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Industrial SCADA networks are subject to cyber-attacks that have the potential to cause 

significant disruption, damage, and havoc. In this paper, we present a study that proposes 

a three-stage classifier model which employs a machine learning algorithm to develop an 

intrusion detection and identification system for tens of different types of attacks against 

industrial SCADA networks. The machine learning classifier is trained and tested on the 

data generated using the laboratory prototype of a gas pipeline SCADA network. The 

dataset consists of three attack groups and seven different attack classes or categories. The 

same dataset further provides signatures of 35 different types of attacks which are related 

to those seven attack classes. The study entailed the design of three-stage machine 

learning classifier as a misuse intrusion detection system to detect and identify specifically 

each of the 35 attack types. The first stage of the classifier decides if a record is associated 

with normal operation or an attack signature. If the record is found to belong to an attack 

signature, then in the second stage, it is classified into one of seven attack classes. Based 

on the identified attack class as determined by the output from the second stage classifier, 

the attack record is provided for a third stage attack type classification, where seven 

different classifiers are employed. The output from the third stage classifier identifies the 

attack type to which the record belongs. Simulation results indicate that designs exploring 

specialization to domains or executing the classification in multiple stages versus single-

stage designs are promising for problems where there are tens of classes. Comparison with 

studies in the literature also indicated that the multi-stage classifier performed markedly 

better. 
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1. INTRODUCTION

Supervisory Control and Data Acquisition (SCADA) 

systems monitor and control highly critical industrial 

infrastructure. Such systems gather and analyze data, and 

control processes and systems all in real time for the most part. 

SCADA systems are used to monitor and control a plant or 

equipment such as gas pipeline, water storage tank and 

associated distribution network, telecommunications, waste 

control, oil refining and transportation among many others. A 

SCADA system may collect information such as where a leak 

on a gas pipeline has occurred; alert the central control room 

that leak has occurred; and carry out necessary analysis and 

control (such as determining if the leak is critical or not). A 

SCADA system can be very simple i.e., just monitoring 

environment of a small manufacturing facility or it can be very 

complex such as monitoring activity of an oil refinery or a 

nuclear power plant.  

Computers were first used for industrial control purposes as 

early as late 1950s [1]. Telemetry was established for 

monitoring in the 1960s, which allowed for automated 

communications to transmit measurements. In the early 1970s, 

the term “SCADA” was coined and the rise of microprocessors 

and programmable logic controllers (PLCs) during that decade 

increased enterprises’ ability to monitor and control automated 

processes more than ever before. SCADA systems have 

undergone significant changes in subsequent decades. During 

late 1990s to early 2000s, a technological revolution occurred 

as computing and information technologies (IT) accelerated in 

growth. The introduction of modern IT standards and practices 

such as Structured Query Language (SQL) and web-based 

applications for SCADA networks has improved the 

efficiency and productivity overall. Many SCADA systems 

are either online or able to connect to other similar systems or 

both, and with this newfound connectivity, there are also many 

security concerns for these once remote, isolated and 

standalone systems [2]. If a vulnerability exists in one of these 

systems, it will now allow attackers to remotely exploit and 

potentially be able to take control of these SCADA systems; 

the stakes then could not be higher as takeover by a bad actor 

could lead to unimaginable and catastrophic consequences. 

Table 1 provides some common SCADA attack scenarios. 

Hong et al. discuss inherent security issues in SCADA systems 

for smart grid communications [3]. Similar to this work, 

Dzung et al. outlines many issues found in communication 

networks for industrial applications [4]. Mirian et al. [5] found 

out that 60,000 vulnerable SCADA devices were connected to 

the Internet using the scanner called Zmap [6]. A detailed 

survey of risk assessment studies reported in the literature for 

industrial SCADA systems is presented by Cherdantseva et al. 

[7]. 

An intrusion detection system (IDS) is a special-purpose 

computing platform or software application that monitors a 

network or systems for unauthorized access, control or 
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malicious activity. Intrusion detection systems are used to 

collect data and analyze system activity to monitor a system’s 

status and state [8]. Many IDSs use machine learning 

algorithms for pattern recognition to detect and identify any 

threat activity. There are mainly two types of IDSs. One type 

uses a signature-based approach to compare activity to a 

database of known threats, and as such are considered to 

perform misuse detection. The other type can identify an 

operation mode of the system as outside the boundaries of 

normal mode, which is then characterized as performing 

anomaly detection. These functionalities can be combined for 

a robust detection system and will likely form a baseline 

design for minimally adequate layer of protection against 

attacks. 

