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For the time being, the steel-concrete composite floors are commonly used in 

residential, office, and commercial buildings. A traditional composite floor is often 

constructed with hot-rolled steel. The utilization of hot-rolled steel sections in small and 

medium-sized buildings is not cost-efficient. Because of the material, cutting process, 

and labor costs. In addition, the common usage of light-gage cold-formed members, 

which are often utilized in a non-composite manner, has led to the employment of bigger 

section sizes. Consequently, the replacement of hot-rolled steel sections with light-gage 

steel ones to act compositely is a cost-efficient solution. Therefore, this study uses FE 

modeling with ABAQUS software to investigate the structural behavior of the partially 

composite light-gage tube beam with a lightweight concrete deck slab. Results of the 

analysis show that changing the concrete type has a minor influence on strength and 

stiffness. Changing the concrete type from lightweight to normal weight increases the 

strength by 3.5%, and increasing the yield stress has a major contribution to the strength. 

Increasing the yield stress of the beam from 355 MPa to 700 MPa increases the strength 

by 35.8%. 
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1. INTRODUCTION

A composite beam is composed of a steel beam and 

reinforced concrete. Composite beams provide greater 

economy and increase functionality. In order to have concrete 

slab and steel beam work together to resist bending under 

gravity loads, the slippage between them should be prevented 

by shear connectors [1]. 

Initially, these composite constructions were built using 

solid concrete slabs and steel beams. For casting solid concrete 

slabs, the use of temporary formwork is necessary, which is a 

time-consuming method; nevertheless, the invention of metal 

deck has eliminated the need for this formwork because the 

deck is set down on the steel beam before casting and linked 

to the beam using shear connectors to accomplish composite 

action [2]. 

A newer type of composite system was inserted into the 

building construction industry in the late twentieth century 

using light-gage cold-formed steel sections. Installation of 

light-gage steel floor beams does not necessitate the use of 

specialized crafts. Floor systems constructed on the 

framework of light-gage steel floor beams can be produced 

fast and accurately. However, the design of light-gage steel as 

non-composite members has necessitated the use of greater 

section sizes, demanding more research into their composite 

behavior [3]. This innovative composite system replaces the 

hot-rolled steel beam with a cold-formed steel beam to 

produce a lighter structure. This form of the composite system 

has been utilized in light industrial floor systems, and the low-

rise residential building industries [4]. 

The design of shear connections is an important factor in 

composite beam design, the “Full” connection between the 

steel beam and the concrete slab means that there is no slide at 

the contact between the two parts. When a composite beam's 

shear connection is full, the bending strength of the beam is 

not increased by adding additional shear connectors [5]. 

In contrast, when fewer shear connectors are utilized than 

are required for a full shear connection, a steel beam with a 

concrete connection is referred to as "partial." The phrase 

"partial connection" does not relate to insufficient shear 

connections, but instead to a connection that produces an 

amount of slip that is non-negligible at the steel beam-concrete 

slab interface, affecting both the deformations and strength of 

the composite beam [5]. 

As full interaction is an ideal situation, because of the 

assumption of ideal rigid plastic assumption does not 

accomplish since all shear connectors are flexible to a certain 

level, full interaction is seldom accomplished in practice. 

Hence, partial interaction commonly appears in actual 

structures [6], and due to the limited space for the shear 

connectors when using a metal deck that is governs by its rib 

spacing partial interaction is used in this type of construction. 

Since full-scale composite beam tests remain costly and 

time-consuming, FE modeling can be utilized to determine the 

ultimate load and the nonlinear response of such beams. Based 

on the validation procedure that has been published by the 

authors [7], which includes the calibrations parameters related 

to the partially composite cold-formed beam with lightweight 

concrete slab. This study aims to investigate the static behavior 

of partially composite light-gage cold-formed beam with 

lightweight concrete deck slab where in general this behavior 

is difficult to be estimated by the analytical methods. 
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2. COMPOSITE BEAM DETAILS 

 

The proposed partially composite light-gage beam is 

presented in Figure 1. The composite beam is 8 m long, and 

the slab width is 1.5 m. The slab has a 150 mm thickness with 

a metal deck of 1 mm thickness, a rib height of 75 mm, and a 

rib spacing of 250 mm. The light-gage cold-formed beam that 

has been used has a rectangular tube section with dimensions 

of 260×180×5, and an offset yield stress of 355 MPa. 

