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This study discusses an economical and efficient method for calculating the global 

optimum of a function of many variables. The proposed algorithm can be attributed to 

methods based on auxiliary functions. The auxiliary function itself is obtained by 

converting the objective function using the Lebesgue integral and is a function of one 

variable. In a previously published paper by one of the authors of this article, this 

auxiliary function was used to calculate the global minimum of smooth multiextremal 

functions on convex closed sets. In the same article, an algorithm was proposed for 

dividing a segment into half to find a global minimum. And in this paper we consider 

the problem of finding the global minimum of continuous functions defined on bounded 

closed subsets of an n-dimensional Euclidean space. In addition, curious properties of 

the auxiliary function are established that are valid for any continuous objective 

function. For example, its non-negativity, positive homogeneity of some order, uniform 

continuity, differentiability and strict convexity are proved, and higher-order 

derivatives are calculated. The optimality criterion is established. The essence of this 

optimality criterion is that the value of a variable at which the auxiliary function and its 

derivatives are equal to zero up to a certain order turns out to be equal to the global 

minimum of the objective function. It follows from this optimality criterion that to 

calculate the global minimum of the objective function, it is sufficient to find the zero 

of the auxiliary function or its derivative up to the m-th order. Therefore, Wegstein's 

algorithm was used as a way to find the root of an equation with one unknown. In 

addition, the advantage of the Wegstein’s method is that it always converges. And in 

this situation, it turned out to be more efficient, despite its slow convergence, since it 

requires almost half the number of calculations of the values of the auxiliary function 

and that halves the need for numerical calculations of multiple integrals with a large 

number of variables. 
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1. INTRODUCTION

The essence of the problem of finding the global extremum 

is to find a solution with the minimum (maximum) value of 

the objective function. Currently, a lot is known and written 

about methods and problems of global optimization [1-5]. 

Nevertheless, due to their practical importance, global 

optimization problems continuously arise and are being 

investigated in many fields of science [6-13]. Thus, there is a 

constant need for the development of new methods and 

approaches to solve them, since there is no universal algorithm 

for solving them. 

To date, all known methods of global optimization can be 

divided into two categories [1, 4, 5], deterministic methods [1, 

2] and stochastic methods [14, 15]. And optimization tasks are

usually divided into two types: static and dynamic. The static

type includes tasks in which it is necessary to determine the

values of the arguments that make up the extreme value of the

objective function. A dynamic type is considered a task when

a function called a control function is to be defined, in which

the target functional takes a maximum or minimum value. 

When solving static problems with a nonlinear objective 

function, great difficulties arise. The main difficulties are 

associated with multiextremality, large dimension and non-

convexity of the objective function. To date, a considerable 

number of works devoted to overcoming the above difficulties 

have been published [12, 16-18]. 

In this paper, a new method for finding the global minimum 

based on the idea of auxiliary functions is proposed. At the 

same time, the object of research is not the objective function 

itself, but an auxiliary function of one variable constructed by 

converting the original goal function using the Lebesgue 

integral. It should be noted that the auxiliary function studied 

in this paper was considered in Ref. [19]. In it, with its help, 

an algorithm was proposed for dividing a segment in half to 

calculate the global extremum for smooth and multiextremal 

functions of several variables defined on convex compact sets. 

In this article, in contrast to the work [19], the main properties 

of this auxiliary function for any continuous goal function are 

studied in detail. An optimality criterion is established, and 
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Wegstein's method for finding the global minimum of 

continuous on bounded and closed sets of functions of many 

variables is proposed, which is more effective for this situation. 

 

 

2. PROBLEM STATEMENT 

 

Consider a measurable space with measure (ℝ𝒏, 𝔅, 𝜇) , 

where ℝ𝒏 is a Euclidean 𝑛-dimensional space, 𝔅 is a Borel 𝜎 

-algebra in the space ℝ𝒏, μ is a Lebesgue measure over 𝔅. Let 

Е be a closed set of space ℝ𝒏 and 𝐹: E → ℝ is a continuous 

objective function with real values. From the continuity of 𝐹 

follows the measurability of the set Е(𝐹, α) =
{𝑥 ∈ E|𝐹(𝑥) ≤ 𝛼}  for each 𝛼 ∈ ℝ.  In addition, we will 

assume that ∃𝛼 ∈ ℝ is a set Е(𝐹, α) compact, nonempty and 

𝐹 ∈ 𝐿𝑚(𝐸, 𝜇), for some positive integer 𝑚. 