 

Table 1. Common SCADA system threats [2] 

 
Sabotage Scavenging Spying Spoofing 

Worm 
Access 

Violation 
Trojan Horse Tunneling 

Information 

Leakage 

Data 

Modification 

Physical 

Intrusion 

Resource 

Exhaustion 

Eavesdropping Repudiation Intercept Terrorism 

Substitution Theft 
Traffic 

Analysis 
Virus 

 

The highly critical operational nature of SCADA systems 

mandates using Intrusion Detection Systems for defense 

against attacks exploiting vulnerabilities in those systems. A 

recent study [9] used real world data from an industrial system 

(water plant) to experiment with two different approaches. The 

research concludes with a finding that behavioral approach for 

intrusion detection can help yield high detection rates for 

SCADA networks. Feng et al. proposed a deep learning-based 

framework to detect attacks against SCADA networks in 

industrial systems [10]. Their framework shows that Artificial 

Intelligence (AI) can be helpful to detect even stealthy attacks 

on SCADA systems given that such attacks are normally very 

hard to detect. Several other industrial control system specific 

anomaly and intrusion detection system models have been 

reported in the studies [11-13]. Perez et al. [14] used Random 

Forest to build an IDS and classify attacks against a SCADA 

system for a gas pipeline. Shirazi et al. [15] proposed one-class 

classification using support vector machines (SVM). 

Demertzis et al. [16] proposed a one-class anomaly detection 

system for industrial control systems. Anton et al. proposed 

anomaly-based intrusion detection with industrial data with 

both SVM and Random Forest [17]. 

Current industrial SCADA networks are facing constantly 

evolving threats from hackers with potentially catastrophic 

consequences for mission-critical tasks. The defensive tools 

must be also in a state of evolution to address these ever-

changing threats. New vulnerabilities are being exploited by 

the adversaries of such systems, which requires a constant 

engagement in terms of engineering such systems for defense. 

Therefore, there is an ongoing and urgent need to continue 

with the development of intrusion detection systems to counter 

the existing or future threats being posed to such systems. 

Consequently, the research presented in this study strives to 

fill this need for the constant evolution of IDSs considering 

continuously evolving threats.  

SCADA networks for industrial infrastructure employ 

networking protocols to facilitate communication for 

command and control. There is much information embedded 

in the networking packets which can be leveraged for intrusion 

detection purposes. This requires collection of data to be used 

for development of data-driven decision-making tools such as 

machine learning classifiers. The significant and substantial 

differences in the design and architecture of SCADA networks 

for different industrial settings poses a hindrance to 

development efforts as an intrusion detection system 

developed for a water distribution system cannot be readily 

adopted for an oil refinery, gas pipeline or industrial 

manufacturing plant [18]. 

The study presented in this paper entails a SCADA system 

for a gas pipeline for which public domain dataset for the 

development of intrusion detection system is available [18]. 

Other studies reported in the literature and using the same 

dataset suggest that there is a further need to develop an IDS 

that can detect and identify one of 35 attack types with high 

accuracy [14-16, 19-27] as this is currently an unresolved 

problem. Anthi et al. [19] employed a three-tiered intrusion 

detection system to detect attacks (vs. non-attacks), attack 

classes, and specific type of attacks. They reported good 

performance for the first two cases but relatively poor 

performance for the case where one out of 35 attack types need 

to be identified reliably. Several other studies considered the 

classification problem for seven classes only. Demertzis et al. 

[16] proposed one-class anomaly detection approach for this 

dataset. Apart from being an anomaly (versus misuse) 

detection system, their study exposes several important 

differences when compared to ours. One significant difference 

is that they did not employ the full dataset in their study. They 

subsampled 97,019 instances from 274,628 instances in the 

original dataset. Considering this, one can question if the two 

studies are directly comparable. Perez et al. [14] reported 

better performance than that of the current study. However, 

their approach employed 80-20% ratio for splitting the dataset 

into training and testing subsets, which is not the same as the 

67-33% split ratio for the dataset where the latter is typical for 

most studies including the current one. A different split ratio 

through subsampling the data could change the original 

signatures of attacks which could lead to differences in 

classification performance. For the study [15], performance 

results are demonstrably not promising. Nguyen et al. [20] 

leveraged a stacking ensemble of tree-based models for 

classification. They studied the binary classification (attack vs. 

non-attack), and the 7-category classification: they reported 

good performance but did not address the case of identifying 

the specific attack type. Nazir et al. [21] approached the 

problem from the perspective of anomaly detection: they 

considered the seven-category classification problem only. 

Many other studies on this dataset only considered the binary 

classification problem [22-28]. 