Lightweight concrete (LWC) with a compressive strength of 

22.6 MPa and a density of 1700 kg/m3 has been used. 

 

 
 

Figure 1. The investigated floor beam 

 

A bending span of 1.25 m and a shear span of 3.375 m have 

been assumed. A headed stud of 12 mm in diameter and 115 

mm in height has been used. Transverse reinforcement of 10 

mm in diameter and 250 mm in spacing has been included at 

the top of the slab, as well as one bar at the bottom of each rib. 

 

 

3. FINITE ELEMENT MODEL 

 

3.1 Element type, surface contact, and boundary condition 

 

A three-dimensional hexahedral element has been utilized 

to mimic the concrete and the headed stud connectors, While 

the shell element has been used for the light-gage steel beam 

and the metal deck. Also, a truss element has been used for the 

reinforcement. 
 

 
 

Figure 2. Finite element model 

 

For the contact between the concrete and the deck, as well 

as between the deck and the cold-formed beam surface-to-

surface contact, has been imposed with friction constants equal 

to 0.5 and 0.01 respectively. An embedded technique has been 

utilized to link the shear stud and the concrete. Tie constraint 

has been used to link the shear stud with the cold-formed steel 

beam. 

As shown in Figure 2, the finite element model for the 

proposed beam has been created by assuming symmetry at 

beam mid-span to simulate one-half of the composite beam in 

order to reduce the run time of the model.  

Displacement controlled technique has been used to apply 

the load on the loading plates with enough time of loading to 

ensure the quasi-static condition using the dynamic explicit 

solver in ABAQUS. A comparison of the kinetic energy (KE) 

to the external work (EW) is presented in Figure 3. The figure 

shows that the kinetic energy is negligible, ensuring that a 

quasi-static condition is maintained. 

 

 
 

Figure 3. Energy comparing 

 

3.2 Material constitutive models 

 

3.2.1 Concrete 

The concrete has been assumed to be within the elastic 

range for the compression behavior up to stress of 0.4𝑓𝑐′ and 

tension behavior prior to cracking. Young’s modulus, 𝐸𝑐, has 

been calculated according to ACI 318 relation. Poisson ratio, 

ν, of 0.2 has been used. After these stress levels, material 

constitutive models need to be defined. 

There has been a great effort in recent years to create 

analytical models that correctly anticipate the plain concrete 

response to variable loading. Recently suggested models make 

use of general solid mechanics theories such as plasticity 

theory, and damage theory [8]. 

An initial yield surface, a hardening rule, and a flow rule 

were the three key assumptions that were utilized in the 

formulation of the theory of plasticity. Because the plasticity 

hypothesis was established for metals, adopting it to frictional 

materials such as concrete necessitates significant changes to 

these three assumptions [9]. 

The failure surface of the concrete is represented in Figure 

4a, which reflects the effect of the hydrostatic pressure. The 

deviatoric plane that perpendicular to the hydrostatic axis is 

presented in Figure 4b. The angle of similarity, θ is measured 

by projecting any axis onto the deviatoric plane and measuring 

it in both directions from 0 to 60 degrees. Tensile meridian is 

the meridian that corresponds to 𝜃 equals zero, and it is 

marked red. The compressive meridian is the meridian that 

corresponds to 𝜃 equals 60, and it is marked blue [8, 10]. 

Many models were suggested to represent the failure 

surface using plasticity theory, with models ranging from two 

parameters to the most complicated one with four parameters. 

The concrete damage plasticity model (CDP) was incorporated 

in ABAQUS. The CDP model has been used in a large number 

of FE analyses for concrete structures because of its fair 

performance and ease of use inside such a popular software 

program. The following describes the components of the CDP 

constitutive model. 
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Figure 4. Failure surface of concrete [10] 

 

The CDP model utilizes the yield criterion established by 

Lubliner et al. [11] with the adjustment suggested by Lee and 

Fenves [12] considering the differences in strength evolution 

under compression and tension conditions. 

