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 Recent studies of retaining walls include experimental studies, numerical analysis and 

analytical models. Although active earth pressure against retaining structures has 

received much attention, the evaluation of active earth pressure of backfill when loaded 

by a strip foundation, has been slightly studied. This paper studies the effect of a strip 

load on the active pressure force and the distribution of the horizontal stresses on a rigid 

wall, using a finite element limit analysis. The strip loading is located at different 

distances from the vertical face of the wall. The OptumG2 code is used to analyze the 

effect of width of strip surcharge (soil-wall), interface friction angle and soil internal 

friction angle. New interesting results are demonstrated and presented here: the 

dependency of the active earth pressure coefficient on both position and width of the strip 

load, in one hand, and the effect of the internal friction angle of the soil, the soil-wall 

interface, and the position of the strip loading on the failure mechanism, in the other 

hand. 
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1. INTRODUCTION 

 

Active earth pressure is a significant problem in 

geotechnical engineering, because it causes instability in 

structures such as retaining walls. Active earth pressure can be 

evaluated by applying the classical Coulomb's [1] and 

Rankine's [2] theories. Upper and lower bound limit analysis 

methods are also used to solve the earth pressure. Kumar and 

Chitikela [3] and Santhoshkumar and Ghosh [4] solved the 

earth pressure using the method of stress characteristics. 

Muraro et al. [5], Chowdhury [6] and Veiskarami et al. [7] 

performed finite element method to analyze the active earth 

pressure. The finite element method seems to be the most 

suitable method for studying support problems. It allows 

modeling the behavior of all the elements involved in the 

behavior of the structure (soil, wall, water, surcharge, etc.) as 

well as the different couplings between these elements. 

However, many developments are still necessary on both 

implementation of the method (whose inputs and outputs 

should be simplified) and modeling of soil behavior. 

In many earth retaining problems, it is necessary to consider 

additional earth pressures produced by surcharge strip loads 

acting on the soil surface behind the wall. The problem of 

surcharge on retaining wall is a common problem, particularly 

for supports in urban or maritime sites due to the presence of 

surrounding constructions. From a theoretical point of view, 

two methods with divergent assumptions allow to take into 

account the effect of a surcharge, elastic methods and methods 

based on limit equilibrium. Historically, Coulomb [1] was the 

first to think about the presence of a surcharge on the 

supported median which considers the equilibrium at failure 

of the system composed of the structure and the surcharge. 

One can also distinguish the specific methods which consist 

in determining the influence of the surcharge on the wall 

independently of the earth. Then, the principle of 

superposition stated by Caquot allows determining the global 

action of the earth and the surcharge on the wall, by simple 

addition of the effects [8, 9]. These methods are well suited to 

the calculation of the influence of an infinite uniform 

surcharge. In the case of other types of surcharges, it is 

necessary to make some assumptions about the distribution of 

pressures behind the wall. 

The choice of an elastic or plastic soil model is fundamental 

for modeling the transmission of the surcharge. However, 

none of the methods can claim to deal with all surcharge cases, 

nor the entire behavior of the structure, from the start of 

loading to its eventual failure. 

The modeling of the interaction between the wall and the 

foundation from the Mohr-Coulomb model did not give 

satisfactory results and the development of numerical 

modeling for the study of retaining structures can only go 

through the optimization of the programming of advanced 

constitutive laws and increased accessibility to the 

determination of their parameters [10].  

Two approximate methods for calculating the strip load-

generated lateral force have also been proposed by Blum [11]. 

The earth pressure distributions obtained with these methods 

differ significantly from each other and may lead to either very 

conservative or unsafe solutions. Jarquio [12] and Misra [13] 

provided solutions for lateral stresses on the wall due to the 

strip load based on Boussinesq’s elastic half space solution. 

Steenfelt and Hansen [14], Motta [15] and Greco [16] 

extended Coulomb approach, in which the evaluation of active 

earth force when a strip load act is obtained by limit 
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equilibrium method.  