There are two main and interrelated objectives of the 

research study presented in this paper. First such objective is 

to explore the information content of networking packets for 

communication and command in SCADA networks to 

determine the feasibility of identification of detected attacks at 

a multitude of levels as a) Detection of attacks occurring 

versus normal operation; b) Detection and identification of a 

specific attack class group where a group consists of several 

attacks sharing common attributes; and c) Detection and 

identification of a specific type of attack occurring in a context 

where there are tens of such attacks can occur, which has not 

received requisite attention from the researchers to date. The 

second objective is to explore the performance of a multi-stage 

classifier architecture design. 

The simulation study demonstrated that the proposed 3-
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stage classifier design performed very well. Stage 1 binary 

classifier had 98.16% accuracy for the case of attack vs. 

normal; Stage 2 classifier was able to identify the attack class 

for 5 out of 7 classes with high accuracy; and finally Stage 3 

classifier identified 28 out of 35 attack types also with high 

accuracy. 

We present the dataset and the preprocessing of data in 

Section 2. Classifier design is presented in Section 3. 

Simulation study, and its results along with comparison with 

other studies reported in the literature are presented in Section 

4. The last section presents the conclusions. 

 

 

2. DATASET DESCRIPTION, PREPROCESSING AND 

TRAINING-TESTING PARTITIONING 
 

This section presents the Gas Pipeline dataset [12], its 

features and attack class labels. It also presents the 

preprocessing steps and methods applied to the datasets to fill 

in the missing values.  

 

2.1 Dataset features 

 

The original dataset has 17 features and 3 different class 

label groups namely binary, categorized and specified. There 

are a total 274,628 instances in the dataset. There are 11 

Command Payload features which are related to the command 

injection attacks, 5 Network features, and 1 Response Payload 

feature related to the response injection attacks as listed in 

Table 2. We next provide a brief description for each of the 

twenty features in Table 2. The detailed description of features 

and the associated collection method can be found in 

Turnipseed [18].  

The station address feature is a unique eight-bit value 

assigned to each master and slave device. In broadcast mode, 

all slaves receive the transmitted frame and need to check the 

address field to determine if it is the intended recipient. This 

feature is useful for the detection of scan attacks. Up to 256 

different function codes such as read and write commands can 

be executed in the system and this information is contained by 

the second feature. One typical attack leveraging this feature 

is the denial of service by forcing a slave to the listen-only 

mode. Modbus frame length which is fixed for command and 

response queries is contained by the third feature. A frame 

with a different length can easily be detected as not normal. 

Another feature indicates the set point value for controlling the 

pressure in the pipeline in automatic mode. Manipulation of 

this value by an attacker could cause major damage to the 

system. PID controller values such as gain, reset rate, dead 

band, cycle time, and rate are represented by five other 

features. The system’s duty cycle with three possible values is 

controlled and represented by another feature. System control 

through the pump or the solenoid is accomplished by the so-

called control scheme which is contained by the eleventh 

feature. In the event the system mode is manual, the state of 

the pump, namely either off or on, is controlled by a dedicated 

field in the frame constituting the twelfth feature. The state of 

solenoid valve as either open or closed is controlled a 

dedicated field in the frame: the thirteenth feature contains this 

information. Tampering with the state of either the pump or 

the solenoid could cause serious damage. The current pressure 

measurement for the pipeline is contained by the fourteenth 

feature. The cyclic redundancy check data which facilitates 

checking for errors in a frame is contained by the fifteenth 

feature. An additional feature is included to distinguish 

between commands and responses. The last four features 

specify the time stamp, attack type, attack class, and attack vs. 

normal data.  

 

2.2 Description of attacks 

 

The gas pipeline dataset used in this study has 7 types or 

categories of attacks as presented in Table 3. The description 

for all attack types is given in Morris and Gao [12]. Naïve 

Malicious Response Injection (NMRI) and Complex 

Malicious Response Injection (CMRI) are the response 

injection attacks. These attacks can hide by mimicking certain 

behaviors which occur within normal operating bounds. This 

makes them very difficult to detect, and hence giving the 

appearance of the system operating normally. NMRI has out 

of bounds behavior that would not be present in normal 

operation. It typically occurs when the attacker lacks 

information about the physical system process. CMRI attacks 

provide a level of sophistication over NMRI attacks. These 

attacks can change the state of a system which can be seen as 

command injection attacks: they are difficult to detect. 