The yield criterion proposed by Lubliner et al. [11] demands 

that the cohesion be stated clearly in the yield criterion as in 

Eq. (1) and relating the loss of strength to the vanishing of 

cohesion. 

 

𝐹(𝜎) = c (1) 

 

where: 

𝐹(𝜎)  is a first-degree homogeneous function of stress 

components.  

c is the cohesion. 

The yield criterion is expressed by Eq. (2), and it is 

represented in the plane space as in Figure 5:  

 

 
 

Figure 5. The yield criterion in plane stress space [12] 

 

𝐹(𝜎) =
1

1−𝛼
(√3𝐽2 + 𝛼𝐼1 + 𝛽〈�̂�𝑚𝑎𝑥〉 − 𝛾〈−�̂�𝑚𝑎𝑥〉 =

𝑐  
(2) 

 

where: 

𝛼 ,  𝛽  and 𝛾  are dimensionless constant, �̂�𝑚𝑎𝑥  is 

algebraically maximum principal stress. 

The yield criteria’s algebraic formulation is notable in that 

they introduce the maximum principal stress term, 𝛽〈�̂�𝑚𝑎𝑥〉 or 

𝛾〈−�̂�𝑚𝑎𝑥〉, its coefficient, 𝛽 or 𝛾, is affected by the sign of 

�̂�𝑚𝑎𝑥  [13]. 

For stress conditions where tensile stress components are 

existing, i.e., �̂�𝑚𝑎𝑥 > 0, Eq. (2) becomes [13]: 

 
1

1−𝛼
(√3𝐽2 + 𝛼𝐼1 + 𝛽〈�̂�𝑚𝑎𝑥〉) = 𝑐0  (3) 

 

For biaxial compression, i.e., �̂�𝑚𝑎𝑥 = 0, Eq. (2) becomes: 

 
1

1−𝛼
(√3𝐽2 + 𝛼𝐼1) = 𝑐0  (4) 

 

For triaxial compression, i.e., �̂�𝑚𝑎𝑥 < 0, Eq. (2) becomes: 

 
1

1−𝛼
(√3𝐽2 + 𝛼𝐼1 − 𝛾〈−�̂�𝑚𝑎𝑥〉) = 𝑐0  (5) 

 

The parameter 𝛼  can be calculated using Eq. (4) with 

assuming 𝑐𝑜  is equal to the initial uniaxial compressive, 𝑓𝑐𝑦 

[12], and the equibiaxial compressive strength 𝑓𝑏𝑦 state as: 

 

𝛼 =
(𝑓𝑏𝑦  𝑓𝑐𝑦⁄ )−1

2(𝑓𝑏𝑦  𝑓𝑐𝑦⁄ )−1
  (6) 

 

Between 1.10 and 1.16, experimental values of 𝑓𝑏𝑦  𝑓𝑐𝑦⁄  are 

obtained, giving values of 𝛼 between 0.09 and 0.12. ABAQUS 

default value for 𝑓𝑏𝑦/𝑓𝑐𝑦 is 1.16. 

The parameter 𝛽 is calculated using Eq. (3) with 𝑓𝑐𝑦 and the 

uniaxial tensile stress state, 𝑓𝑡𝑦 as: 

 

𝛽 =
𝑓𝑐𝑦

𝑓𝑡𝑦
(𝛼 − 1) − (1 + 𝛼)  (7) 

 

Finally, the third parameter 𝛾 only appears under states of 

triaxial compression, corresponding a stress state 

where �̂�𝑚𝑎𝑥 < 0. For the tensile meridians (T.M) (�̂�1 > �̂�2 =
�̂�3):  
 

�̂�𝑚𝑎𝑥 =
1

3
(𝐼1 + 2√3𝐽2)  (8) 

 

While for the compressive meridians (C.M) (�̂�1 = �̂�2 > �̂�3): 
 

�̂�𝑚𝑎𝑥 =
1

3
(𝐼1 + √3𝐽2)  (9) 

 

With �̂�𝑚𝑎𝑥 < 0 the equations for the respective meridians 

are therefore [11]: 

 

(2𝛾 + 3)√3𝐽2 + (𝛾 + 3𝛼)𝐼1 = (1 − 𝛼)𝑓𝑐𝑦 T.M.  