Consider the problem: 

 

�̅� = globmin
𝑥∈E

𝐹(𝑥). (1) 

 

Let's introduce an auxiliary function: 

 

𝑔𝑚(𝐹, 𝛼) = ∫[|𝐹(𝑥) − 𝛼| − 𝐹(𝑥) + 𝛼]𝑚𝑑µ,

𝐸

 (2) 

 

which plays an important role in the fourth section of this 

paper. Here 𝑚  is some given positive integer number. The 

purpose of this work is to study the basic properties of the 

function (2) and on their basis to construct an effective 

numerical method for solving the problem (1).  

 

 

3. PROPERTIES OF THE AUXILIARY FUNCTION 

 

Lemma 1. The auxiliary function (2) has the following 

properties: 

1) 𝑔𝑚(𝐹, 𝛼) ≥ 0; 
2) 𝑔𝑚(С, 𝛼) = 0 for any constant with С ≥ 𝛼; 
3) 𝑔𝑚(𝑘𝐹, 𝑘𝛼) = 𝑘𝑚𝑔𝑚(𝐹, 𝛼), for a real number 𝑘 ≥

0, 𝛼 ≥ �̅�; 
4) 𝑔𝑚(𝑘 + 𝐹, 𝑘 + 𝛼) = 𝑔(𝐹, 𝛼), for any real 𝑘 and all 

𝛼 ≥ �̅�; 
5) 𝑔𝑚(𝛼 + 𝐹, 𝛼) = 𝑔𝑚(𝐹, 0), for all 𝛼 ≥ �̅�; 
6) 𝑔𝑚(𝛼𝐹, 𝛼) = 𝛼𝑚𝑔𝑚(𝐹, 1), for each 𝛼 ≥ 0; 
7) 𝑔𝑚(𝐹, 𝛼)  is uniformly continuous on the interval 

𝛼 ≥ 𝛼0, where ∀𝛼0 > �̅�; 
8) 𝑔𝑚(𝐹, 𝛼)  is midpoint convex on the interval 𝛼 ≥

𝛼0, where ∀𝛼0 > �̅�. 
Proof.  

1) 𝑔𝑚(𝐹, 𝛼) = ∫ [|𝐹(𝑥) − 𝛼| − 𝐹(𝑥) + 𝛼]𝑚𝑑µ +
𝐸\Е(𝐹,α)

∫ [|𝐹(𝑥) − 𝛼| − 𝐹(𝑥) + 𝛼]𝑚𝑑µ
Е(𝐹,α)

= 

= ∫ [(𝐹(𝑥) − 𝛼) − 𝐹(𝑥) + 𝛼]𝑚𝑑µ

𝐸\Е(𝐹,α)

+ ∫ [−(𝐹(𝑥) − 𝛼) − 𝐹(𝑥) + 𝛼]𝑚𝑑µ

Е(𝐹,α)

= 

= ∫ [2(𝛼 − 𝐹(𝑥))]
𝑚

𝑑µ

Е(𝐹,α)

≥ 0, 

 

Since the expression under the last integral is non-negative 

on the set Е(F,α). 

2) 𝑔𝑚(С, 𝛼) = ∫ [|С − 𝛼| − С + 𝛼]𝑚𝑑µ =
𝐸

∫ [(С − 𝛼) − С +
𝐸

𝛼]𝑚𝑑µ = 0. 
3) 𝑔𝑚(𝑘𝐹, 𝑘𝛼) = ∫ [|𝑘𝐹(𝑥) − 𝑘𝛼| − 𝑘𝐹(𝑥) + 𝑘𝛼]𝑚𝑑µ

𝐸
=

𝑘𝑚 ∫ [|𝐹(𝑥) − 𝛼| − 𝐹(𝑥) + 𝛼]𝑚𝑑µ
𝐸

= 𝑘𝑚𝑔𝑚(𝐹, 𝛼). 