 

Table 2. Original features in gas pipeline dataset [18] 

 
Features Type Values 

Address Network Numeric 

Length Network Numeric 

Gain Command Payload Numeric 

Deadband Command Payload Numeric 

Rate Command Payload Numeric 

Control Scheme Command Payload 0 or 1 

Solenoid Command Payload 0 or 1 

CRC Rate Network Numeric 

Function Command Payload Numeric 

Set Point Command Payload Numeric 

Reset Rate Command Payload Numeric 

Cycle Time Command Payload Numeric 

System Mode Command Payload 0 or 1 or 2 

Pump Mode Command Payload 0 or 1 

Pressure Measurement Response Payload Numeric 

Command Response Network 0 or 1 

Timestamp Network UNIX format 

Binary Attacks Label 0 or 1 

Categorized Attacks Label 0, 1, 2…,7 

Specified Attacks Label 0, 1, 2…, 35 

 

Table 3. Attack classes in gas pipeline dataset 

 
Attack Type/Category/Class Name Acronym Instances 

Normal n/a 214580 

Naïve Malicious Response Injection NMRI 7753 

Complex Malicious Response Injection CMRI 13035 

Malicious State Command Injection MSCI 7900 

Malicious Parameter Command Injection MPCI 20412 

Malicious Function Code Injection MFCI 4898 

Denial of Service DoS 2176 

Reconnaissance Recon 3874 

 

Malicious State Command Injection (MSCI), Malicious 

Parameter Command Injection (MPCI), and Malicious 

Function Code Injection (MFCI) labels belong to the 

command injection attacks. Tables 4 and 5 show their specific 

attack types and their adverse impact on the system. Much 

damage may originate from command injections attacks: 

interruption in device communications, modification of device 

configuration, and modification of the PID values are some of 
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them. MSCI attacks modify the state of the current physical 

process of the system and can potentially place the system into 

a critical state. Table 4 specifies the MPCI attack types. It 

mainly modifies the parameters of PID configurations and set 

point. As listed in Table 5, MFCI attacks inject commands 

which exploit the network protocol for restarting, cleaning 

registers etc. 

 

Table 4. MPCI attack subtypes  

 

Attack Name 
Attack 

Type No 
Class Description 

Setpoint 

Attacks 
1-2 MPCI 

Changes the pressure set point 

outside and inside of the range of 

normal operation. 

PID Gain 

Attacks 
3-4 MPCI 

Changes the gain outside and 

inside of the range of normal 

operation. 

PID Reset 

Rate Attacks 
5-6 MPCI 

Changes the reset rate outside and 

inside of the range of normal 

operation. 

PID Rate 

Attacks 
7-8 MPCI 

Changes the rate outside and 

inside of the range of normal 

operation. 

PID 

Deadband 

Attacks 

9-10 MPCI 

Changes the dead band outside 

and inside of the range of normal 

operation. 

PID Cycle 

Time Attacks 
11-12 MPCI 

Changes the cycle time outside 

and inside of the range of normal 

operation. 

 

Table 5. MSCI, MFCI, DoS, recon attack subtypes 

 

Attack Name 
Attack 

Type No 
Class Description 

Pump Attack 13 MSCI 
Randomly changes the state of the 

pump. 

Solenoid 

Attack 
14 MSCI 

Randomly changes the state of the 

solenoid. 

System Mode 

Attack 
15 MSCI 

Randomly changes the system 

mode. 

Critical 

Condition 

Attacks 

16-17 MSCI 

Places the system in a Critical 

Condition. This condition is not 

included in normal activity. 

Bad CRC 

Attack 
18 DoS 

Sends Modbus packets with 

incorrect CRC values. This can 

cause denial of service. 

Clean 

Register 

Attack 

19 MFCI 
Cleans registers in the slave 

device. 

Device Scan 

Attack 
20 Recon 

Scans for all possible devices 

controlled by the master. 

Force Listen 

Attack 
21 MFCI Forces the slave to only listen. 

Restart Attack 22 MFCI 
Restarts communication on the 

device. 

Read ID 

Attack 
23 Recon Reads ID of slave device. 

Function 

Code Scan 

Attack 

24 Recon 
Scans for possible functions that 

are being used on the system. 

 

Denial of service (DoS) attacks are very common in almost 

every networked and online system. In a SCADA system, a 

DoS attack attempts to disrupt communication between the 

control or monitoring system and the process. Another 

category of attacks are reconnaissance attacks. These attacks 

aim to collect information about the system through some 

passive activity. They may also query the device for 

information such as function codes, model numbers etc. 

Specific attack types belonging to NMRI or CMRI are listed 

in Table 6. 

 

2.3 Preprocessing 

 

In the preprocessing stage, missing values in the dataset 

were filled in. There were missing values in the dataset for 11 

Payload (10 Command Payload and 1 Response Payload) 

features. The missing values could have been imputed in 

multiple ways. For instance, Perez et al. [14] have imputed the 

missing values in 4 different ways such as mean value, keeping 

previous value, zero imputation, and K-means imputation for 

the same dataset. In the gas pipeline dataset, missing values 

were occurring as MAR (Missing at Random) or NMAR (Not 

Missing at Random). The payload features were not occurring 

at random as the solenoid or pump mode values were fixed 

among 0,1 or on/off/automatic. But the pressure measurement 

value was occurring randomly while an associated attack was 

in progress. Accordingly, the missing values were imputed 

with Multivariate Imputation by Chained Equation (MICE) 

method [29] since the MICE algorithm can handle both MAR 

and NMAR types. This type of imputation works by filling the 

missing data multiple times. Multiple Imputations are much 

better than a single imputation as it measures the uncertainty 

of the missing values more precisely [29]. The chained 

equations approach is also very flexible and can handle 

different variables or different data types.  

