
Intrusion Detection and Identification System Design and Performance Evaluation for

Industrial SCADA Networks

Ahsan A.Z. Khan, Gursel Serpen*

Electrical Engineering and Computer Science Department, University of Toledo, Toledo, Ohio 43606, USA

Corresponding Author Email: gursel.serpen@utoledo.edu

https://doi.org/10.18280/ijsse.120215 ABSTRACT

Received: 10 February 2022

Accepted: 3 April 2022

Industrial SCADA networks are subject to cyber-attacks that have the potential to cause

significant disruption, damage, and havoc. In this paper, we present a study that proposes

a three-stage classifier model which employs a machine learning algorithm to develop an

intrusion detection and identification system for tens of different types of attacks against

industrial SCADA networks. The machine learning classifier is trained and tested on the

data generated using the laboratory prototype of a gas pipeline SCADA network. The

dataset consists of three attack groups and seven different attack classes or categories. The

same dataset further provides signatures of 35 different types of attacks which are related

to those seven attack classes. The study entailed the design of three-stage machine

learning classifier as a misuse intrusion detection system to detect and identify specifically

each of the 35 attack types. The first stage of the classifier decides if a record is associated

with normal operation or an attack signature. If the record is found to belong to an attack

signature, then in the second stage, it is classified into one of seven attack classes. Based

on the identified attack class as determined by the output from the second stage classifier,

the attack record is provided for a third stage attack type classification, where seven

different classifiers are employed. The output from the third stage classifier identifies the

attack type to which the record belongs. Simulation results indicate that designs exploring

specialization to domains or executing the classification in multiple stages versus single-

stage designs are promising for problems where there are tens of classes. Comparison with

studies in the literature also indicated that the multi-stage classifier performed markedly

better.

Keywords:

SCADA systems, intrusion detection and

identification, machine learning, ensemble

classifier, multi-stage classifier

1. INTRODUCTION

Supervisory Control and Data Acquisition (SCADA)

systems monitor and control highly critical industrial

infrastructure. Such systems gather and analyze data, and

control processes and systems all in real time for the most part.

SCADA systems are used to monitor and control a plant or

equipment such as gas pipeline, water storage tank and

associated distribution network, telecommunications, waste

control, oil refining and transportation among many others. A

SCADA system may collect information such as where a leak

on a gas pipeline has occurred; alert the central control room

that leak has occurred; and carry out necessary analysis and

control (such as determining if the leak is critical or not). A

SCADA system can be very simple i.e., just monitoring

environment of a small manufacturing facility or it can be very

complex such as monitoring activity of an oil refinery or a

nuclear power plant.

Computers were first used for industrial control purposes as

early as late 1950s [1]. Telemetry was established for

monitoring in the 1960s, which allowed for automated

communications to transmit measurements. In the early 1970s,

the term “SCADA” was coined and the rise of microprocessors

and programmable logic controllers (PLCs) during that decade

increased enterprises’ ability to monitor and control automated

processes more than ever before. SCADA systems have

undergone significant changes in subsequent decades. During

late 1990s to early 2000s, a technological revolution occurred

as computing and information technologies (IT) accelerated in

growth. The introduction of modern IT standards and practices

such as Structured Query Language (SQL) and web-based

applications for SCADA networks has improved the

efficiency and productivity overall. Many SCADA systems

are either online or able to connect to other similar systems or

both, and with this newfound connectivity, there are also many

security concerns for these once remote, isolated and

standalone systems [2]. If a vulnerability exists in one of these

systems, it will now allow attackers to remotely exploit and

potentially be able to take control of these SCADA systems;

the stakes then could not be higher as takeover by a bad actor

could lead to unimaginable and catastrophic consequences.

Table 1 provides some common SCADA attack scenarios.

Hong et al. discuss inherent security issues in SCADA systems

for smart grid communications [3]. Similar to this work,

Dzung et al. outlines many issues found in communication

networks for industrial applications [4]. Mirian et al. [5] found

out that 60,000 vulnerable SCADA devices were connected to

the Internet using the scanner called Zmap [6]. A detailed

survey of risk assessment studies reported in the literature for

industrial SCADA systems is presented by Cherdantseva et al.

[7].

An intrusion detection system (IDS) is a special-purpose

computing platform or software application that monitors a

network or systems for unauthorized access, control or

International Journal of Safety and Security Engineering
Vol. 12, No. 2, April, 2022, pp. 259-267

Journal homepage: http://iieta.org/journals/ijsse

259

https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.120215&domain=pdf

malicious activity. Intrusion detection systems are used to

collect data and analyze system activity to monitor a system’s

status and state [8]. Many IDSs use machine learning

algorithms for pattern recognition to detect and identify any

threat activity. There are mainly two types of IDSs. One type

uses a signature-based approach to compare activity to a

database of known threats, and as such are considered to

perform misuse detection. The other type can identify an

operation mode of the system as outside the boundaries of

normal mode, which is then characterized as performing

anomaly detection. These functionalities can be combined for

a robust detection system and will likely form a baseline

design for minimally adequate layer of protection against

attacks.