Jarquio [12] concludes that Boussinesq’s elastic-based 

solution for lateral stresses on a completely rigid wall is a 

general solution applicable to both yielding and unyielding 

retaining wall structures. But, Steenfelt and Hansen [14] 

recommend Boussinesq’s solution only for unyielding 

structures, and that for the active state retaining walls the 

coulomb approach would be more reasonable. 

In the present study, a series of numerical computations 

using the two-dimensional (2-D) FE limit analysis code 

OptumG2 [17] is carried out in order to examine the effect of 

a partial surcharge on the active pressure force and the 

distribution of horizontal stresses on the wall; this surcharge is 

located at different positions of a horizontal profile backfill 

behind a vertical retaining wall. The approach used in this 

paper is based on upper bound theorem of limit analysis 

method and can be used to determine active lateral force due 

to simultaneous effect of both soil weight and surcharge of 

strip load. 

The results of the present analysis show that the effect of a 

strip load on the active pressure and on the active pressure 

coefficient depends on the position of the load, the width of 

the surcharge and the angle of internal friction of the soil; for 

the failure mechanism, it can be seen that the failure plane 

depends on the angle of internal friction of the soil and on the 

ratio a/H and that the angle of friction between the backfill and 

the wall δ has no influence on the plane shape of the rupture. 

The remainder of this paper is organized as follows. In 

section 2 the previous studies are summarized. In Section 3 it 

is the description of the problem. In Section 4 the numerical 

model is validated with those of the methods which are 

currently used in the determination of strip load. In Section 5 

we the obtained results are discussed and the Section 6 

concludes the work. 

 

 

2. LITERATURE REVIEW 

 

There are very few available literatures showing the 

influence of external surcharge load on retaining walls, which 

is a common practice [14, 15, 18-21]. Steenfelt and Hansen 

[14] provided complete analytical solution to demonstrate the 

effect of strip load on the design of sheet pile walls using 

Brinch Hansen’s earth pressure theory, and suggest that the 

elastic solution applies only to unyielding structures, and that 

for structures in the active state of failure a Coulomb analysis 

would be more appropriate. Motta [15] provided a closed form 

solution for retaining wall having inclined backfill with 

surcharge at different distances. Georgiadis and 

Anagnostopoulos [18] conducted the model sheet pile wall 

tests in sand to investigate the effect of surcharge strip loads 

on wall behavior. Graphical solutions, combining both elastic 

and plastic approaches, have been used to determine lateral 

earth pressure due to external surcharge load. 

Farzaneh et al [22] proposed a solution to active earth 

pressure on rigid walls caused by strip loads via the upper-

bound limit analysis method. Greco [16] calculated active 

earth thrust of backfill on a retaining wall subjected to a strip 

load using a hybrid approach. Hou and Shu [23] provided a 

trial wedge approach to lateral earth pressure on rigid walls 

using the limit equilibrium method. 

Most of the previous studies focus on the active pressure 

force and neglect the calculation of the active pressure 

coefficient, whereas in this study importance is given to the 

calculation of the active pressure coefficient and is presented 

in the form of dimensionless design charts relating the 

mechanical characteristics of the soil, strip load conditions and 

active earth pressure. 

 

 

3. PROBLEM DESCRIPTION 

 

The problem of the current study considers a rigid retaining 

wall having a height H=10 m (very high), the geometry and 

finite element mesh are shown in Figure 1.  

Dead weights were placed some distance a behind the wall 

imposing a surcharge of strip load, q, the position from the 

wall of the strip surcharge varies from a/H=0 to a/H=1 with 

0.1 increments (Figure 2). The value of strip surcharge is fixed 

at q=200 kN/m2 and b, which is the width of the strip load, is 

fixed at b/H=0.2 and b/H=0.3. 

An elastoplastic constitutive model is used to represent the 

stress–strain behavior of soil, obeying Mohr–Coulomb failure 

criteria with the associative flow rule. The elastic properties 

are young’s modulus E=35 MPa, and Poisson’s ratio ν=0.3. 