 

Table 6. NMRI & CMRI attack subtypes 

 

Attack Name 
Attack 

Type No 
Class Description 

Rise/Fall 

Attacks 
25-26 CMRI 

Sends back pressure readings 

which create trends.  

Slope Attacks 27-28 CMRI 
Changes pressure reading by a 

random slope  

Random 

Value Attacks 
29-31 NMRI 

Random pressure measurements 

are sent to the master.  

Negative 

Pressure 

Attacks 

32 NMRI 
Sends back a negative pressure 

reading from the slave.  

Fast Attacks 33-34 CMRI 
Sends back a high set point then a 

low setpoint which changes “fast”  

Slow Attack 35 CMRI 

Sends back a high setpoint then a 

low setpoint which changes 

“slowly”  

 

2.4 Dataset partitioning for training and testing 

 

To create the train-test data subsets, we partitioned the 

original dataset into three splits and then formed training-

testing datasets at a ratio of 66.6% and 33.3% and repeated 

three times to form three data folds. The original dataset was 

split into three equal parts while preserving class 

representations equally in each split. Each fold contains two 

splits for training and the third split is used for testing: this 

procedure generates a unique split for testing for a given fold.  

 

 

3. CLASSIFIER DESIGN 

 

The design of the 3-stage machine learning classifier is 

illustrated in Figure 1. The classification algorithm for all three 

stages is chosen as Random Forest [30] given its superior 

performance as presented in a previous publication by Khan 
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[31]. The first stage classifier performs binary classification 

outputting if the class is normal or attack. If the classification 

output is normal, then no further action is taken. However, if 

the classification output is attack, then second stage classifier 

is activated. The pattern that was classified as attack by the 

first stage binary classifier is input to the second stage 

classifier. The second stage classifier performs attack class 

identification on the input pattern that was classified as an 

attack (vs. normal) by the first stage binary classifier. There 

are 7 class labels or outputs from the second stage classifier 

corresponding to 7 attack classes. Once the class label is 

identified by the second stage classifier the corresponding 

third stage classifier is activated to perform attack type 

identification. There are 7 attack type classifiers performing 

this task in the third stage: six of the seven are implemented 

noting that there is only one type for the DoS attack class.  

 

 

4. SIMULATION STUDY 

 

Simulation study was performed to determine the 

performance of the 3-stage classifier on each of the three folds. 

Performance assessment and evaluation was done separately 

for each test data split and further inferences were made based 

on these three performance assessments and evaluations.  

Training the 3-stage classifier was accomplished by 

implementing the following procedure:  

Step 1: Train the binary classifier in Stage 1 with two class 

labels of Normal versus Attack. 

Step 2: Remove all patterns with class label “Normal” and 

replace the single “Attack” label with 7 attack class 

labels in the training dataset. 

Step 3: Train the 7-category classifier in Stage 2 with training 

dataset modified as in step 2.  

Step 4: Split the single training dataset as modified in step 2 

into 7 subsets (one for each attack class); replace, in 

each training subset, class labels with the 

corresponding attack type labels. A training data 

subset will have those records or instances belonging 

to specific attack types of a given attack class. 

Step 5: Train each of the 7 classifiers in Stage 3 using 

corresponding training data subsets modified in step 4. 

Performance assessment and evaluation was done by 

implementing the following procedure:  

Step 1: Classify the pattern in the testing data subset with 

binary class labels using Stage 1 classifier. 

If classification output is “Normal” then no further 

processing is needed. 

Else (classification must be “Attack”) continue with 

Stage 2 processing. 

Step 2: Classify the attack pattern into one of seven classes in 

the testing data subset using the 7-category classifier 

in stage 2. Based on the output from the single 7-

category classifier, chose the Stage 3 classifier among 

7 to activate. 

Step 3: Classify the attack pattern in the testing data subset 

using the attack type classifier (among those 7 at stage 

3) as identified in Stage 2. 

 

4.1 Simulation results and discussion 

 

Weka classifier Random Forest was used for all classifier 

models in all 3 stages [31]. The training set of the first data 

fold contains dataset splits 1 and 2 while the dataset split 3 is 

employed as the test set. Table 7 presents the number of 

instances available in both training and testing data subsets for 

stage 1. We report the representative results for one of the three 

data folds since results for all three folds are very similar to 

each other with negligible differences. 