Table 1. Common SCADA system threats [2]

Sabotage Scavenging Spying Spoofing

Worm
Access

Violation
Trojan Horse Tunneling

Information

Leakage

Data

Modification

Physical

Intrusion

Resource

Exhaustion

Eavesdropping Repudiation Intercept Terrorism

Substitution Theft
Traffic

Analysis
Virus

The highly critical operational nature of SCADA systems

mandates using Intrusion Detection Systems for defense

against attacks exploiting vulnerabilities in those systems. A

recent study [9] used real world data from an industrial system

(water plant) to experiment with two different approaches. The

research concludes with a finding that behavioral approach for

intrusion detection can help yield high detection rates for

SCADA networks. Feng et al. proposed a deep learning-based

framework to detect attacks against SCADA networks in

industrial systems [10]. Their framework shows that Artificial

Intelligence (AI) can be helpful to detect even stealthy attacks

on SCADA systems given that such attacks are normally very

hard to detect. Several other industrial control system specific

anomaly and intrusion detection system models have been

reported in the studies [11-13]. Perez et al. [14] used Random

Forest to build an IDS and classify attacks against a SCADA

system for a gas pipeline. Shirazi et al. [15] proposed one-class

classification using support vector machines (SVM).

Demertzis et al. [16] proposed a one-class anomaly detection

system for industrial control systems. Anton et al. proposed

anomaly-based intrusion detection with industrial data with

both SVM and Random Forest [17].

Current industrial SCADA networks are facing constantly

evolving threats from hackers with potentially catastrophic

consequences for mission-critical tasks. The defensive tools

must be also in a state of evolution to address these ever-

changing threats. New vulnerabilities are being exploited by

the adversaries of such systems, which requires a constant

engagement in terms of engineering such systems for defense.

Therefore, there is an ongoing and urgent need to continue

with the development of intrusion detection systems to counter

the existing or future threats being posed to such systems.

Consequently, the research presented in this study strives to

fill this need for the constant evolution of IDSs considering

continuously evolving threats.

SCADA networks for industrial infrastructure employ

networking protocols to facilitate communication for

command and control. There is much information embedded

in the networking packets which can be leveraged for intrusion

detection purposes. This requires collection of data to be used

for development of data-driven decision-making tools such as

machine learning classifiers. The significant and substantial

differences in the design and architecture of SCADA networks

for different industrial settings poses a hindrance to

development efforts as an intrusion detection system

developed for a water distribution system cannot be readily

adopted for an oil refinery, gas pipeline or industrial

manufacturing plant [18].

The study presented in this paper entails a SCADA system

for a gas pipeline for which public domain dataset for the

development of intrusion detection system is available [18].

Other studies reported in the literature and using the same

dataset suggest that there is a further need to develop an IDS

that can detect and identify one of 35 attack types with high

accuracy [14-16, 19-27] as this is currently an unresolved

problem. Anthi et al. [19] employed a three-tiered intrusion

detection system to detect attacks (vs. non-attacks), attack

classes, and specific type of attacks. They reported good

performance for the first two cases but relatively poor

performance for the case where one out of 35 attack types need

to be identified reliably. Several other studies considered the

classification problem for seven classes only. Demertzis et al.

[16] proposed one-class anomaly detection approach for this

dataset. Apart from being an anomaly (versus misuse)

detection system, their study exposes several important

differences when compared to ours. One significant difference

is that they did not employ the full dataset in their study. They

subsampled 97,019 instances from 274,628 instances in the

original dataset. Considering this, one can question if the two

studies are directly comparable. Perez et al. [14] reported

better performance than that of the current study. However,

their approach employed 80-20% ratio for splitting the dataset

into training and testing subsets, which is not the same as the

67-33% split ratio for the dataset where the latter is typical for

most studies including the current one. A different split ratio

through subsampling the data could change the original

signatures of attacks which could lead to differences in

classification performance. For the study [15], performance

results are demonstrably not promising. Nguyen et al. [20]

leveraged a stacking ensemble of tree-based models for

classification. They studied the binary classification (attack vs.

non-attack), and the 7-category classification: they reported

good performance but did not address the case of identifying

the specific attack type. Nazir et al. [21] approached the

problem from the perspective of anomaly detection: they

considered the seven-category classification problem only.

Many other studies on this dataset only considered the binary

classification problem [22-28].

There are two main and interrelated objectives of the

research study presented in this paper. First such objective is

to explore the information content of networking packets for

communication and command in SCADA networks to

determine the feasibility of identification of detected attacks at

a multitude of levels as a) Detection of attacks occurring

versus normal operation; b) Detection and identification of a

specific attack class group where a group consists of several

attacks sharing common attributes; and c) Detection and

identification of a specific type of attack occurring in a context

where there are tens of such attacks can occur, which has not

received requisite attention from the researchers to date. The

second objective is to explore the performance of a multi-stage

classifier architecture design.

The simulation study demonstrated that the proposed 3-

260

stage classifier design performed very well. Stage 1 binary

classifier had 98.16% accuracy for the case of attack vs.

normal; Stage 2 classifier was able to identify the attack class

for 5 out of 7 classes with high accuracy; and finally Stage 3

classifier identified 28 out of 35 attack types also with high

accuracy.

We present the dataset and the preprocessing of data in

Section 2. Classifier design is presented in Section 3.

Simulation study, and its results along with comparison with

other studies reported in the literature are presented in Section

4. The last section presents the conclusions.

2. DATASET DESCRIPTION, PREPROCESSING AND

TRAINING-TESTING PARTITIONING

This section presents the Gas Pipeline dataset [12], its

features and attack class labels. It also presents the

preprocessing steps and methods applied to the datasets to fill

in the missing values.

2.1 Dataset features

The original dataset has 17 features and 3 different class

label groups namely binary, categorized and specified. There

are a total 274,628 instances in the dataset. There are 11

Command Payload features which are related to the command

injection attacks, 5 Network features, and 1 Response Payload

feature related to the response injection attacks as listed in

Table 2. We next provide a brief description for each of the

twenty features in Table 2. The detailed description of features

and the associated collection method can be found in

Turnipseed [18].

