
∑ 𝑃𝑖

𝑁

𝑠=1

(𝑥𝑠, 𝜃
(𝑙)) (21) 

 

The updated equations of 𝛼𝑖 for (𝑙 + 1)𝑡ℎ iteration is 

 

𝛼𝑖
(𝑙+1) =

1

𝑁
∑ 𝑃𝑖

𝑁

𝑠=1

(𝑥𝑠, 𝜃
(𝑙)) (22) 

 

This implies 

 

𝛼𝑙
(𝑙+1) =

1

𝑁
∑ [

𝛼𝑙
(𝑙)𝑓𝑙(𝑥𝑠,𝜃

(𝑙))

∑ 𝛼𝑖
(𝑙)𝑓𝑖(𝑥𝑠, 𝜃

(𝑙))𝑘
𝑖=1

]

𝑁

𝑠=1

 (23) 
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The Updated equations of 𝜇𝑖: 

For updating the parameter 𝜇𝑖, 𝑖 = 1,2,3. . . 𝑘, we consider 

the derivatives of 𝑄(𝜃, 𝜃(𝑙)) with respect to 𝜇𝑖  and equal to 

zero, we have 

 

𝑄(𝜃, 𝜃(𝑙)) = 𝐸[𝑙𝑜𝑔 𝐿 (𝜃, 𝜃(𝑙))] (24) 

 

Therefore, 
𝜕

𝜕𝜇𝑖
(𝑄(𝜃, 𝜃(𝑙))) = 0. 

Implies 

 

𝐸 [
𝜕

𝜕𝜇𝑖

(𝑙𝑜𝑔 𝐿 (𝜃, 𝜃(𝑙)))] = 0 (25) 

 

For Two parameter logistic type distribution:  

By applying the derivative with respect to 𝜇𝑖, we have 

 

𝜕

𝜕𝜇𝑖

[
 
 
 
 

∑ ∑𝑃𝑖(𝑦𝑠., 𝜃
𝑙) 𝑙𝑜𝑔 𝛼𝑖

[
3

12 + 𝜋2] [4 + (
𝑦𝑠 − 𝜇𝑖

𝜎𝑖
)

2

] 𝑒
−(

𝑦𝑠−𝜇𝑖
𝜎𝑖

)

𝜎𝑖 [1 + 𝑒
−(

𝑦𝑠−𝜇𝑖
𝜎𝑖

)
2

]

𝐾

𝑖=1

𝑁

𝑠=1

]
 
 
 
 

= 0 (26) 

 

Since 𝜇𝑖 appears in only one region, i=1,2,3…k (regions), 

for Three parameter logistic type distribution: 

 

𝜕

𝜕𝜇𝑖

[
 
 
 
 

∑∑𝑃𝑖(𝑦𝑠., 𝜃
𝑙) 𝑙𝑜𝑔

[
 
 
 
 

𝛼𝑖

[
3

3𝑝 + 𝜋2] [𝑝 + (
𝑦𝑠 − 𝜇𝑖

𝜎𝑖
)

2

] 𝑒
−(

𝑦𝑠−𝜇𝑖
𝜎𝑖

)

𝜎𝑖 [1 + 𝑒
−(

𝑦𝑠−𝜇𝑖
𝜎𝑖

)
]

2

]
 
 
 
 𝐾

𝑖=1

𝑁

𝑠=1

]
 
 
 
 

= 0 (27) 

 

Finally, for Three parameter logistic type distribution:  

 

𝜇𝑖
(𝑙+1)

=

∑
𝑃𝑖(𝑦𝑠., 𝜃

(𝑙))(2𝑦𝑠)

(𝜎𝑖
2)(𝑙) [𝑝 + (

𝑦𝑠 − 𝜇𝑖

(𝑙)

𝜎𝑖

(𝑙) )

2

]

𝑛
𝑠=1 − ∑

𝑃𝑖(𝑦𝑠., 𝜃
(𝑙))

𝜎𝑖

(𝑙)
𝑛
𝑠=1 + ∑

2𝑃𝑖(𝑦𝑠., 𝜃
(𝑙))

𝜎𝑖

(𝑙)

[
 
 
 

1 + 𝑒
(
𝑦𝑠−𝜇

𝑖
(𝑙)

𝜎
𝑖
(𝑙) )

]
 
 
 