The cohesion c = 0 and the angle of internal friction φ is varied 

from 30° to 40° in 5° increments. Of the flow rule, it is 

considered only the non-associative case where the dilation 

angle ψ=0. The magnitude of soil weight is supposed equal to 

γ=20 kN/m3. A linearly elastic model is used to simulate the 

concrete retaining wall. The interface elements are used to 

model the soil–structure interaction. The parameters of 

interface have the following values: a friction angle δ=0,1°, 

φ/3 and 2φ/3. 

 

 
 

Figure 1. Geometry of a retaining wall– soil system 

 

 
 

Figure 2. Finite mesh for a retaining wall for a/H=0.3 

 

 

4. MODEL VALIDATION  

 

In order to validate the numerical modeling procedure, the 

results obtained were compared with those of the methods 

which are currently used in the determination of strip load 

generated lateral earth pressures as the conventional Coulomb 

earth pressure analysis [14, 15], the lateral earth forces due to 
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soil weight and strip load were obtained using the wedge 

equilibrium analysis. This approach shown in Figure 3 is, in 

fact, an extension of the conventional Coulomb active earth 

pressure analysis, and a method proposed by Ghanbari and 

Taheri [24]. 

 

 
 

Figure 3. Limit equilibrium method 

 

To mobilize the lateral pressure force up to rupture, in the 

boundary conditions, one leaves free displacement in the 

horizontal direction and applies a lateral force incrementally 

until rupture; Chauhan VB, Dasaka SM [25], to mobilize the 

lateral pressure behind the wall with relief shelves has to apply 

a continuous load in increments until failure, this approach 

remains valid in the case where the uniformly distributed load 

is continuous, if the load is partial this approach will be valid 

in the case of load-bearing capacity study. 

Figure 4 provides comparison between methods. In this 

Figure, ratio P⁄b.q obtained for different distances of the strip 

load from the wall (a/H) is shown. In both analyses, lateral 

earth force decreases significantly as the strip load distance 

increases. The results of the present method are higher (better) 

than those of limit equilibrium method. This improvement 

when a/H=0.4, attains 5% and 10% for q⁄γH=1and q⁄γH=2, 

respectively. 

 

 
 

Figure 4. Comparison of current method with extended 

Coulomb approach for: ϕ=35°, b/H=0.2, δ/ϕ=1/2 

 

Table 1. A comparison for lateral force induced by a linear 

load between current method values and those proposed by 

Motta [15] and Ghanbari and Taheri [24]: φ=30° γ=20 

kN/m3, δ=10°, H=10m, c=0 kPa 

 
Active earth force (kN/m) 

q(kN/m) d(m) 
Current 

Method 
Motta 

Ghanbari and 

Taheri 

20 
2 313 324 322 

4 315 319 315 

50 
2 333 347 344 

4 337 335 322 

100 
2 380 359 380 

4 378 362 335 

As it can be seen in Table 1, there is a good agreement 

between analyses. In addition, solution proposed by Ghanbari 

and Taheri [24] gives higher values when d=2 m (d= distance 

of linear load from the wall) in relation to the two other 

methods, whereas for d=4 m, current method and Motta’s 

approach present higher values compared to Ghanbariand 

Taheri’s solution. However, the maximum difference between 

present method and the two other methods is about 12%. 

 

 

5. RESULTS AND DISCUSSION 

 

This part summarizes and discusses the main results of the 

work carried out within the framework of this study. From the 

numerical simulations, we have drawn the graphs for the 

active coefficient pressure Kaq of the surcharge q, in the 

different situations corresponding to: a /H varying from 0 to 1 

with a 0.2 increment, the surcharge intensity q/γH=1, b/H=0.2 

and 0.3, the internal friction angle Φ of the sand varying from 

30° to 40° with a 5° increment and the angle of friction 

between the wall and the backfill having the two values: δ=Φ/3 

and δ=2Φ/3. 