 

 
(a) Stage 1 classifier 

 
(b) Stage 2 classifier 

 
(c) Stage 3 classifier 

 

Figure 1. 3-stage classifier design 

 

Table 7. Instance counts for stage 1 

 
 Classes  

Dataset Normal Attack Total 

Training  142901 40138 183039 

Testing 71679 19910 91589 

 

For stage 1, the batch size is 1000 for the Random Forest 

model which classified 89,906 instances correctly from the test 

set yielding 98.16% accuracy. The confusion matrix in Table 

8 shows 18,597 attack instances were classified correctly 

among the 19,910 and thus resulting in 1,313 incorrectly 

 
 
 
 
 
 
 
 
 
 
 
 

2 Class 
Labels: 

Normal vs. 
Attack Feature 

Vectors with 2 
Class Labels:   
Normal vs. 
Attack 

Binary 
Classifier 

Training 
Data 

Testing 
Data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 Class 
Labels: 

Normal vs. 
Attack 

7 Attack 
Class Labels 

Feature Vectors with Attack 
Class Labels of 1 to 7 

Binary 
Classifier 

Training 
Data 

Testing 
Data 

7-
Category 
Classifier 

Feature Vectors with Attack 
Class Labels of 1 to 7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

7 Attack 
Class Labels 

Feature Vectors 
with Attack 
Subclass Labels 
of 1 to 35 Training 

Data 

Testing 
Data 

7-
Category 
Classifier 

Feature Vectors 
with Attack 
Subclass Labels 
of 1 to 35 

MPCI Attacks (1-12) 
 
 
MSCI Attacks (13-17) 
 
 
DoS Attack (18) 
 
 
MFCI Attacks (19,21,22) 
 
 

Recon Attacks (20,23,24) 
 

 
CMRI Attacks (25-28,33-35) 
 

 
NMRI Attacks (29-32) 
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classified attack instances. From Table 9, we see that false 

negative rate (FNR) for the attack class is 6.6% which 

corresponds to the 1,313 incorrectly classified attack instances. 

 

Table 8. Stage 1 confusion matrix 

 
Classified as → Normal Attack 

Normal 71309 370 

Attack 1313 18597 

 

Table 9. Stage 1 performance (accuracy = 98.16%) 

 
Class TPR FPR TNR FNR Precision Recall 

Normal 0.995 0.066 0.934 0.005 0.982 0.995 

Attack 0.934 0.005 0.955 0.066 0.980 0.934 

Weighted 0.982 0.053 0.947 0.018 0.982 0.982 

 

Next, the training set is modified: all 142,901 normal class 

patterns are removed from the training set of stage 1. This 

leaves only the attack class instances in the training set for 

stage 2. Table 10 presents the number of instances available in 

training and testing data subsets for stage 2. 

 

Table 10. Instance counts for stage 2 

 
 Class Label  

 1 2 3 4 5 6 7 Total 

Training 5222 8743 5361 13550 3232 1449 2581 40138 

Testing 2531 4292 2539 6862 1666 727 1293 19910 

 

The batch size used for stage 2 classification is 100 as the 

number of instances decreased in comparison to stage 1. 

Random Forest at Stage 2 classifies with 93.79% accuracy 

where 18,674 test instances are correctly classified and 1,236 

are incorrectly classified. The weighted FNR is 6.2% for stage 

2. From the confusion matrix in Table 11 we see that the model 

struggles distinguishing mainly between attack classes 1 and 

2. There are 1161 incorrectly classified instances between 

attack classes 1 and 2 which amounts to approximately 94% 

of incorrectly classified instances. NMRI and CMRI, being 

both response injection attacks, deal with mainly the pressure 

measurement features which have overlapping values for both 

attack classes 1 and 2. For example, both attacks have same 

pressure values in the range of 2 to 10 kPa. That is the most 

likely reason why the classifier struggles to distinguish 

between them. This finding also indicates the need to 

determine and formulate new features which would be 

discriminatory between attack classes 1 and 2. 

Performance metric values for the stage 2 classifier are 

presented in Table 12. The accuracy is 93.79% for the 

classifier. Lower values for all the metrics for classes 1 and 2 

reinforce the findings drawn from the confusion matrix that 

the design needs to be enhanced to be able to better distinguish 

between attack classes 1 and 2. 