4) 𝑔𝑚(𝑘 + 𝐹, 𝑘 + 𝛼) = ∫ [|𝑘 + 𝐹(𝑥) − 𝑘 − 𝛼| − 𝑘 −
𝐸

𝐹(𝑥) + 𝑘 + 𝛼]𝑚𝑑µ = ∫ [|𝐹(𝑥) − 𝛼| − − 𝐹(𝑥) + 𝛼]𝑚𝑑µ
𝐸

=

𝑔𝑚(𝐹, 𝛼). 
5) 𝑔𝑚(𝛼 + 𝐹, 𝛼) = ∫ [|𝛼 + 𝐹(𝑥) − 𝛼| − 𝛼 − 𝐹(𝑥) +

𝐸

𝛼]𝑚𝑑µ = 

= ∫[|𝐹(𝑥) − 0| − 𝐹(𝑥) + 0]𝑚𝑑µ = 𝑔𝑚(𝐹, 0).

𝐸

 

6) 𝑔𝑚(𝛼𝐹, 𝛼) = ∫ [|𝛼𝐹(𝑥) − 𝛼| − 𝛼𝐹(𝑥) + 𝑘𝛼]𝑚𝑑µ
𝐸

=

𝛼𝑚 ∫ [|𝐹(𝑥) − 1| − 𝐹(𝑥) + 1]𝑚𝑑µ
𝐸

== 𝛼𝑚𝑔𝑚(𝐹, 1). 

7) Let's choose arbitrary 𝛼1, 𝛼2 such that 𝛼1 > 𝛼2 ≥ 𝛼0. Let 's 

estimate the difference modulus:  

 
|𝑔𝑚(𝐹, 𝛼1) − 𝑔𝑚(𝐹, 𝛼2)| =

= |∫[|𝐹(𝑥) − 𝛼1| − 𝐹(𝑥) + 𝛼1]𝑚𝑑µ

𝐸

− ∫[|𝐹(𝑥) − 𝛼2| − 𝐹(𝑥) + 𝛼2]𝑚𝑑µ

𝐸

| = 

= | ∫ [2(𝛼1 − 𝐹(𝑥))]
𝑚

𝑑µ

Е(𝐹,α1)

− ∫ [2(𝛼2 − 𝐹(𝑥))]
𝑚

𝑑µ

Е(𝐹,𝛼2)

|

= 

= | ∫ [2(𝛼1 − 𝐹(𝑥))]
𝑚

𝑑µ

Е(𝐹,α2)

+ ∫ [2(𝛼1 − 𝐹(𝑥))]
𝑚

𝑑µ

Е(𝐹,α1)\Е(𝐹,α2)

− ∫ [2(𝛼2 − 𝐹(𝑥))]
𝑚

𝑑µ

Е(𝐹,α2)

| ≤ 

≤ | ∫ [2(𝛼1 − 𝛼2) ((2(𝛼1 − 𝐹(𝑥)))
𝑚−1

Е(𝐹,𝛼2)

+ (2(𝛼1 − 𝐹(𝑥)))
𝑚−2

(2(𝛼2 − 𝐹(𝑥)))

+ ⋯

+ ((2(𝛼1 − 𝐹(𝑥)))) (2(𝛼2 − 𝐹(𝑥)))
𝑚−2

+ (2(𝛼2 − 𝐹(𝑥)))
𝑚−1

)] 𝑑µ| + 

+ | ∫ [2(𝛼1 − 𝐹(𝑥))]
𝑚

𝑑µ

Е(𝐹,α1)\Е(𝐹,α2)

| = 𝐽1 + 𝐽2. 

 

Note that the following inequalities are met. On the set 

Е(𝐹, 𝛼2): (2(𝛼1 − 𝐹(𝑥)))
𝑚−1

≤ (2(𝛼1 − 𝛼0))
𝑚−1

= 𝐾, 

(2(𝛼2 − 𝐹(𝑥)))
𝑚−1

≤ (2(𝛼1 − 𝛼0))
𝑚−1

= 𝐾. 

And on the set Е(𝐹, α1)\Е(𝐹, α2): 
 

(2(𝛼1 − 𝐹(𝑥)))
𝑚

= (2(𝛼1 − 𝐹(𝑥)))
𝑚−1

2(𝛼1 − 𝐹(𝑥))

≤ 2𝐾|𝛼1 − 𝛼2|. 
Using them it is easy to get estimates: 
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𝐽1 ≤ 2𝑚𝐾|𝛼1 − 𝛼2|𝜇(Е(𝐹, 𝛼2)) ≤ 2𝑚𝐾|𝛼1 − 𝛼2|𝜇(Е) =

𝐵1|𝛼1 − 𝛼2|, где 𝐵1 = 2𝑚𝐾𝜇(Е);

𝐽2 ≤ 2𝐾|𝛼1 − 𝛼2| (𝜇(Е(𝐹, 𝛼1)) − 𝜇(Е(𝐹, 𝛼2))) =

2𝐾|𝛼1 − 𝛼2|𝜇(Е(𝐹, 𝛼1)) ≤ 2𝐾𝜇(Е) ≤ 𝐵2|𝛼1 − 𝛼2|, где

𝐵2 = 2𝐾𝜇(Е).