(𝛾 + 3)√3𝐽2 + (𝛾 + 3𝛼)𝐼1 = (1 − 𝛼)𝑓𝑐𝑦 C.M.  
(10) 
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Hence, leading to the definition of the following parameter 

[11]: 

 

𝐾𝑐 =
(√𝐽2)𝑇.𝑀.

(√𝐽2)𝐶.𝑀.
 at given I1  (11) 

 

Then, 

 

𝐾𝑐 =
𝛾+3

2𝛾+3
  (12) 

 

Thus, Kc is a dimensionless shape parameter, utilized to 

determine the form of the failure surface inside the deviatoric 

plane of Figure 4b. when Kc equals 1.0, the failure surface 

inside the deviatoric plane becomes a circle, which is 

consistent with the traditional Drucker-Prager hypothesis. 

According to Lubliner et al. [11] this value should range 

between 0.64 to 0.8 and the default value for ABAQUS is 2/3. 

In the original model [11], isotropic hardening was used 

which gives good results in the monotonic loading but is not 

suitable for cyclic behavior of concrete. Because under the 

cyclic loading, the evolution of one strength (compression or 

tension) does not influence the evolution of the other strength. 

As a result, the changes suggested by Lee and Fenves [12] 

incorporated a two variable hardening rule; one for controlling 

compression, 𝜀�̃�
𝑝𝑙

 and the other for controlling tension, 𝜀�̃�
𝑝𝑙

. A 

yield criterion with two variables is obtained by defining (β), 

which is constant in Lubliner et al. yield criterion [11]. 

 

𝛽 = 𝛽(𝜀̃𝑝𝑙) (13) 

 

𝛽 =
𝑐𝑐(�̃�𝑐

𝑝𝑙
)

𝑐𝑡(�̃�𝑡
𝑝𝑙
)
(1 − 𝛼) − (1 + 𝛼)  (14) 

 

The nonlinear behavior of concrete is due to plasticity and 

damage processes. Microcracking, coalescence, and 

decohesion, among other things, can be ascribed to the damage 

process. Damage is often described by the degradation of 

stiffness. To characterize the damage, effective stress can be 

used [14]. The effective stress is defined as: 

 

𝜎 = 𝐸𝑜(𝜀 − 𝜀
𝑝𝑙) (15) 

 

where: 

Eo is the undamaged elastic stiffness that can be defined 

according to the theory of plasticity in which: 

 

𝜀𝑒𝑙 =
𝜎

𝐸
  (16) 

 

Then, based on the previous equation the stress can be 

written as:  

 

𝜎 = 𝐸(𝜀 − 𝜀𝑝𝑙) (17) 

 

By definition of the damage in stiffness degradation as 

scalar damage d that represented in Figure 6 then: 

 

𝐸 = (1 − 𝑑)𝐸𝑜 (18) 

 

Substituting Eq. (18) into Eq. (17) leads to the following 

relation: 

 

𝜎 = (1 − 𝑑)𝐸𝑜(𝜀 − 𝜀𝑝𝑙) (19) 

 
 

Figure 6. Concrete response to uniaxial loading in tension 

(a), and compression (b) [15] 

 

Or can be written using the effective stress as: 

 

𝜎 = (1 − 𝑑)𝜎 (20) 

 

Then, the effective stress can be written as: 

 

𝜎 =
𝜎

1−𝑑
  (21) 

 

Finally, the yield criteria using two hardening variables and 

in the effective stress space is written as: 

 

𝐹 (𝜎, 𝜀̃𝑝𝑙) =
1

1 − 𝛼
(√3𝐽2̅ + 𝛼𝐼1̅ + 𝛽〈𝜀̃

𝑝𝑙〉〈�̂̅�𝑚𝑎𝑥〉

− 𝛾〈−�̂̅�𝑚𝑎𝑥〉) = 𝑐𝑐(𝜀̃
𝑝𝑙) 

(22) 

 

Because nonlinear volume change during hardening is a key 

property of concrete materials, the flow rule employed in the 

CDP model is the non-associated flow rule. The chose 

function for the CDP model is the hyperbolic formula of 

Drucker-Prager that represented by [15]: 
 

𝐺 = √(𝑒𝑓𝑡𝑦𝑡𝑎𝑛𝜓)
2
+ �̅�2 − �̅�𝑡𝑎𝑛𝜓 (23) 

 

where:  

e is the eccentricity, defines the rate over which the function 

approaches the asymptote,  

ψ is the dilation angle; 

fty is the uniaxial tensile stress at failure, extracted from the 

adopted tensile data. 