The station address feature is a unique eight-bit value

assigned to each master and slave device. In broadcast mode,

all slaves receive the transmitted frame and need to check the

address field to determine if it is the intended recipient. This

feature is useful for the detection of scan attacks. Up to 256

different function codes such as read and write commands can

be executed in the system and this information is contained by

the second feature. One typical attack leveraging this feature

is the denial of service by forcing a slave to the listen-only

mode. Modbus frame length which is fixed for command and

response queries is contained by the third feature. A frame

with a different length can easily be detected as not normal.

Another feature indicates the set point value for controlling the

pressure in the pipeline in automatic mode. Manipulation of

this value by an attacker could cause major damage to the

system. PID controller values such as gain, reset rate, dead

band, cycle time, and rate are represented by five other

features. The system’s duty cycle with three possible values is

controlled and represented by another feature. System control

through the pump or the solenoid is accomplished by the so-

called control scheme which is contained by the eleventh

feature. In the event the system mode is manual, the state of

the pump, namely either off or on, is controlled by a dedicated

field in the frame constituting the twelfth feature. The state of

solenoid valve as either open or closed is controlled a

dedicated field in the frame: the thirteenth feature contains this

information. Tampering with the state of either the pump or

the solenoid could cause serious damage. The current pressure

measurement for the pipeline is contained by the fourteenth

feature. The cyclic redundancy check data which facilitates

checking for errors in a frame is contained by the fifteenth

feature. An additional feature is included to distinguish

between commands and responses. The last four features

specify the time stamp, attack type, attack class, and attack vs.

normal data.

2.2 Description of attacks

The gas pipeline dataset used in this study has 7 types or

categories of attacks as presented in Table 3. The description

for all attack types is given in Morris and Gao [12]. Naïve

Malicious Response Injection (NMRI) and Complex

Malicious Response Injection (CMRI) are the response

injection attacks. These attacks can hide by mimicking certain

behaviors which occur within normal operating bounds. This

makes them very difficult to detect, and hence giving the

appearance of the system operating normally. NMRI has out

of bounds behavior that would not be present in normal

operation. It typically occurs when the attacker lacks

information about the physical system process. CMRI attacks

provide a level of sophistication over NMRI attacks. These

attacks can change the state of a system which can be seen as

command injection attacks: they are difficult to detect.

Table 2. Original features in gas pipeline dataset [18]

Features Type Values

Address Network Numeric

Length Network Numeric

Gain Command Payload Numeric

Deadband Command Payload Numeric

Rate Command Payload Numeric

Control Scheme Command Payload 0 or 1

Solenoid Command Payload 0 or 1

CRC Rate Network Numeric

Function Command Payload Numeric

Set Point Command Payload Numeric

Reset Rate Command Payload Numeric

Cycle Time Command Payload Numeric

System Mode Command Payload 0 or 1 or 2

Pump Mode Command Payload 0 or 1

Pressure Measurement Response Payload Numeric

Command Response Network 0 or 1

Timestamp Network UNIX format

Binary Attacks Label 0 or 1

Categorized Attacks Label 0, 1, 2…,7

Specified Attacks Label 0, 1, 2…, 35

Table 3. Attack classes in gas pipeline dataset

Attack Type/Category/Class Name Acronym Instances

Normal n/a 214580

Naïve Malicious Response Injection NMRI 7753

Complex Malicious Response Injection CMRI 13035

Malicious State Command Injection MSCI 7900

Malicious Parameter Command Injection MPCI 20412

Malicious Function Code Injection MFCI 4898

Denial of Service DoS 2176

Reconnaissance Recon 3874

Malicious State Command Injection (MSCI), Malicious

Parameter Command Injection (MPCI), and Malicious

Function Code Injection (MFCI) labels belong to the

command injection attacks. Tables 4 and 5 show their specific

attack types and their adverse impact on the system. Much

damage may originate from command injections attacks:

interruption in device communications, modification of device

configuration, and modification of the PID values are some of

261

them. MSCI attacks modify the state of the current physical

process of the system and can potentially place the system into

a critical state. Table 4 specifies the MPCI attack types. It

mainly modifies the parameters of PID configurations and set

point. As listed in Table 5, MFCI attacks inject commands

which exploit the network protocol for restarting, cleaning

registers etc.

Table 4. MPCI attack subtypes

Attack Name
Attack

Type No
Class Description

Setpoint

Attacks
1-2 MPCI

Changes the pressure set point

outside and inside of the range of

normal operation.

PID Gain

Attacks
3-4 MPCI

Changes the gain outside and

inside of the range of normal

operation.

PID Reset

Rate Attacks
5-6 MPCI

Changes the reset rate outside and

inside of the range of normal

operation.

PID Rate

Attacks
7-8 MPCI

Changes the rate outside and

inside of the range of normal

operation.

PID

Deadband

Attacks

9-10 MPCI

Changes the dead band outside

and inside of the range of normal

operation.

PID Cycle

Time Attacks
11-12 MPCI

Changes the cycle time outside

and inside of the range of normal

operation.

Table 5. MSCI, MFCI, DoS, recon attack subtypes

Attack Name
Attack

Type No
Class Description

Pump Attack 13 MSCI
Randomly changes the state of the

pump.

Solenoid

Attack
14 MSCI

Randomly changes the state of the

solenoid.

System Mode

Attack
15 MSCI

Randomly changes the system

mode.

Critical

Condition

Attacks

16-17 MSCI

Places the system in a Critical

Condition. This condition is not

included in normal activity.