Thus, for any 휀 > 0, it is sufficient to take the number 𝛿 =
휀/(𝐵1 + 𝐵2), that for arbitrary 𝛼1, 𝛼2 for which |𝛼1 − 𝛼2| <
𝛿 there is an inequality: 

|𝑔𝑚(𝐹, 𝛼1) − 𝑔𝑚(𝐹, 𝛼2)| ≤ 𝐽1 + 𝐽2 < (𝐵1 + 𝐵2)|𝛼1 − 𝛼2|

<
(𝐵1 + 𝐵2)휀

(𝐵1 + 𝐵2)
= 휀.

This proves that (2) is uniformly continuous. 

8) Let's choose arbitrary 𝛼1, 𝛼2 such that 𝛼1 > 𝛼2 ≥ 𝛼0 .

Using the Cauchy inequality (𝑢1 + 𝑢2)𝑚 ≤ 2𝑚−1(𝑢1
𝑚 + 𝑢2

𝑚),

for any 𝑢1, 𝑢2 ≥ 0  and 𝑚 ∈ 𝑵 . Let's show the fairness of

inequality: 

𝑔𝑚 (𝐹,
𝛼1 + 𝛼2

2
) ≤

1

2
(𝑔𝑚(𝐹, 𝛼1) + 𝑔𝑚(𝐹, 𝛼2 )).

𝑔𝑚 (𝐹,
𝛼1 + 𝛼2

2
) = ∫ [|𝐹(𝑥) −

𝛼1 + 𝛼2

2
| − 𝐹(𝑥)

𝐸

+
𝛼1 + 𝛼2

2
]

𝑚

𝑑µ = 

=
1

2𝑚
∫[|2𝐹(𝑥) − (𝛼1 + 𝛼2)| − 2𝐹(𝑥) + (𝛼1 + 𝛼2)]𝑚𝑑µ ≤

𝐸
1

2𝑚
∫[|𝐹(𝑥) − 𝛼1 + 𝐹(𝑥) − 𝛼2| − (𝐹(𝑥) − 𝛼1)

𝐸

− (𝐹(𝑥) − 𝛼2)]𝑚𝑑µ ≤

≤
1

2𝑚
∫[(|𝐹(𝑥) − 𝛼1| − 𝐹(𝑥) + 𝛼1)

𝐸

+ (|𝐹(𝑥) − 𝛼2| − 𝐹(𝑥) + 𝛼2)]𝑚𝑑µ = 𝐼.

According to the statement 1) of Lemma 1, two expressions 

in parentheses under the last integral have non-negative values, 

so applying the above Cauchy inequality we get the following 

estimate. 

𝐼 ≤
1

2𝑚
∫ 2𝑚−1[(|𝐹(𝑥) − 𝛼1| − 𝐹(𝑥) + 𝛼1)𝑚

𝐸

+ (|𝐹(𝑥) − 𝛼2| − 𝐹(𝑥) + 𝛼2)𝑚] 𝑑µ =

=
1

2
(𝑔𝑚(𝐹, 𝛼1) + 𝑔𝑚(𝐹, 𝛼2 )).

The lemma is proved. 

Lemma 2. The auxiliary function (2) is differentiable at 

each point 𝛼 > �̅� , where �̅� = 𝑚𝑖𝑛
𝐸

𝐹(𝑥). 

Proof. Let 𝛼 + ℎ > 𝛼 > �̅� , consider the increment of the 

auxiliary function. 