𝑛
𝑠=1

2∑
𝑃𝑖(𝑦𝑠., 𝜃

(𝑙))

(𝜎𝑖
2)(𝑙) [𝑝 + (

𝑦𝑠 − 𝜇𝑖

(𝑙)

𝜎𝑖

(𝑙) )

2

]

𝑛
𝑠=1

 
(28) 

 

The updated equation of 𝝈𝒊
𝟐: 

For updating 𝜎𝑖
2  we differentiate 𝑄(𝜃, 𝜃(𝑙)),  that is, 

𝜕

𝜕𝜎2 (𝑄(𝜃, 𝜃(𝑙))) = 0. 

This implies  

𝐸 [
𝜕

𝜕𝜎2
(𝑙𝑜𝑔 𝐿 (𝜃, 𝜃(𝑙)))] = 0 (29) 

 

For three parameter logistic type distribution:  

 

𝜕

𝜕𝜎𝑖
2

[
 
 
 
 

∑∑ 𝑃𝑖(𝑦𝑠., 𝜃
𝑙) 𝑙𝑜𝑔 𝛼𝑖

[
3

3𝑝 + 𝜋2] [𝑝 + (
𝑦𝑠 − 𝜇𝑖

𝜎𝑖
)

2

] 𝑒
−(

𝑦𝑠−𝜇𝑖
𝜎𝑖

)

𝜎𝑖 [1 + 𝑒
−(

𝑦𝑠−𝜇𝑖
𝜎𝑖

)
]

2

𝐾

𝑖=1

𝑁

𝑠=1

]
 
 
 
 

= 0 (30) 

 

𝜎𝑖
2(𝑙+1)

=

∑
𝑃𝑖(𝑦𝑠., 𝜃

(𝑙))(𝑦𝑠 − 𝜇𝑖
(𝑙+1))

2𝜎𝑖
3(𝑙)

𝑁
𝑠=1 − ∑

𝑃𝑖(𝑦𝑠., 𝜃
(𝑙))(𝑦𝑠 − 𝜇𝑖

(𝑙+1))

𝜎𝑖
3(𝑙)

[1 + 𝑒
(𝑥𝑠−𝜇𝑖)

𝜎𝑖 ]

𝑁
𝑠=1 − ∑

𝑃𝑖(𝑦𝑠., 𝜃
(𝑙))

2𝜎𝑖
2(𝑙)

𝑁
𝑠=1

∑
𝑃𝑖(𝑦𝑠., 𝜃

(𝑙))(𝑥𝑠 − 𝜇𝑖
(𝑙+1))2

𝜎𝑖
4(𝑙)

[𝑝𝜎𝑖
2(𝑙)

+ (𝑦𝑠 − 𝜇𝑖
(𝑙+1))2]

𝑁
𝑠=1

 
(31) 

 

where, 

 

𝑝𝑖(𝑦𝑠, 𝜃
(𝑙)) = [

𝛼𝑖
(𝑙+1)𝑓𝑖(𝑦𝑠,𝜇𝑖

(𝑙+1), 𝜎𝑖
2(𝑙)

)

∑ 𝛼𝑖
(𝑙+1)𝑓𝑖(𝑦𝑠, 𝜇𝑖

(𝑙+1), 𝜎𝑖
(𝑙))𝑘

𝑖=1

] (32) 

 

 

3.3 U-NET with support vector machine 

 

Some of the parameters like 𝛼𝑖 , 𝜇 and  𝜎2  are typically 

measured as identified apriori. A normally cast-off technique 

in preparing limits is through selecting a arbitrary example 

from the whole image. If the sample size is small, this method 

works very well, but it fails when the size of the image is big 
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and some of the regions on the images are not identified fully. 

In order to solve this problem, the K-means algorithm is used 

such that to break the images in to homogeneous regions. The 

procedure for the hyperplanes algorithm is as follows, 

 

1. Select Hyperplanes from the dataset as early clusters 

randomly and these data points considered as centroids in the 

initial cases. 

2. By calculating the Hypertext characterization distance 

from each cluster to the center of the cluster with data points. 

3. Based on the distance value minimum, find the new 

cluster. 

4. Replication of step 2 and 3 until clustering center do not 

change. 