Bad CRC

Attack
18 DoS

Sends Modbus packets with

incorrect CRC values. This can

cause denial of service.

Clean

Register

Attack

19 MFCI
Cleans registers in the slave

device.

Device Scan

Attack
20 Recon

Scans for all possible devices

controlled by the master.

Force Listen

Attack
21 MFCI Forces the slave to only listen.

Restart Attack 22 MFCI
Restarts communication on the

device.

Read ID

Attack
23 Recon Reads ID of slave device.

Function

Code Scan

Attack

24 Recon
Scans for possible functions that

are being used on the system.

Denial of service (DoS) attacks are very common in almost

every networked and online system. In a SCADA system, a

DoS attack attempts to disrupt communication between the

control or monitoring system and the process. Another

category of attacks are reconnaissance attacks. These attacks

aim to collect information about the system through some

passive activity. They may also query the device for

information such as function codes, model numbers etc.

Specific attack types belonging to NMRI or CMRI are listed

in Table 6.

2.3 Preprocessing

In the preprocessing stage, missing values in the dataset

were filled in. There were missing values in the dataset for 11

Payload (10 Command Payload and 1 Response Payload)

features. The missing values could have been imputed in

multiple ways. For instance, Perez et al. [14] have imputed the

missing values in 4 different ways such as mean value, keeping

previous value, zero imputation, and K-means imputation for

the same dataset. In the gas pipeline dataset, missing values

were occurring as MAR (Missing at Random) or NMAR (Not

Missing at Random). The payload features were not occurring

at random as the solenoid or pump mode values were fixed

among 0,1 or on/off/automatic. But the pressure measurement

value was occurring randomly while an associated attack was

in progress. Accordingly, the missing values were imputed

with Multivariate Imputation by Chained Equation (MICE)

method [29] since the MICE algorithm can handle both MAR

and NMAR types. This type of imputation works by filling the

missing data multiple times. Multiple Imputations are much

better than a single imputation as it measures the uncertainty

of the missing values more precisely [29]. The chained

equations approach is also very flexible and can handle

different variables or different data types.

Table 6. NMRI & CMRI attack subtypes

Attack Name
Attack

Type No
Class Description

Rise/Fall

Attacks
25-26 CMRI

Sends back pressure readings

which create trends.

Slope Attacks 27-28 CMRI
Changes pressure reading by a

random slope

Random

Value Attacks
29-31 NMRI

Random pressure measurements

are sent to the master.

Negative

Pressure

Attacks

32 NMRI
Sends back a negative pressure

reading from the slave.

Fast Attacks 33-34 CMRI
Sends back a high set point then a

low setpoint which changes “fast”

Slow Attack 35 CMRI

Sends back a high setpoint then a

low setpoint which changes

“slowly”

2.4 Dataset partitioning for training and testing

To create the train-test data subsets, we partitioned the

original dataset into three splits and then formed training-

testing datasets at a ratio of 66.6% and 33.3% and repeated

three times to form three data folds. The original dataset was

split into three equal parts while preserving class

representations equally in each split. Each fold contains two

splits for training and the third split is used for testing: this

procedure generates a unique split for testing for a given fold.

3. CLASSIFIER DESIGN

The design of the 3-stage machine learning classifier is

illustrated in Figure 1. The classification algorithm for all three

stages is chosen as Random Forest [30] given its superior

performance as presented in a previous publication by Khan

262

[31]. The first stage classifier performs binary classification

outputting if the class is normal or attack. If the classification

output is normal, then no further action is taken. However, if

the classification output is attack, then second stage classifier

is activated. The pattern that was classified as attack by the

first stage binary classifier is input to the second stage

classifier. The second stage classifier performs attack class

identification on the input pattern that was classified as an

attack (vs. normal) by the first stage binary classifier. There

are 7 class labels or outputs from the second stage classifier

corresponding to 7 attack classes. Once the class label is

identified by the second stage classifier the corresponding

third stage classifier is activated to perform attack type

identification. There are 7 attack type classifiers performing

this task in the third stage: six of the seven are implemented

noting that there is only one type for the DoS attack class.

4. SIMULATION STUDY

Simulation study was performed to determine the

performance of the 3-stage classifier on each of the three folds.

Performance assessment and evaluation was done separately

for each test data split and further inferences were made based

on these three performance assessments and evaluations.

Training the 3-stage classifier was accomplished by

implementing the following procedure:

Step 1: Train the binary classifier in Stage 1 with two class

labels of Normal versus Attack.

Step 2: Remove all patterns with class label “Normal” and

replace the single “Attack” label with 7 attack class

labels in the training dataset.

Step 3: Train the 7-category classifier in Stage 2 with training

dataset modified as in step 2.

Step 4: Split the single training dataset as modified in step 2

into 7 subsets (one for each attack class); replace, in

each training subset, class labels with the

corresponding attack type labels. A training data

subset will have those records or instances belonging

to specific attack types of a given attack class.

Step 5: Train each of the 7 classifiers in Stage 3 using

corresponding training data subsets modified in step 4.

Performance assessment and evaluation was done by

implementing the following procedure:

Step 1: Classify the pattern in the testing data subset with

binary class labels using Stage 1 classifier.

If classification output is “Normal” then no further

processing is needed.

Else (classification must be “Attack”) continue with

Stage 2 processing.

Step 2: Classify the attack pattern into one of seven classes in

the testing data subset using the 7-category classifier

in stage 2. Based on the output from the single 7-

category classifier, chose the Stage 3 classifier among

7 to activate.