 

5.1 Active earth pressure distribution 

 

(a) q/γH=1, b/H=0.2  

In the case where the angle Φ = 30° (Figures 5 and 6), one 

can notice the following about the curve describing the 

variation of the lateral pressure:  

-It is almost linear for the values of the ratio a/H=0, 0.2 and 

0.4.  

-From a/H=0.6 to a/H=1, it has two distinct parts: one 

increasing with a certain slope until the ratio z/H=-0.3, the 

second also increasing but with a smaller slope. 

 

 
 

Figure 5. Active pressure for: q/γH=1, b/H=0.2, Φ=30°, 

δ=Φ/3 

 

 
 

Figure 6. Active pressure for: q/γH=1, b/H=0.2, Φ=30°, 

δ=2Φ/3 
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Figure 7. Active pressure, q/γH=1, b/H=0.2, Φ=35°, δ=Φ/3 

 

 
 

Figure 8. Active pressure, q/γH=1, b/H=0.2, Φ=35°, δ=2Φ/3 

 

 
 

Figure 9. Active pressure, q/γH=1, b/H=0.2, Φ=35°, δ=Φ/3 

 

 
 

Figure 10. Active pressure, q/γH=1, b/H=0.2, Φ=35°, 

δ=2Φ/3 

 

If the angle Φ=35°, (Figures 7 and 8); from a/H=0.6, we 

distinguish two parts: one increasing until the ratio z/H=-0.2, 

and the surcharge effect becomes zero for a/H=1. Where the 

angle Φ=40° (Figures 9 and 10); from a/H=0.6, we distinguish 

two parts: one increasing until the ratio z/H=0.16, and the 

surcharge effect becomes zero from a/H=0.8. 

 

(b) q/γH=1, b/H=0.3 

For the angle Φ=30° (Figures 11 and 12), one can notice the 

following about the curve describing the variation of the lateral 

pressure:  

-It is almost linear for the values of the ratio a/H=0, 0.2, 0.4 

and 0.6.  

-For a/H=0.6 and a/H=1, it has two distinct parts: one 

increasing with a certain slope until the ratio z/H=-0.3, the 

second also increasing but with a smaller slope. In addition, 

the effect of the surcharge becomes zero from a/H=0.1. Where 

the angle Φ=35°, (Figures 13 and 14), for a/H=0.6, the curve 

is increasing until z/H=-0.2 and the effect of the surcharge 

becomes zero from a/H=0.8. 

 

 
 

Figure 11. Active pressure, q/γH=2, b/H=0.2, Φ=30°, δ=Φ/3 

 

 
 

Figure 12. Active pressure, q/γH=2, b/H=0.2, Φ=30°, 

δ=2Φ/3 

 

 
 

Figure 13. Active pressure, q/γH=2, b/H=0.2, Φ=35°, δ=Φ/3 
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Figure 14. Active pressure, q/γH=2, b/H=0.2, Φ=35°, 

δ=2Φ/3 

 

 
 

Figure 15. Active pressure, q/γH=2, b/H=0.2, Φ=40°, δ=Φ/3 

 

 
 

Figure 16. Active pressure, q/γH=2, b/H=0.2, Φ=40°, 

δ=2Φ/3 

 

In the case where the angle Φ=40°, (Figures 15 and 16), we 

notice that the effect of the surcharge becomes zero from 

a/H=0.6. 

 

5.2 Active earth coefficient  

 

To determine the active coefficient pressure Kaq of the 

surcharge, we apply the superposition method cited in the limit 

equilibrium method or coulomb analysis, this method has been 

recognized to be reliable for the case of the active state; 

derived solutions do not differ significantly with those derived 

from an upper-bound-limit analysis or from the method of 

characteristics. Furthermore, the Coulomb method allows 

solving earth-pressure problems with various boundary 

conditions so it seems appropriate to apply it in this note. 

To determine the lateral earth pressure Ph produced by a 

uniform surcharge load, the active earth pressure σa (due to 

the soil weight) is subtracted from the total active earth 

pressure σt (due to soil and surcharge). This latter is derived 

from a wedge equilibrium analysis (Figure 17) which provides 

the variation of the maximum lateral force Ph with depth z. 