5. End the model implementation. 

 

3.4 Segmentation algorithm 

 

Once the refinement of image parameters process had 

completed, the important task to be performed in the process 

of segmentation is the assignment of pixels to the various parts 

or segments of the image. The process followed in this 

algorithm is as follows,  

 

Step 1: At first step the histogram of the whole image was 

plotted. 

Step 2: Get the estimates in the initial phases of the model 

equations by using the Support vector means algorithm for 

various regions of the whole images. 

Step 3: Get the modified estimates of the model. 

Step 4: Allocate a piece pixel to conforming jth region based 

on maximum likelihood of the model were 

 

𝐿𝑗 = 𝑀𝐴𝑋

[
 
 
 
 
[

3
(3𝑝 + 𝜋2)

] [𝑝 + (
𝑦𝑠 − 𝜇𝑖

𝜎𝑖
)

2

] 𝑒
−(

𝑦𝑠−𝜇𝑖
𝜎𝑖

)

𝜎𝑖 [1 + 𝑒
−(

𝑦𝑠−𝜇𝑖
𝜎𝑖

)
]

2

]
 
 
 
 

, 

−∞ < 𝜇𝑖 < ∞, −∞ < 𝜎𝑖
2 < ∞, 𝑝 ≥ 4 

 

3.5 Proposed model learning lifecycle 

 

The Proposed Model life cycle was shown in the Figure 5. 

A detailed process of Pre-Processing, Model Definition and 

Testing and lastly prediction cycle can be observed.  

 

 
 

Figure 5. Proposed lifecycle of the classifier 

 

 

4. MATERIALS AND METHODS 

 

4.1 Dataset 

 

In medical imaging data [19], in Table 1 labelling or 

contouring the structures of interest is very important for 

quantitatively identifying both clinical and scientific problems. 

Image segmentation is not very useful for treating people. It 

used to be done by hand, but now it's done by a computer 

algorithm instead. Participants were asked by MSD to come 

up with an algorithm or learning system that could be used to 

do a wide range of medical segmentation tasks. An algorithmic 

generalizability [20-23] test was done by looking at a sample 

of real-world applications. The number of input modalities, the 

number of interest areas, and their shape and size were all 

thoroughly looked at. It was part of the Decathlon challenge 

[24] to make 10 data sets available online. Each had one to 

three ROI [25] goals (17 targets in total). In order to be a global 

test-bed for everyone, some datasets are made available under 

a copyright licence that allows them to be freely shared and 

used for profit (CC-BY-SA 4.0) [26].  

 

Table 1. The brain cancer tumour segmentation on medical 

image segmentation decathlon 

 
S.No Model  Dice Score Reference 

1 CCAP_OMNET++ 88.15% [20] 

2 3D+CNN 86.23% [21] 

3 
U_NET+DataAugmenta

tion+3D_Filters  
86.35% [22] 

4 CRF+3D_CNN 86.98% [23] 

5 AFN_6 85.98% [24] 

 

To keep them private, the pictures were re-formatted to 

meet the standard set by the Neuroimaging Informatics 

Technology Initiative (NIfTI) [27]. To keep the data matrix's 

x, y and z orientation, all images were moved to the right-

anterior-superior coordinate frame (without resampling). Non-

quantitative tools like CT scans [28] were then ranked from 

least sensitive to most sensitive to match quantitative tools. In 

each segmentation task, there was a pixel-level label that 

explained how to do the segmentation. It was only one of the 

10 data sets (images and labels) that was used as a test set. The 

other two-thirds of the data (images and labels) were used to 

train the computer (images without labels) [29]. They kept the 

training/test split because they used data from two well-known 

problems to do the other two jobs brain tumour. 

 

4.2 Data pre-processing 

 

These 9*9 matrixes are spread across the Region of Interest 

[30] in order to automatically recognise contours, boundary 

regions (including lines that cross), edges, corners, and other 

distinguishing and obvious qualities. In the Figure 4, the 

spatial mask of CT scans. Control point is a word that refers to 

where the centre of region of interest is in relation to these 

features (CPs) was shown in the Figure 6. It is important to 

have at least three control points in this case.  