Step 3: Classify the attack pattern in the testing data subset

using the attack type classifier (among those 7 at stage

3) as identified in Stage 2.

4.1 Simulation results and discussion

Weka classifier Random Forest was used for all classifier

models in all 3 stages [31]. The training set of the first data

fold contains dataset splits 1 and 2 while the dataset split 3 is

employed as the test set. Table 7 presents the number of

instances available in both training and testing data subsets for

stage 1. We report the representative results for one of the three

data folds since results for all three folds are very similar to

each other with negligible differences.

(a) Stage 1 classifier

(b) Stage 2 classifier

(c) Stage 3 classifier

Figure 1. 3-stage classifier design

Table 7. Instance counts for stage 1

 Classes

Dataset Normal Attack Total

Training 142901 40138 183039

Testing 71679 19910 91589

For stage 1, the batch size is 1000 for the Random Forest

model which classified 89,906 instances correctly from the test

set yielding 98.16% accuracy. The confusion matrix in Table

8 shows 18,597 attack instances were classified correctly

among the 19,910 and thus resulting in 1,313 incorrectly

2 Class
Labels:

Normal vs.
Attack Feature

Vectors with 2
Class Labels:
Normal vs.
Attack

Binary
Classifier

Training
Data

Testing
Data

2 Class
Labels:

Normal vs.
Attack

7 Attack
Class Labels

Feature Vectors with Attack
Class Labels of 1 to 7

Binary
Classifier

Training
Data

Testing
Data

7-
Category
Classifier

Feature Vectors with Attack
Class Labels of 1 to 7

7 Attack
Class Labels

Feature Vectors
with Attack
Subclass Labels
of 1 to 35 Training

Data

Testing
Data

7-
Category
Classifier

Feature Vectors
with Attack
Subclass Labels
of 1 to 35

MPCI Attacks (1-12)

MSCI Attacks (13-17)

DoS Attack (18)

MFCI Attacks (19,21,22)

Recon Attacks (20,23,24)

CMRI Attacks (25-28,33-35)

NMRI Attacks (29-32)

263

classified attack instances. From Table 9, we see that false

negative rate (FNR) for the attack class is 6.6% which

corresponds to the 1,313 incorrectly classified attack instances.

Table 8. Stage 1 confusion matrix

Classified as → Normal Attack

Normal 71309 370

Attack 1313 18597

Table 9. Stage 1 performance (accuracy = 98.16%)

Class TPR FPR TNR FNR Precision Recall

Normal 0.995 0.066 0.934 0.005 0.982 0.995

Attack 0.934 0.005 0.955 0.066 0.980 0.934

Weighted 0.982 0.053 0.947 0.018 0.982 0.982

Next, the training set is modified: all 142,901 normal class

patterns are removed from the training set of stage 1. This

leaves only the attack class instances in the training set for

stage 2. Table 10 presents the number of instances available in

training and testing data subsets for stage 2.

Table 10. Instance counts for stage 2

 Class Label

 1 2 3 4 5 6 7 Total

Training 5222 8743 5361 13550 3232 1449 2581 40138

Testing 2531 4292 2539 6862 1666 727 1293 19910

The batch size used for stage 2 classification is 100 as the

number of instances decreased in comparison to stage 1.

Random Forest at Stage 2 classifies with 93.79% accuracy

where 18,674 test instances are correctly classified and 1,236

are incorrectly classified. The weighted FNR is 6.2% for stage

2. From the confusion matrix in Table 11 we see that the model

struggles distinguishing mainly between attack classes 1 and

2. There are 1161 incorrectly classified instances between

attack classes 1 and 2 which amounts to approximately 94%

of incorrectly classified instances. NMRI and CMRI, being

both response injection attacks, deal with mainly the pressure

measurement features which have overlapping values for both

attack classes 1 and 2. For example, both attacks have same

pressure values in the range of 2 to 10 kPa. That is the most

likely reason why the classifier struggles to distinguish

between them. This finding also indicates the need to

determine and formulate new features which would be

discriminatory between attack classes 1 and 2.

Performance metric values for the stage 2 classifier are

presented in Table 12. The accuracy is 93.79% for the

classifier. Lower values for all the metrics for classes 1 and 2

reinforce the findings drawn from the confusion matrix that

the design needs to be enhanced to be able to better distinguish

between attack classes 1 and 2.

Table 11. Stage 2 confusion matrix

Classified as → 1 2 3 4 5 6 7

1 1881 650 0 0 0 0 0

2 511 3781 0 0 0 0 0

3 0 0 2522 15 0 2 0

4 0 0 22 6835 0 5 0

5 0 0 0 0 1666 0 0

6 0 0 6 15 0 706 0

7 0 0 0 0 10 0 1283

In stage 3, seven classifiers are used. Training and testing

datasets of stage 2 are now divided into 7 separate training and

testing subsets. Each of the 7 training and testing data subset

pairs have associated subclass labels, which range from 1 to

35, belonging to corresponding stage 2 class labels. Table 13

presents the number of instances available in both training and

testing data subsets for stage 3 classifiers.

Table 12. Stage 2 performance (accuracy = 93.79%)

Class TP Rate FP Rate TN Rate FN Rate Precision Recall

1 0.743 0.029 0.971 0.257 0.743 0.764

2 0.881 0.042 0.958 0.190 0.853 0.881

3 0.993 0.002 0.998 0.007 0.989 0.993

4 0.996 0.002 0.998 0.004 0.996 0.996

5 1.000 0.001 0.999 0.000 0.994 1.000

6 0.971 0.000 1.000 0.029 0.990 0.971

7 0.992 0.000 1.000 0.008 1.000 0.992

Weighted 0.938 0.014 0.986 0.062 0.937 0.938

In stage 3, the batch size is 10 for the Random Forest

classifier as the test data subset size is further reduced

following the processing as a result of classification during

stage 2. Since the attack class 6 (DoS) has only 1 specified

subclass (18) in the dataset, it was not necessary to build a

classifier for it. Tables 14 through 19 present the confusion

matrices for all 6 other subclass classifiers.