 

Table 11. Stage 2 confusion matrix  

 
Classified as → 1 2 3 4 5 6 7 

1 1881 650 0 0 0 0 0 

2 511 3781 0 0 0 0 0 

3 0 0 2522 15 0 2 0 

4 0 0 22 6835 0 5 0 

5 0 0 0 0 1666 0 0 

6 0 0 6 15 0 706 0 

7 0 0 0 0 10 0 1283 

In stage 3, seven classifiers are used. Training and testing 

datasets of stage 2 are now divided into 7 separate training and 

testing subsets. Each of the 7 training and testing data subset 

pairs have associated subclass labels, which range from 1 to 

35, belonging to corresponding stage 2 class labels. Table 13 

presents the number of instances available in both training and 

testing data subsets for stage 3 classifiers. 

 

Table 12. Stage 2 performance (accuracy = 93.79%) 

 
Class TP Rate FP Rate TN Rate FN Rate Precision Recall 

1 0.743 0.029 0.971 0.257 0.743 0.764 

2 0.881 0.042 0.958 0.190 0.853 0.881 

3 0.993 0.002 0.998 0.007 0.989 0.993 

4 0.996 0.002 0.998 0.004 0.996 0.996 

5 1.000 0.001 0.999 0.000 0.994 1.000 

6 0.971 0.000 1.000 0.029 0.990 0.971 

7 0.992 0.000 1.000 0.008 1.000 0.992 

Weighted 0.938 0.014 0.986 0.062 0.937 0.938 

 

In stage 3, the batch size is 10 for the Random Forest 

classifier as the test data subset size is further reduced 

following the processing as a result of classification during 

stage 2. Since the attack class 6 (DoS) has only 1 specified 

subclass (18) in the dataset, it was not necessary to build a 

classifier for it. Tables 14 through 19 present the confusion 

matrices for all 6 other subclass classifiers. 

 

Table 13. Instance counts for stage 3 

 
Stage 2 

Label 

Stage 3 

Label 

Training 

Count 

Testing 

Count 

4 

1 1221 571 

2 1015 445 

3 1126 574 

4 1277 655 

5 931 485 

6 1326 700 

7 997 515 

8 1186 612 

9 936 460 

10 955 519 

11 1206 628 

12 1374 698 

3 

13 1077 517 

14 1158 518 

15 1148 510 

16 1115 543 

17 963 451 

6 18 1449 727 

5 19 1089 545 

7 20 474 192 

5 
21 1134 588 

22 1009 533 

7 
23 1355 693 

24 752 408 

2 

25 995 477 

26 1237 571 

27 1389 690 

28 1233 625 

1 

29 1276 580 

30 1414 706 

31 1268 638 

32 1264 607 

2 

33 1071 533 

34 1327 683 

35 1491 713 
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For class label 1, the confusion matrix is presented in Table 

14: the classifier struggles to distinguish between attack 

subclasses 31 and 32. Attack subclass 31 is dependent on the 

random pressure measurements sent to the device and attack 

subclass 32 is dependent on the negative pressure readings sent 

to the device. The classifier fails to detect these two attacks 

whenever the random pressure sent to the device is also 

negative and detects 31 as 32 or 32 as 31. Additionally, 

subclass 29 also has relatively poor detection rates as it is 

misclassified as subclass 31 or 32 while a good number of 

patterns belonging to attack subclasses 31 or 32 are also 

classified as 29. The classifier for attack class 1 achieves an 

accuracy rate of only 82.30%. The FNR is 17.7%, which is 

very high compared to other classifiers for the same metric. 

Performance of classifier for attack class 2, presented in Table 

15, is the second worst with 87.79% accuracy and 524 

incorrectly classified instances. All other classifiers performed 

at a much higher level, specifically 99% or better as shown in 

Tables 16 through 20. 

 

Table 14. Stage 3 class label 1 confusion matrix 

 
Classified as → 29 30 31 32 

29 400 7 86 87 

30 0 706 0 0 

31 52 0 527 59 

32 74 0 83 450 

 

Table 15. Stage 3 class label 2 confusion matrix 

 
Classified as → 29 30 31 32 33 34 35 

25 368 41 3 42 2 4 17 

26 37 479 0 45 0 4 6 

27 2 0 671 1 2 0 14 

28 35 74 3 423 51 13 26 

33 0 0 7 6 505 0 15 

34 0 0 7 2 0 647 27 

35 1 0 7 3 10 17 675 

 

Table 16. Stage 3 class label 3 confusion matrix  

 
Classified as → 13 14 15 16 17 

13 513 1 1 0 2 

14 0 516 1 0 1 

15 1 1 506 1 1 

16 0 1 1 540 1 

17 0 2 1 0 448 

 

4.2 Comparison with studies reported in literature 

 