Numerical differentiation of Ph with depth gives the total 

lateral pressure σT which is then used to calculate σh. 

 

 
 

Figure 17. Coulomb analysis 

 

σ=σa(earth)+σq(surcharge)=σa(earth)+q.Kaq 

Kaq=
σ−σa(earth)

q
 

 

Pa(earth) is calculated in the case q=0. 

 

(a) q/γH=1, b/H=0.2 

One can notice (see Figures 18 and 19) that the value of the 

active pressure coefficient Kaq increases at the start up to a 

limit value, this value varies with the variation of the a/H ratio, 

then stabilizes, and its value is maximum in the case where the 

position of the surcharge a/H=0, for the angle of internal 

friction Φ=30°, Kaq=0.26 if δ=Φ/3 and Kaq=0.51 for δ=2Φ/3. 

From where the ratio a/H=0.8, one notice that there are two 

parts: an increasing linear part up to a limit value of the less 

important z/H ratio, and a second decreasing linear phase, and 

the maximum value Kaq=0.1 if δ=Φ/3 and Kaq=0.18 in the case 

δ=2Φ/3. 

In the case where the angle Φ=35°, we notice the same 

variation of the active coefficient pressure Kaq as that of the 

angle Φ=30°, and the linear part becomes less important. From 

where the ratio a/H=0.6 we also notice that there are two parts, 

a linear part increasing up to a limit value of the ratio z/H less 

important, and a second decreasing linear phase, and the 

maximum value Kaq=0.08 if δ=Φ/3 and Kaq=0.11 for δ=2Φ/3, 

and from a/H=1 the value of Kaq takes the value Kaq=0, (see 

Figures 20 and 21). 

 

 
 

Figure 18. Pressure coefficient Kaq, q/γH=1, b/H=0.2, 

Φ=30°, δ=Φ/3 
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Figure 19. Pressure coefficient Kaq, q/γH=1, b/H=0.2, 

Φ=30°, δ=2Φ/3 

 

 
 

Figure 20. Pressure coefficient Kaq, q/γH=1, b/H=0.2, 

Φ=35°, δ=Φ/3 

 

 
 

Figure 21. Pressure coefficient Kaq, q/γH=1, b/H=0.2, 

Φ=35°, δ=2Φ/3 

 

 
 

Figure 22. Pressure coefficient Kaq, q/γH=1, b/H=0.2, 

Φ=40°, δ=Φ/3 

 
 

Figure 23. Pressure coefficient Kaq, q/γH=1, b/H=0.2, 

Φ=40°, δ=2Φ/3 

 

In the case where the angle Φ=40°, (see Figures 22 and 23), 

from where the ratio a/H=0.6, z/H is limited to z/H=-0.17, and 

the maximum value of Kaq does not exceed Kaq=0.06 in the 

case where δ=Φ/3 and Kaq=0.13 in the case δ=2Φ/3, and from 

a/H=0.8 the value of Kaq takes the value Kaq=0. 

 

(b) q/γH=1, b/H=0.3 

In the case where the angle Φ=30° (Figures 24 and 25), one 

notices that the variation of the active coefficient pressure Kaq 

is linear up to a certain value, this value varies with the ratio 

a/H, then becomes constant, and the maximum value does not 

exceed Kaq=0.35 in the case where the position of the 

surcharge a/H=0 and δ=Φ/3 and Kaq=0.70 in the case where 

δ=2Φ/3, and one notices that the linear part becomes less 

important and the z/H ratio is limited to z/H=-0.3 from where 

the a/H ratio=0.8, and the maximum value of Kaq does not 

exceed Kaq=0.1 in the case where δ=Φ/3 and Kaq=0.17 in the 

case δ=2Φ/3 and from a/H=1, the value of Kaq takes the value 

Kaq=0. 