Table 13. Instance counts for stage 3

Stage 2

Label

Stage 3

Label

Training

Count

Testing

Count

4

1 1221 571

2 1015 445

3 1126 574

4 1277 655

5 931 485

6 1326 700

7 997 515

8 1186 612

9 936 460

10 955 519

11 1206 628

12 1374 698

3

13 1077 517

14 1158 518

15 1148 510

16 1115 543

17 963 451

6 18 1449 727

5 19 1089 545

7 20 474 192

5
21 1134 588

22 1009 533

7
23 1355 693

24 752 408

2

25 995 477

26 1237 571

27 1389 690

28 1233 625

1

29 1276 580

30 1414 706

31 1268 638

32 1264 607

2

33 1071 533

34 1327 683

35 1491 713

264

For class label 1, the confusion matrix is presented in Table

14: the classifier struggles to distinguish between attack

subclasses 31 and 32. Attack subclass 31 is dependent on the

random pressure measurements sent to the device and attack

subclass 32 is dependent on the negative pressure readings sent

to the device. The classifier fails to detect these two attacks

whenever the random pressure sent to the device is also

negative and detects 31 as 32 or 32 as 31. Additionally,

subclass 29 also has relatively poor detection rates as it is

misclassified as subclass 31 or 32 while a good number of

patterns belonging to attack subclasses 31 or 32 are also

classified as 29. The classifier for attack class 1 achieves an

accuracy rate of only 82.30%. The FNR is 17.7%, which is

very high compared to other classifiers for the same metric.

Performance of classifier for attack class 2, presented in Table

15, is the second worst with 87.79% accuracy and 524

incorrectly classified instances. All other classifiers performed

at a much higher level, specifically 99% or better as shown in

Tables 16 through 20.

Table 14. Stage 3 class label 1 confusion matrix

Classified as → 29 30 31 32

29 400 7 86 87

30 0 706 0 0

31 52 0 527 59

32 74 0 83 450

Table 15. Stage 3 class label 2 confusion matrix

Classified as → 29 30 31 32 33 34 35

25 368 41 3 42 2 4 17

26 37 479 0 45 0 4 6

27 2 0 671 1 2 0 14

28 35 74 3 423 51 13 26

33 0 0 7 6 505 0 15

34 0 0 7 2 0 647 27

35 1 0 7 3 10 17 675

Table 16. Stage 3 class label 3 confusion matrix

Classified as → 13 14 15 16 17

13 513 1 1 0 2

14 0 516 1 0 1

15 1 1 506 1 1

16 0 1 1 540 1

17 0 2 1 0 448

4.2 Comparison with studies reported in literature

Table 17. Stage 3 class label 4 confusion matrix

Classified as

 1 2 3 4 5 6 7 8 9 10 11 12

1 569 1 0 0 0 0 0 0 1 0 0 0

2 1 431 0 0 0 6 0 0 1 6 0 0

3 0 0 573 1 0 0 0 0 0 0 0 0

4 0 0 0 655 0 0 0 0 0 0 0 0

5 0 0 0 0 481 2 0 1 0 0 0 1

6 1 2 0 0 0 692 0 0 0 5 0 0

7 1 0 0 1 0 0 512 0 1 0 0 0

8 0 0 0 0 2 0 0 609 0 1 0 0

9 0 0 0 1 0 0 0 0 458 1 0 0

10 0 1 0 0 0 0 1 0 2 515 0 0

11 0 1 1 2 0 0 0 0 0 0 624 0

12 0 0 0 0 0 1 0 1 0 0 0 696

Numerous studies using the same gas pipeline dataset were

reported in the literature: several of them only reported the

binary classification results [22-27] while others considered

the classification problem for seven attack classes as presented

in Table 21 [14-16, 19-21]. Many appear to employ at least

one aspect of data preprocessing, classifier design and testing

that could render the comparison with the design proposed in

this study not very meaningful or even valid. Nevertheless, for

the sake of establishing somewhat meaningful context for the

performance of the proposed design, we briefly discuss each

one next. For a comparison with the other studies in the

literature on the same dataset, it is then necessary to calculate

the combined performance of stages 1 and 2 for the design

proposed in this study. The accuracy of combined stages 1 and

2 is 0.9379×0.9806= 92.06%. Precision and recall rates are

0.937×0.982=0.920 and 0.938×0.982=0.921, respectively.

Table 18. Stage 3 class label 5 confusion matrix

Classified as → 19 21 22

19 544 1 0

21 0 588 0

22 0 0 533

Table 19. Stage 3 class label 7 confusion matrix

Classified as → 20 23 24

20 187 0 5

23 0 693 0

22 2 0 406

Table 20. Stage 3 performance

Classifier Accuracy TPR FPR TNR FNR Precision Recall

1 82.30% 0.823 0.057 0.943 0.177 0.822 0.823

2 87.79% 0.878 0.020 0.980 0.202 0.876 0.878

3 99.37% 0.994 0.002 0.998 0.006 0.994 0.994

4 99.32% 0.993 0.001 0.999 0.007 0.993 0.993

5 99.94% 0.999 0.000 1.000 0.001 0.999 0.999

6 100.00% 1.000 0.000 1.000 0.000 1.000 1.000

7 99.47% 0.995 0.002 0.998 0.005 0.995 0.995

Demertzis et al. [16] and Nazir et al. [21] proposed one-

class anomaly detection approach where the former as also

reported subsampling the dataset. Perez et al. [14] reports

better performance compared with that of the current study,

and yet their approach employed 80-20% ratio for splitting the

dataset into training and testing subsets. Results reported in the

studies [15, 19] suggest poor performance across all the

metrics considered.