Table 17. Stage 3 class label 4 confusion matrix  

 
Classified as 

 1 2 3 4 5 6 7 8 9 10 11 12 

1 569 1 0 0 0 0 0 0 1 0 0 0 

2 1 431 0 0 0 6 0 0 1 6 0 0 

3 0 0 573 1 0 0 0 0 0 0 0 0 

4 0 0 0 655 0 0 0 0 0 0 0 0 

5 0 0 0 0 481 2 0 1 0 0 0 1 

6 1 2 0 0 0 692 0 0 0 5 0 0 

7 1 0 0 1 0 0 512 0 1 0 0 0 

8 0 0 0 0 2 0 0 609 0 1 0 0 

9 0 0 0 1 0 0 0 0 458 1 0 0 

10 0 1 0 0 0 0 1 0 2 515 0 0 

11 0 1 1 2 0 0 0 0 0 0 624 0 

12 0 0 0 0 0 1 0 1 0 0 0 696 

 

Numerous studies using the same gas pipeline dataset were 

reported in the literature: several of them only reported the 

binary classification results [22-27] while others considered 

the classification problem for seven attack classes as presented 

in Table 21 [14-16, 19-21]. Many appear to employ at least 

one aspect of data preprocessing, classifier design and testing 

that could render the comparison with the design proposed in 

this study not very meaningful or even valid. Nevertheless, for 

the sake of establishing somewhat meaningful context for the 

performance of the proposed design, we briefly discuss each 

one next. For a comparison with the other studies in the 

literature on the same dataset, it is then necessary to calculate 

the combined performance of stages 1 and 2 for the design 

proposed in this study. The accuracy of combined stages 1 and 

2 is 0.9379×0.9806= 92.06%. Precision and recall rates are 

0.937×0.982=0.920 and 0.938×0.982=0.921, respectively.  

 

Table 18. Stage 3 class label 5 confusion matrix  

 
Classified as → 19 21 22 

19 544 1 0 

21 0 588 0 

22 0 0 533 

 

Table 19. Stage 3 class label 7 confusion matrix  

 
Classified as → 20 23 24 

20 187 0 5 

23 0 693 0 

22 2 0 406 

 

Table 20. Stage 3 performance 

 
Classifier Accuracy TPR FPR TNR FNR Precision Recall 

1 82.30% 0.823 0.057 0.943 0.177 0.822 0.823 

2 87.79% 0.878 0.020 0.980 0.202 0.876 0.878 

3 99.37% 0.994 0.002 0.998 0.006 0.994 0.994 

4 99.32% 0.993 0.001 0.999 0.007 0.993 0.993 

5 99.94% 0.999 0.000 1.000 0.001 0.999 0.999 

6 100.00% 1.000 0.000 1.000 0.000 1.000 1.000 

7 99.47% 0.995 0.002 0.998 0.005 0.995 0.995 

 

Demertzis et al. [16] and Nazir et al. [21] proposed one-

class anomaly detection approach where the former as also 

reported subsampling the dataset. Perez et al. [14] reports 

better performance compared with that of the current study, 

and yet their approach employed 80-20% ratio for splitting the 

dataset into training and testing subsets. Results reported in the 

studies [15, 19] suggest poor performance across all the 

metrics considered. 

 

Table 21. Performance comparison of 2-stage classifier with 

studies in literature 

 
Classifier Accuracy Precision Recall 

This Study 92.06% 0.920 0.921 

Random Forest [14] 99.41% 0.994 0.994 

K-Means [15] 56.80% 0.832 0.573 

GMM [15] 45.16% 0.731 0.442 

OCC-eSNN [16] 98.82% 0.988 0.988 

OCC-SVM [16] 97.98% 0.980 0.980 

C4.5/J48 [19] 76.57% 0.780 0.760 

Ensemble [20] 99.62% 0.996 0.996 

 

The only other cited study which attempted to address the 

classification problem for the case of 35 attack types through 
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a 3-stage design reported precision, recall and f-measure 

values of 0.586, 0.434, and 0.445, respectively [24]. 

Comparing these performance metric values with those in 

Table 20 shows that the 3-stage design proposed in our study 

performed very well. 

 

 

5. CONCLUSIONS 

 

In this study, we proposed a three-stage classifier for 

detecting and identifying known intrusions for a gas pipeline-

based SCADA network. The dataset, which was developed 

using an academic laboratory setup at the Mississippi State 

University, entails 3 attack groups, 7 attack classes and 35 

attack subclasses or types. Random Forest classifier was used 

for all stages. Simulation results showed that 24 out of 35 

attack subclasses or types, which belonged to attack classes 3, 

4, 5, 6, and 7, were detected and identified with relatively high 

accuracy while the performance for the remaining 11 attack 

subclasses, which were associated with attack classes 1 and 2, 

was not at par as it lagged by a considerable margin. Given 

that the studies in literature which attempt to detect and 

identify at the level of tens of attack subclasses or types are 

scarce at best, the proposed and novel three-stage classifier 

model in this study is promising for its overall performance to 

address those types of problems. 
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