 

 
 

Figure 24. Pressure coefficient Kaq, q/γH=1, b/H=0.3, 

Φ=30°, δ= Φ/3 

 

 
 

Figure 25. Pressure coefficient Kaq, q/γH=1, b/H=0.3, 

Φ=30°, δ=2Φ/3 
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Figure 26. Pressure coefficient Kaq, q/γH=1, b/H=0.3, 

Φ=35°, δ=Φ/3 

 

 
 

Figure 27. Pressure coefficient Kaq, q/γH=1, b/H=0.3, 

Φ=35°, δ=2Φ/3 

 

 
 

Figure 28. Pressure coefficient Kaq, q/γH=1, b/H=0.3, 

Φ=40°, δ=Φ/3 

 

 
 

Figure 29. Pressure coefficient Kaq, q/γH=1, b/H=0.3, 

Φ=40°, δ=2Φ/3 

 

In the case where the angle Φ=35° (Figures 26 and 27), one 

notices that the variation of active coefficient pressure Kaq is 

linear up to a certain value, this value varies with the ratio a/H, 

then becomes constant, and the maximum value does not 

exceed Kaq=0.35 in the case where the position of the 

surcharge a/H=0 and δ=Φ/3 and Kaq=0.70 in the case where 

δ=2Φ/3, and one notices that the linear part becomes less 

important and the z/H ratio is limited to z/H=-0.2 from where 

the a/H ratio=0.6, and the Max value of Kaq does not exceed 

Kaq=0.08 in the case where, δ=Φ/3 and Kaq=0.1 in the case 

δ=2Φ/3 and from a/H=0.8 the value of Kaq takes the value 

Kaq=0. 

In the case where the angle Φ=40° (Figures 28 and 29), one 

notices the same variation of active coefficient pressure Kaq as 

that of the other cases, and one notices that the linear part 

becomes less important and the report z/H is limited to z/H=-

0.17 from where the ratio a/H=0.6, and the maximum value of 

Kaq does not exceed Kaq=0.06 in the case where δ=Φ/3 and 

from a/H=0.6 the value of Kaq takes the value Kaq=0, and 

Kaq=0.13 in the case δ=2Φ/3, and from a/H=0.8 the value of 

Kaq takes the value Kaq=0. 

 

5.3 Failure mechanism 

 

(a) q/γH=1, b/H=0.2 

A comparison of the shape of the potential failure planes, 

indicated by the concentrations of the plastic shear multiplier, 

shows that: 

For the angle Φ=30° (Figure 30), the failure plane tilt varies 

with the position of the surcharge a / H and the angle of friction 

δ has no influence on the shape of the fracture plane. 

For the angle Φ=35°, the inclination of the failure plane 

varies with the position of the surcharge a / H, up to the value 

a/H=0.8 and from a/H=0.9, the surcharge has no influence on 

the failure plane and this latter merges with that of the case 

without surcharge.  

 

 
 

Figure 30. Collapse mechanism for retaining wall (upper 

bound) with intensity of plastic multiplier=30° 

 

For the angle Φ=40°, the inclination of the fracture plane 

varies with the position of the surcharge a/H, up to the value 

a/H=0.6 and from a/H=0.7, the surcharge has no influence on 

the failure plane and this latter merges with that of the case 

without surcharge. 

 

(b) q/γH=1, b/H=0.3 

A comparison of the shape of the potential failure planes, 
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indicated by the concentrations of the plastic shear multiplier, 

shows that:  

For the angle Φ=30° (Figure 31), the failure plane tilt varies 

with the position of the surcharge a/H up to the value a/H=0.9 

and from a/H=1, the surcharge has no influence on the failure 

plane and this latter merges with that of the case without 

surcharge. 

For the angle Φ=35°, the inclination of the failure plane 

varies with the position of the surcharge a/H up to the value 

a/H=0.7 and from a/H=0.8, the surcharge has no influence on 

the failure plane and this latter merges with that of the case 

without surcharge. 

For the angle Φ=40°, the inclination of the failure plane 

varies with the position of the surcharge a/H, up to the value 

a/H=0.5 and from a/H=0.6, the surcharge has no influence on 

the failure plane and this latter merges with that of the case 

without surcharge. 