Table 21. Performance comparison of 2-stage classifier with

studies in literature

Classifier Accuracy Precision Recall

This Study 92.06% 0.920 0.921

Random Forest [14] 99.41% 0.994 0.994

K-Means [15] 56.80% 0.832 0.573

GMM [15] 45.16% 0.731 0.442

OCC-eSNN [16] 98.82% 0.988 0.988

OCC-SVM [16] 97.98% 0.980 0.980

C4.5/J48 [19] 76.57% 0.780 0.760

Ensemble [20] 99.62% 0.996 0.996

The only other cited study which attempted to address the

classification problem for the case of 35 attack types through

265

a 3-stage design reported precision, recall and f-measure

values of 0.586, 0.434, and 0.445, respectively [24].

Comparing these performance metric values with those in

Table 20 shows that the 3-stage design proposed in our study

performed very well.

5. CONCLUSIONS

In this study, we proposed a three-stage classifier for

detecting and identifying known intrusions for a gas pipeline-

based SCADA network. The dataset, which was developed

using an academic laboratory setup at the Mississippi State

University, entails 3 attack groups, 7 attack classes and 35

attack subclasses or types. Random Forest classifier was used

for all stages. Simulation results showed that 24 out of 35

attack subclasses or types, which belonged to attack classes 3,

4, 5, 6, and 7, were detected and identified with relatively high

accuracy while the performance for the remaining 11 attack

subclasses, which were associated with attack classes 1 and 2,

was not at par as it lagged by a considerable margin. Given

that the studies in literature which attempt to detect and

identify at the level of tens of attack subclasses or types are

scarce at best, the proposed and novel three-stage classifier

model in this study is promising for its overall performance to

address those types of problems.

REFERENCES

[1] What is SCADA. Online.

https://inductiveautomation.com/resources/article/what-

is-scada, accessed on March 2, 2022.

[2] Kang, D.J., Lee, J.J., Kim, S.J., Park, J.H. (2009).

Analysis on cyber threats to SCADA systems. In 2009

Transmission & Distribution Conference & Exposition:

Asia and Pacific, pp. 1-4. https://doi.org/10.1109/TD-

ASIA.2009.5357008

[3] Hong, S., Lee, M. (2010). Challenges and direction

toward secure communication in the SCADA system. In

2010 8th Annual Communication Networks and Services

Research Conference, pp. 381-386.

https://doi.org/10.1109/CNSR.2010.52

[4] Dzung, D., Naedele, M., Von Hoff, T.P., Crevatin, M.

(2005). Security for industrial communication systems.

Proceedings of the IEEE, 93(6): 1152-1177.

https://doi.org/10.1109/JPROC.2005.849714

[5] Mirian, A., Ma, Z., Adrian, D., Tischer, M., Chuenchujit,

T., Yardley, T., Bailey, M. (2016). An internet-wide view

of ICS devices. In 2016 14th Annual Conference on

Privacy, Security and Trust (PST), pp. 96-103.

https://doi.org/10.1109/PST.2016.7906943

[6] Durumeric, Z., Wustrow, E., Halderman, J.A. (2013).

{ZMap}: Fast Internet-wide Scanning and Its Security

Applications. In 22nd USENIX Security Symposium

(USENIX Security 13), pp. 605-620.

[7] Cherdantseva, Y., Burnap, P., Blyth, A., Eden, P., Jones,

K., Soulsby, H., Stoddart, K. (2016). A review of cyber

security risk assessment methods for SCADA systems.

Computers & Security, 56: 1-27.

https://doi.org/10.1016/j.cose.2015.09.009

[8] Mell, P. (2003). Understanding intrusion detection

systems. IS Management Handbook, 409-418.

[9] Almalawi, A., Yu, X., Tari, Z., Fahad, A., Khalil, I.

(2014). An unsupervised anomaly-based detection

approach for integrity attacks on SCADA systems.

Computers & Security, 46: 94-110.

https://doi.org/10.1016/j.cose.2014.07.005

[10] Feng, C., Li, T., Zhu, Z., Chana, D. (2017). A deep

learning-based framework for conducting stealthy

attacks in industrial control systems. arXiv preprint

arXiv:1709.06397.

https://doi.org/10.48550/arXiv.1709.06397

[11] Mitchell, R., Chen, I.R. (2014). A survey of intrusion

detection techniques for cyber-physical systems. ACM

Computing Surveys (CSUR), 46(4): 1-29.

https://doi.org/10.1145/2542049

[12] Morris, T., Gao, W. (2014). Industrial control system

traffic data sets for intrusion detection research. In

International Conference on Critical Infrastructure

Protection, pp. 65-78. https://doi.org/10.1007/978-3-

662-45355-1_5

[13] Zhu, B., Sastry, S. (2010). SCADA-specific intrusion

detection/prevention systems: A survey and taxonomy.

In Proceedings of the 1st Workshop on Secure Control

Systems (SCS), 11: 7.

[14] Perez, R.L., Adamsky, F., Soua, R., Engel, T. (2018).