The location of the tumour would be hidden by all of the 

two-dimensional slices that make up each three-dimensional 

volume picture that was taken by CT scans. They grouped 

slices that were thought to show where a tumour was so that 

they could be more accurate when they looked at them. In 

Figure 7 shows the flow diagram of the data processing 

performed on the MISD dataset. 
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Figure 6. Spatial information after pre-processing the image 

 

 
 

Figure 7. Flow chart of the proposed algorithm 

 

With the help of machine learning, it is possible to make this 

process of brain slicing more automated, or to make it more 

personalised by removing certain starting and ending slices. 

Each 2D volume imager scanned 155 times, we only used the 

slices from the 30th to the 120th of each slice. 

 

 

5. RESULTS AND DISCUSSIONS 

 

5.1 Tumour segmentations and results 

 

A U-Net group was used to separate brain tumours. 

Networks with different encoding and decoding block counts, 

patch sizes, and loss weights were trained and put together. 

The stand-alone models didn't do as well as the group model 

did. Linear regression was used to combine non-imaging 

clinical variables like age and resection status with six 

important characteristics from segmentation labels in order to 

improve the chances of survival. People who took part in the 

challenge came up with the most accurate predictions of how 

long they would live. In order to make a network, we couldn't 

pick the best model or set of hyper-parameters because their 

performance was so close. In terms of network design, there 

isn't a clear winner between dense-net and the U-Net [31-33]. 

Table 2 showing the model performance of the ablation study 

on the MISD dataset.  

People can't study how DCNN's design and features affect 

how well the network works because it's a "black box." Models 

can't be judged because they take a long time to calculate and 

use questionable validation datasets. Our study used a three-

dimensional U-Net to find patches of different sizes. A wide 

range of architectural styles could be used to make up for a 

model's flaws. We're trying to balance the amount of time we 

spend training and testing with how well we think we'll do, just 

like averages can be used in measurements to improve the 

signal-to-noise ratio. Table 3 showing the performance of the 

various classifiers with respective to the MSD. 

Figure 8 shows the evaluation of the classifiers, our method 

doesn't use objective measurements to figure out which model 

combination is best. This makes it hard to find the best model 

combination. Instead, there were no models or 

hyperparameters [34] that were used instead of them. It isn't 

possible to get around this restriction by not using N-fold cross 

validation. The validation set (66 occurrences) is a lot smaller 

than both the training and testing datasets. The U-Net model, 

on the other hand, predicts the whole input label map, not just 

the centre pixel. Because the GPU has a limited amount of 

memory, smaller parts of a picture are deleted when the whole 

picture is used as an input. It's possible that pixels near the 

edge of the receptive field have a smaller receptive field 

because only half of the receptive field is used. Even though, 

most GPUs can only use 12 GB of RAM. Edge pixels have a 

smaller receptive field than the rest of the pixels, which can be 

fixed by setting up a big overlap sliding window deployment. 

Even though our past research didn't show a big difference 

between the recommended strategy and the one we used, bias 

correction was often used during pre-processing. [*] For any 

intensity-based approach, pre-compensation may not be 

needed if the DCNN can learn and deal with picture biases, 

which it can do. We didn't use the bias correction method in 

our last tests because we didn't have enough time.  

 

 
 

Figure 8. Evaluation of the classifiers 
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Table 2. Model performance after ablation study on the MISD dataset 

 

MODEL 
MODEL DICE PERCENTAGE 

REF 
#PARAM Complete_Training Core_Training Enhancing_Training 

U-Net 13.813 M 90.41% 78.48% 72.91% [26] 

LSTM+U-Net 27.626 M 91.08% 79.11% 75.14% [27] 

DCNN 41.439 M 91.08% 79.11% 79.53% [28] 

3D CNN 13.869 M 91.10% 79.87% 80.87% [29] 

Dense_Net+3D-CNN 13.869 M 90.40% 79.41% 79.96% [30] 

Capsule Network 13.869 M 91.11% 79.93% 80.26% [31] 

SeNets 13.870 M 91.03% 80.20% 80.72% [32] 

CNN 13.814 M 91.34% 82.15% 80.73% [33] 

CCAP_OMNET++ 13.814 M 91.06% 80.28% 80.78% [34] 

3D+CNN 13.814 M 90.65% 80.27% 80.10% [35] 

U_NET+DataAugmentation+3D_Filters 13.814 M 89.75% 79.87% 76%  
CRF+3D_CNN 13.869 M 91.28% 82.50% 80.84%  