 

In this study, the damage parameters have not been 

considered. The key parameters that have been introduced in 

ABAQUS are presented in Table 1. 
 

Table 1. The defined parameters for the CDP model. 

 
Parameter name Value 

Dilation angle 36o 

Eccentricity 0.1 

𝑓𝑏𝑦  𝑓𝑐𝑦⁄  1.16 

𝐾𝑐  0.667 

Viscosity parameter 0 

 

Compressive behavior. The model that has been used to 

mimic the uni-axial behavior of concrete was proposed by 

Yang et al. [16] according to Eq. (24). The uniaxial stress–

strain curve that has been used to define the concrete 

compressive behavior is presented in Figure 7. 
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𝜎𝑐 = [
(𝛽1+1)(

𝜀𝑐
𝜀𝑜
)

(
𝜀𝑐
𝜀𝑜
)
𝛽1+1 

+𝛽1

] 𝑓𝑐
′  (24) 

 

where: 

 

𝜀𝑜 = 0.0016 𝑒𝑥𝑝 [240(
𝑓𝑐
′

𝐸𝑐
⁄ )]  (25) 

 

𝛽1 = {
0.2 𝑒𝑥𝑝(0.73𝜉) 𝜀𝑐 ≤ 𝜀𝑜
0.41 𝑒𝑥𝑝(0.77𝜉) 𝜀𝑐 > 𝜀𝑜

  (26) 

 

Also, 

 

𝜉 = (
𝑓𝑐
′

10
)
0.67

(
2300

𝜔𝑐
)
1.17

  (27) 

 

ωc is the concrete specimen’s density, 

Ec is the Young’s modulus of concrete. 

 

 
 

Figure 7. Stress-strain for concrete in compression 

 

Tensile behavior. The concrete behavior in tension is 

defined in ABAQUS by means of the so called ‘tension 

stiffening’. The model that has been used in this study was 

proposed by Belarbi and Hsu [17]. The model is represented 

by the following equation: 

 

𝜎𝑐𝑡 = 𝐸𝑐𝜀𝑐𝑡 𝜀𝑐𝑡 ≤ 𝜀𝑐𝑟 (28) 

 

𝜎𝑐𝑡 = 𝑓𝑡𝑦 (
𝜀𝑐𝑟

𝜀𝑐𝑡
)
0.4

 𝜀𝑐𝑡 > 𝜀𝑐𝑟 (29) 

 

Modification is proposed for the previous formula as follow: 

 

𝜎𝑐𝑡 = 𝑓𝑡𝑦 (
𝜀𝑐𝑟

𝜀𝑐𝑡
)
𝑛

  (30) 

 

where: 

n is the weakening function, in this analysis a value of 0.75 

has been utilized [7],  

εcr is the cracking concrete strain. 

 

 
 

Figure 8. Stress-strain relation for concrete in tension 

The uniaxial stress–strain curve that has been used to define 

concrete tensile behavior is presented in Figure 8, with 𝑓𝑡𝑦 , 

that has been calculated according to ACI 318 relation for 

modulus of rupture test. 

 

3.2.2 Steel modeling 

The cold-formed steel stress-strain behavior has been 

defined utilizing the model proposed by Gardner and Yun [18]. 