Machine learning for reliable network attack detection in

SCADA systems. In 2018 17th IEEE International

Conference on Trust, Security and Privacy in Computing

and Communications/12th IEEE International

Conference on Big Data Science and Engineering

(TrustCom/BigDataSE), pp. 633-638.

https://doi.org/10.1109/TrustCom/BigDataSE.2018.000

94

[15] Shirazi, S.N., Gouglidis, A., Syeda, K.N., Simpson, S.,

Mauthe, A., Stephanakis, I.M., Hutchison, D. (2016).

Evaluation of anomaly detection techniques for SCADA

communication resilience. In 2016 Resilience Week

(RWS), pp. 140-145.

https://doi.org/10.1109/RWEEK.2016.7573322

[16] Demertzis, K., Iliadis, L., Spartalis, S. (2017). A spiking

one-class anomaly detection framework for cyber-

security on industrial control systems. In International

Conference on Engineering Applications of Neural

Networks, pp. 122-134. https://doi.org/10.1007/978-3-

319-65172-9_11

[17] Anton, S.D.D., Sinha, S., Schotten, H.D. (2019).

Anomaly-based intrusion detection in industrial data

with SVM and random forests. In 2019 International

Conference on Software, Telecommunications and

Computer Networks (SoftCOM), pp. 1-6.

https://doi.org/10.23919/SOFTCOM.2019.8903672

[18] Turnipseed, I.P. (2015). A new SCADA dataset for

intrusion detection research. Mississippi State University.

[19] Anthi, E., Williams, L., Burnap, P., Jones, K. (2021). A

three-tiered intrusion detection system for industrial

control systems. Journal of Cybersecurity, 7(1): tyab006.

https://doi.org/10.1093/cybsec/tyab006

[20] Nguyen, D.D., Le, M.T., Cung, T.L. (2022). Improving

intrusion detection in SCADA systems using stacking

ensemble of tree-based models. Bulletin of Electrical

Engineering and Informatics, 11(1): 119-127.

https://doi.org/10.11591/eei.v11i1.3334

[21] Nazir, S., Patel, S., Patel, D. (2021). Autoencoder based

anomaly detection for Scada networks. International

Journal of Artificial Intelligence and Machine Learning

(IJAIML), 11(2): 83-99.

266

https://doi.org/10.1109/TD-ASIA.2009.5357008
https://doi.org/10.1109/TD-ASIA.2009.5357008
https://doi.org/10.1109/CNSR.2010.52
https://doi.org/10.1109/JPROC.2005.849714
https://doi.org/10.1109/PST.2016.7906943
https://doi.org/10.1016/j.cose.2015.09.009
https://doi.org/10.1016/j.cose.2014.07.005
https://doi.org/10.1145/2542049
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00094
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00094
https://doi.org/10.1109/RWEEK.2016.7573322
https://doi.org/10.23919/SOFTCOM.2019.8903672
https://doi.org/10.1093/cybsec/tyab006

http://doi.org/10.4018/IJAIML.20210701.oa6

[22] Paramkusem, K.M., Aygun, R.S. (2018). Classifying

categories of SCADA attacks in a big data framework.

Annals of Data Science, 5(3): 359-386.

http://doi.org/10.1007/s40745-018-0141-8

[23] Chu, A., Lai, Y., Liu, J. (2019). Industrial control

intrusion detection approach based on multiclassification

GoogLeNet-LSTM model. Security and Communication

Networks. https://doi.org/10.1155/2019/6757685

[24] Al-Abassi, A., Karimipour, H., Dehghantanha, A., Parizi,

R.M. (2020). An ensemble deep learning-based cyber-

attack detection in industrial control system. IEEE

Access, 8: 83965-83973.

https://doi.org/10.1109/ACCESS.2020.2992249

[25] Feng, C., Li, T., Chana, D. (2017). Multi-level anomaly

detection in industrial control systems via package

signatures and LSTM networks. In 2017 47th Annual

IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), pp. 261-272.

https://doi.org/10.1109/DSN.2017.34

[26] Shirazi, S.N., Gouglidis, A., Syeda, K.N., Simpson, S.,

Mauthe, A., Stephanakis, I.M., Hutchison, D. (2016).

Evaluation of anomaly detection techniques for SCADA

communication resilience. In 2016 Resilience Week

(RWS), 140-145.

https://doi.org/10.1109/RWEEK.2016.7573322

[27] Choubineh, A., Wood, D.A., Choubineh, Z. (2020).

Applying separately cost-sensitive learning and Fisher's

discriminant analysis to address the class imbalance

problem: A case study involving a virtual gas pipeline

SCADA system. International Journal of Critical

Infrastructure Protection, 29: 100357.

https://doi.org/10.1016/j.ijcip.2020.100357

[28] Bigham, J., Gamez, D., Lu, N. (2003). Safeguarding

SCADA systems with anomaly detection. In

International Workshop on Mathematical Methods,

Models, and Architectures for Computer Network

Security, pp. 171-182. https://doi.org/10.1007/978-3-

540-45215-7_14

[29] Van Buuren, S., Groothuis-Oudshoorn, K. (2011). Mice:

Multivariate imputation by chained equations in R.

Journal of Statistical Software, 45: 1-67.

https://doi.org/10.18637/jss.v045.i03

[30] Liaw, A., Wiener, M. (2002). Classification and

regression by randomForest. R News, 2(3): 18-22.

[31] Khan, A.A.Z. (2019). Misuse intrusion detection using

machine learning for gas pipeline SCADA networks. In

Proceedings of the International Conference on Security

and Management (SAM), pp. 84-90.

267