 

 
 

Figure 31. Collapse mechanism for retaining wall (upper 

bound) with intensity of plastic multiplier Φ=30° 

 

 

6. CONCLUSIONS 

 

A series of numerical calculations using the two-

dimensional (2-D) EF limit analysis code OptumG2 [17] are 

performed in order to examine the effect of partial surcharge 

on the behavior of a retaining wall. 

This study is based on the upper limit approach of the limit 

analysis for the evaluation of the earth's active pressure and 

the Kaq thrust coefficient when a uniformly distributed partial 

surcharge acts on the backfill. 

The analysis evaluates the active earth lateral pressure with 

various uniformly distributed partial surcharge conditions and 

soil properties. 

The comparison of the present analysis with the 

conventional Coulomb method proposed by Steenfelt and 

Hansen [14], Motta [15] and Greco [16] as well as with the 

method presented by Ghanbari and Taheri [24], indicates good 

compatibility. 

The results are presented as dimensionless graphs. The main 

conclusions based on these results can be outlined as follows: 

The effect of the surcharge on the lateral pressure and on the 

active thrust coefficient depends on the position of the load, 

the width of the surcharge and the internal friction angle of the 

soil; for the rupture mechanism, one notes that the plane of 

failure depends on the angle of internal friction of the soil of 

the ratio a/H and that the angle of friction between the Backfill 

and the wall δ has no influence on the shape of the plane of 

breaking up. 

In the case where the load intensity q/γH=1 and the ratio of 

the width of the load b to the height H of the retaining wall 

b/H=0.2, if the internal friction angle of the soil Φ=30° we note 

that the variation of the lateral pressure is almost linear for the 

values of the ratio a/H=0, 0.2 and 0.4; from a/H=0.6, we 

distinguish two parts, one increasing until the ratio z/H=-0.3 

then changes slope with a smaller variation, and the 

importance of the pressure decreases with the increase in the 

a/H ratio, and the lateral pressure increases with the increase 

in the friction angle δ, for the angle Φ=35°, the effect of the 

surcharge becomes zero when a/H=1, if the angle Φ=40°, the 

effect of the surcharge becomes zero from a/H=0.8.  

Regarding the effect of the surcharge on the active thrust 

coefficient, we notice that the value of the Kaq thrust 

coefficient increases at the beginning up to a limit value, this 

value varies with the variation of the a/H ratio, then stabilizes, 

and its value is maximum in the case where the position of the 

surcharge a/H=0, from where the ratio a/H=1 for Φ=30° and 

a/H=0.8. For Φ=35°, the thrust coefficient takes the value 

Kaq=0. 

A comparison of the shape of the potential failure planes, 

indicated by the concentrations of the plastic shear multiplier, 

for the angle Φ=30°, the failure plane tilt varies with the 

position of the surcharge a/H and the surcharge has no 

influence on the shape of the fracture plane.  

A comparison of the shape of the potential failure planes, 

indicated by the concentrations of the plastic shear multiplier, 

shows that:  

For the angle Φ=30°, the failure plane tilt varies with the 

position of the surcharge a/H and the angle of friction δ has no 

influence on the failure plane. 

In the case of the ratio b/H=0.3, for the angle Φ=30° and 

from a/H=0.8, we distinguish two parts: one increasing until 

the ratio z/H=-0.28 then changes slope with a smaller variation, 

and the effect of the surcharge becomes zero from a/H=1, if 

the angle Φ=35°, the effect of the surcharge becomes zero 

from a/H=0.8 and if the angle Φ=40°, the effect of the 

surcharge becomes zero from a/H=0.6. For the effect of the 

surcharge on the active pressure coefficient, from where the 

ratio a/H=1 for Φ=30° and a/H=0.8 for Φ=35° and Φ=40° the 

value of Kaq remains equal to zero. 

Finally, we note that the effect of the surcharge decreases 

with the increase in the width of the surcharge and the increase 

in the friction angle of the backfill. 
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