The model is defined using the following expression: 

 

𝜀 = 

{
 
 

 
 

𝜎

𝐸
+ 0.002 (

𝜎

𝜎0.2
)
𝑛

, 𝑓𝑜𝑟 𝜎 ≤ 𝜎0.2

𝜎 − 𝜎0.2
𝐸0.2

+ (𝜀𝑢 − 𝜀0.2 −
𝜎𝑢 − 𝜎0.2
𝐸0.2

) (
𝜎 − 𝜎0.2
𝜎𝑢 − 𝜎0.2

)
𝑚

+𝜀0.2, 𝑓𝑜𝑟 𝜎 > 𝜎0.2

 
(31) 

 

where: 

 

𝐸0.2 =
𝐸

1+0.02n
𝐸

𝑓𝑦

  (32) 

 

𝜀𝑢 = 0.6(1 −
𝜎0.2

𝜎𝑢
)  (33) 

 

𝜎𝑢 = [1 + (
130

𝜎0.2
)
1.4

] 𝜎0.2  (34) 

 

m and n are related to 𝜎0.05or 𝜎0.1, and in the absence of 

experimental testing, values of 7.6 and 3.8 for m and n, 

respectively, can be used for flat coupons [18]. 

Elastic perfectly plastic model has been used in regards to 

the shear studs, and the steel reinforcement. 

 

 

4. GEOMETRIC IMPERFECTIONS 

 

To mimic the behavior of steel members, especially light-

gage cold-formed members, geometrical imperfections need 

to be introduced in the numerical analysis [19]. The 

imperfection is usually simulated through elastic buckling 

analysis to obtain the imperfection distribution based on the 

shape of the pertained buckling mode.  

The linear buckling analysis of the composite light-gage 

floor beam generated only negative buckling modes, as shown 

in Figure 9. 

 

 
 

Figure 9. The fundamental buckling mode 

 

During linear buckling analysis, negative eigenvalues mean 

that the structure would buckle if the load is applied in the 

opposite direction [20]. This means that no buckling will occur 

in this type of composite system under gravity loading, and the 

beam will reach its plastic capacity before developing of any 

instability. This conclusion is in agreement with the findings 
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of Ban et al. [21] that imperfection has negligible effects on 

the behavior of composite beams. 
 

 

5. RESULTS OF THE ANALYSIS 
 

 
 

Figure 10. The composite beam deformed shape 

 

The deformed shape of the composite beam is presented in 

Figure 10, in addition to stresses of the light-gage beam at 

failure is shown in Figure 11. Stresses show that the beam is 

yielded where Mises stresses are larger than the uniaxial yield 

stress. This is due to strain hardening for the cold-formed steel 

beam. 

Table 2 displays the results of the FE analysis, in addition 

to the design strength of the light-gage partially composite 

beams that have been calculated according to AISC [22]. 

Comparison of the results of Table 2 shows that the FE 

analysis is in agreement with the design strength according to 

AISC [22]. Because the standard of the light-gage cold-formed 

members, AISI [23] does not take into consideration the 

composite action, design according to AISC [22], is capable of 

computing the strength of this type of light-gage beam. 

 

 
 

Figure 11. Stresses at the beam at failure 

 

Table 2. Composite beams results. 

 

Name 
No. of Stud 

per rib 
Slab width (m) Concrete Strength (MPa) 

Thickness 

(mm) 

Yield Stress 

(MPa) 

Ultimate Load (kN) 𝐏𝐅𝐄
𝐏𝐀𝐈𝐒𝐂

 
FE AISC 

CB1 2 Studs 0.5 22.6 150 355 158 164.7 0.96 

CB2 2 Studs 1 22.6 150 355 168 173 0.97 

CB3 2 Studs 1.5 22.6 150 355 173.6 177 0.98 

CB4 2 Studs 1 NWC, 28 150 355 174 175 0.99 

CB5 2 Studs 1 LWC (30.5,1860kg/m3( 150 355 168 176 0.95 

CB6 2 Studs 1 LWC (50.5,1900kg/m3) 150 355 173 179 0.97 

CB7 2 Studs 1 22.6 175 355 181.8 187 0.97 

CB8 2 Studs 1 22.6 200 355 194 197 0.98 

CB9 1 Stud 1 22.6 150 355 131 143 0.92 

CB10 2 Studs 1 22.6 150 460 194.5 202 0.96 

CB11 2Studs 1 22.6 150 700 232 264 0.88 

 

5.1 Effect of concrete type and strength 

 

As shown in Figure 12 changing the concrete type can have 

a minor effect on the stiffness and strength of the composite 

beam. Using normal weight concrete (NWC) increases the 

strength by 3.5%. This agrees with the results of Lasheen et al. 