Proposed Classifier 13.814 M 96.59% 82.74% 80.73%  
 

Table 3. Performance of the various classifiers with respective to the MISD 

 

# Classifiers  
Dice Score PPV False Negative Results  

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing 

U-Net 86% 70% 63% 86% 82% 60% 88% 67% 72% 

LSTM+U-Net 86% 71% 64% 86% 83% 61% 88% 68% 72% 

CNN 86% 71% 65% 87% 84% 63% 88% 67% 70% 

3D CNN 87% 75% 65% 89% 85% 63% 88% 73% 70% 

Dense_Net+3D-CNN 85% 74% 64% 83% 80% 63% 91% 73% 72% 

Capsule Network 85% 72% 61% 86% 83% 66% 86% 68% 63% 

SeNets 84% 73% 62% 89% 76% 63% 82% 76% 67% 

Proposed_Classifier 85% 67% 63% 85% 86% 63% 88% 60% 67% 

 

This is not the only thing that will be needed for more 

research in this field. Because we could look at each 

occurrence individually, the median metrics of the 

segmentation findings were better than the mean metrics. 

There was one final model that gave Dice scores of 96%. This 

one was the best one. People understand why they're worried 

about dice results that range from 0 to 1. To show how many 

places it missed, Dice scores for ET and TC were 1. Figure 8 

shows T1 and ET with a 0 Dice score after they were scanned.  

This are the observations we found that looks like Red and 

blue are used to show the WT and edoema in the colour 

scheme. The image doesn't have a lot of contrast [35], it's hard 

to see where improvements have been made. We found that 

dice scores that were higher than 0 which means they were 

good at dividing things up. In one case, Dice was 84%, which 

was a lot lower than the rest. During a thorough examination, 

a small tumour with low contrast was found.  

This was later confirmed by imaging. In cases where 

automated segmentation doesn't work because of poor contrast 

or a small tumour zone, a human expert needs to look at and 

correct the results. We saw a big improvement in performance 

when we did test and validation. Because the design of the 

challenge allows players to submit validation examples 

multiple times, the model might be too big for the validation 

examples. We didn't use the information we learned about the 

model's hyperparameters when we chose a model for our study. 

Model failed two out of three tests, which is the most likely 

reason for the difference in scores. Figure 9 shows the 

segmented images output. 

Figure 5 shows the model learning life cycle. Computer-

aided technology can be used for many things, from 

communication to intelligent systems to even medical tests. 

It's interesting to look into how to make and show images for 

medical diagnosis based on a lot of different parts from images. 

Biological image processing problems that involve tumour in 

the brain are some of the most difficult and time-consuming to 

solve. This study looked into how to improve the way brain 

images are processed and segmented so that tumour can be 

found. 

In the Figure 9 the blue version represents the probability of 

the tumour. It has a wide range of CT scans imaging methods 

and field strengths, which makes it hard to get consistent 

segmentation. This makes it hard to get the same results every 

time. To improve the model's performance and durability, 

more research needs to be done. Because we broke things 

down, we came in ninth place overall. As a result, it's hard to 

figure out which part is most important for improving 

performance. Post-processing is an option because removing a 

vessel could have a big impact on our method's final score, so 

we might want to do that. To avoid overfitting with such a 

small dataset, and to account for the fact that many variables 

aren't included in this dataset, we used a multivariate linear 

regression model.  

 

 
 

Figure 9. Identification of brain tumour after applying the 

segmentation algorithm 
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Table 4. Dice and Hausdrff95 

 

Classifier  
Dice Percentage (%) Hausdorff95_Percentage (%)  

Enhancement Whole_ percentage Core_Percentage Enhancement Whole Core 

U-Net 0.7743% 0.9016% 0.832% 3.882% 4.6663% 6.7312% 

LSTM+U-Net 0.7852% 0.9065% 0.8274% 3.2991% 4.4886% 6.9896% 

CNN 0.7852% 0.9071% 0.8422% 3.2991% 4.3815% 7.5614% 

3D CNN 0.7859% 0.905% 0.8378% 3.2821% 3.8901% 6.479% 

Dense_Net+3D-CNN 0.7756% 0.9027% 0.8194% 3.1626% 6.7673% 8.6419% 

Capsule Network 0.7723% 0.8998% 0.8085% 4.7852% 9.0029% 7.2359% 

SeNets 0.7511% 0.8922% 0.7991% 4.7547% 16.30% 8.6847% 

Proposed_Classifier 0.738% 0.901% 0.797% 4.5% 4.23% 6.56% 

 

To avoid overfitting, our analysis only looked at the volume 

and surface area of subregions. Many studies have shown that 

volumetric variables have a big impact on how long people 

live. These features also make it easier for people who work 

with patients to use them because they are so common. 