[24], as they reported that results of experimental tests on 

composite beams revealed that changing the concrete type 

from NWC to LWC affected the ultimate load capacity by only 

2.2%.  

 

 
 

Figure 12. Effect of concrete type 

 

Also, results of the analysis show that increasing the 

lightweight concrete compressive strength from 22.6 MPa to 

50.5 MPa increases the capacity of the composite beam by 3% 

as presented in Figure 13. 

 

 
 

Figure 13. Effect of lightweight concrete strength 

 

5.2 Effect of the slab width 

 

The load-deflection curves of Figure 14 show that 

increasing the slab effective width from 500 to 1000 mm has 

a more significant influence on strength and stiffness than 

increasing the slab width from 1000 to 1500 mm. This is due 

to the effect of the shear lag phenomenon. Increasing the 

effective width from 500 to 1500 mm increases the strength of 

the light-gage composite beam by 9.87%. 
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Figure 14. Effect of the slab width 

 

5.3 Effect of the thickness of the slab 

 

 
 

Figure 15. Effect of the slab thickness 

 

As shown in Figure 15, the thickness of the concrete slab 

affects the stiffness and strength of the partially composite 

light-gage lightweight concrete deck slab. Increasing the 

thickness of the slab from 150 mm to 200 mm increases the 

ultimate load of the system by 15.4%. 

 

5.4 Effect of the degree of interaction 

 

The effect of the degree of composite action on the behavior 

is presented in Figure 16. The figure also includes the strength 

of the bare light-gage beam for comparison purposes, which 

has been calculated according to AISI [23].  

 

 
 

Figure 16. Effect of the composite action 

The figure shows that employing partial interaction, even 

with a low degree of composite action, greatly enhances the 

strength. The composite action with a percentage of 31% only 

improves the strength of the beam by 95%. This improvement 

is increased by increasing the degree of interaction. 

 

5.5 Effect of the yield stress of the beam  

 

The load-deflection curves of partially composite light-gage 

beams with different yield stresses are presented in Figure 17. 

The yield stress of the cold-formed beam has a greater effect 

on the strength. Increasing the yield stress from 355 MPa to 

700 MPa increases the strength by 38.5%.  

 

 
 

Figure 17. Effect of the yield stress 
 

 

6. CONCLUSION 
 

In this study, ABAQUS has been used to build a finite 

element model to investigate the behavior of the light-gage 

partially composite beam with lightweight concrete deck slab 

and its affected parameters. This investigation has led to the 

following conclusion: 

• The concrete type has a minor influence on the stiffness 

and strength of the system. Using a normal weight 

concrete instead of lightweight concrete increases the 

strength by 3.5% only. 

• Using partial interaction, even with a low degree of 

composite action of 31% only, improves the strength of 

the light-gage beam by 95%. This demonstrates the 

necessity to design the light-gage members as composite 

beams. 

• Increasing the thickness of the slab from 150 to 200 mm 

increases the strength of the system by 15.4% only. 

• Increasing the effective width from 500 to 1500 mm 

increases the strength of the light-gage composite beam 

by 9.87% only. 

• Increasing the yield stress of the light-gage beam from 

355MPa to 700MPa increases the strength of the system 

by 35.8%. The yield stress of the light-gage is the most 

important factor affecting the strength of the composite 

system.  
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NOMENCLATURE 

𝐼1 first principal invariant of stress 

𝐽2 second deviatoric invariant of stress 

𝑑 scalar damage parameter 

E modulus of elasticity  

𝐾𝑐 dimensionless shape parameter of the failure 

surface  

�̅� hydrostatic pressure stress 

�̅� equivalent Mises effective stress 

Greek symbols 

α, , γ dimensionless parameters 

𝜀 strain 

𝜓 dilation angle 

𝜔 density of the material 

𝜎 stress, MPa 

𝜎 effective stress 

�̂�𝑚𝑎𝑥 algebraic maximum principal stress 

Subscripts 

c concrete 

s steel 
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