However, this was not the case in the challenge. More 

characteristics and expressiveness in models [36] might make 

it easier to predict how long people will live. It might be better 

to add clinical information, like molecular and genetic types, 

to the algorithm in order to improve its accuracy. When we 

were trying to figure out how to separate brain tumours, we 

used a group of three-dimensional U-Nets instead of just one 

model.  

 

5.2 Survival prediction of the results 

 

In the current model, an MRI segmentation data had used to 

make the survival prediction method. This data came from 

previously defined parts of the brain tumour. In both the 

validation and test sets, the model correctly predicted how 

many patients would live. The IPP was used to figure out how 

many people survived the whole time. Long-term survivors 

who have been alive for more than 15 months, short-term 

survivors (10 months), and mid-term survivors (10-15 months) 

were all grouped together (in days). Our classifier achieved 

second out of 60 teams in the test phase. Table 4 shows the 

results of our method's tests. Because of how the other 

classifiers works. The Hausdorff Distance (HD) is a regularly 

used statistic for assessing the performance of various image 

segmentation methods in the medical industry. On the other 

hand, present segmentation algorithms do not specifically seek 

to minimise down on HD. To limit the quantity of HD, we 

applied U-Net+Logistic three parameters + U-Net+SVM 

segmentation approaches in this study. In our study three ways 

are used to construct HD using a probability map built by a U-

Net+Logistic three parameters + U-Net+SVM segmentation. 

According to our findings, the recommended loss functions 

may lower HD by 18-45 percent while still retaining other 

segmentation performance measures like the Dice similarity 

coefficient in perfect working condition. The recommended 

loss functions can be used to train systems for segmenting 

medical images so that they don't make major mistakes when 

they do so. 

 

5.3 Future improvements of the experimental results 

 

In current part, brain tumours are so complicated, it's tough 

to get exact and trustworthy information about them from MRI 

scans of them. Improved brain tumour segmentation will need 

a new technique that looks at brain malignancies in a different 

way. Both the tumour’s size and how it effects how heated the 

brain is will be looked at in this session. The thermal profile 

of the tumour must be broken down next in order to figure out 

where the tumour boundaries. Because all MRI-based 

methodologies for temperature mapping need a baseline data 

set, this study can be extremely beneficial in generating a 

unique MRI thermal imaging sequence for future studies that 

look at the absolute temperature distribution. 

 

 

6. CONCLUSION AND FUTURE WORKS  

 

The current proposed model is a new way to break up brain 

tumours that is based on four CT scans images. Every type of 

mode has its own set of characteristics, which makes it easier 

for the network to group things together. By focusing on just a 

small area of the brain image near the cancer tissue, a U-Net 

model (the most common type of deep learning architecture) 

may be able to perform as well as a compared with other 

models. The cascade U-Net+Logistic three parameters + U-

Net+SVM model was shown to be a simple but effective way 

to get both local and global properties from a picture. These 

tumour patches were chosen to show that their centre is inside 

the area that was found. At this point, a lot of unnecessary 

pixels are removed from the image, which speeds up 

calculations and makes it easier to make quick predictions 

about the clinical picture. A lot of tests have shown that current 

proposed model "to detect tumour" mechanism is better than 

other cutting-edge methods. Even though our classifier is 

better than other models that have been made public, it can't 

work when tumours cover more than one-third of the brain's 

space as in the case of the present study. This is because the 

performance of feature extraction decreases as the size of the 

expected tumour location grows. 
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NOMENCLATURE 

𝑦 Pixel Intensity 

μ Mean 

𝜎2 Variance 

Greek symbols 

𝛼𝑖 Pixel Intensity of ith region  

𝜇𝑖 Mean of ith pixel  

𝜃 Computation of all parameters α,µ, 𝜎2

L(𝜃) Log Likelihood function 

𝜃(𝑙) lit Iteration of Log likelihood parameter 

E𝜃 Expectation of Initial Values 
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