𝑔𝑚(𝐹, 𝛼 + ℎ) − 𝑔𝑚(𝐹, 𝛼) =

= ∫[|𝐹(𝑥) − (𝛼 + ℎ)| − 𝐹(𝑥) + (𝛼 + ℎ)]𝑚𝑑µ

𝐸

− ∫[|𝐹(𝑥) − 𝛼| − 𝐹(𝑥) + 𝛼]𝑚𝑑µ =

𝐸

= ∫ [2(𝛼 + ℎ − 𝐹(𝑥))]
𝑚

𝑑µ

Е(𝐹,α+h)

− ∫ [2(𝛼 − 𝐹(𝑥))]
𝑚

𝑑µ

Е(𝐹,α)

= 

= ∫ [2(𝛼 + ℎ − 𝐹(𝑥))]
𝑚

𝑑µ

Е(𝐹,α)

+ ∫ [2(𝛼 + ℎ − 𝐹(𝑥))]
𝑚

𝑑µ

Е(𝐹,α+h)\Е(𝐹,α)

− ∫ [2(𝛼 − 𝐹(𝑥))]
𝑚

𝑑µ =

Е(𝐹,α)

= ∫ [2ℎ ((𝛼 + ℎ − 𝐹(𝑥))
𝑚−1

Е(𝐹,α)

+ (𝛼 + ℎ − 𝐹(𝑥))
𝑚−2

(𝛼 − 𝐹(𝑥)) +  …

+ (𝛼 − 𝐹(𝑥))
𝑚−2

(𝛼 + ℎ − 𝐹(𝑥))

+ (𝛼 − 𝐹(𝑥))
𝑚−1

)] 𝑑µ +

+ ∫ [2(𝛼 + ℎ − 𝐹(𝑥))]
𝑚

𝑑µ

Е(𝐹,α+h)\Е(𝐹,α)

= 𝐼1ℎ + 𝐼2.

It is easy to check that 

lim
ℎ→0

𝐼1 = 2 ∫ 𝑚[2(𝛼 − 𝐹(𝑥))]
𝑚−1

𝑑µ

Е(𝐹,α)

= 2𝑚𝑔𝑚−1((𝐹, 𝛼)). 

It is not difficult to see that 𝐼2 = ∫ [2(𝛼 + ℎ −
Е(𝐹,α+h)\Е(𝐹,α)

𝐹(𝑥))]
𝑚

𝑑µ  is infinitesimal for h→0, since the expression

under the integral in square brackets does not exceed 2ℎ, and 

due to the continuity of the measure μ takes place: 

0 ≤ 𝐼2 ≤ (2ℎ)𝑚𝜇 (Е(𝐹, α + h) − 𝜇(Е(𝐹, α))) → 0

Thus, 

𝑑𝑔𝑚

𝑑𝛼
= 2𝑚𝑔𝑚−1((𝐹, 𝛼)).

Lemma 2 is proved. 

Corollary 1. When m=1 

𝑑𝑔1

𝑑𝛼
= 2𝜇(𝐸(𝐹, 𝛼)). 

Corollary 2. For any given natural number m, the equality 

holds, 

𝑑𝑚𝑔𝑚

𝑑𝛼𝑚
= (2)𝑚𝑚! 𝜇(𝐸(𝐹, 𝛼)).

Lemma 3. Let {𝛼𝑖} be a decreasing sequence whose limit

for 𝑖 → ∞  is 𝛼0  and 𝑔𝑚(𝐹, 𝛼0) > 0.  Then 𝛼0 >
�̅� = 𝑚𝑖𝑛

𝐸
𝐹(𝑥).  

Proof. Suppose the opposite, let 𝛼0 ≤ �̅�.  Since

𝑔𝑚(𝐹, 𝛼0) > 0, the set 𝐸(𝐹, 𝛼0) = {𝑥 ∈ E|𝐹(𝑥) < 𝛼0} is not

empty. Therefore, the inequality 𝐹(𝑥) < �̅� holds on this set 

𝐸(𝐹, 𝛼0). And this contradicts the fact that �̅� is the value of

the global minimum. Hence, 𝛼0 > �̅�.
Lemma 3 is proved. 

407



 

4. THE MAIN RESULT 

 

Theorem 1. Let Е be a closed set of space ℝ𝒏 and 𝐹: E →
ℝ  is a continuous objective function with real values. The 

global minimum �̅� of the problem (1) is reached at the point �̅� 

(where �̅� = 𝐹(�̅�) and �̅� = 𝑠𝑢𝑝{𝛼 ∈ ℝ| 𝑔𝑚(𝐹, 𝛼) = 0} if and 

only if  

 

𝑔𝑚(𝐹, �̅�) = 0 (3) 

 

Proof of necessity. Suppose �̅�  is the point of the global 

minimum, where �̅� = 𝐹(�̅�) and �̅� = 𝑠𝑢𝑝{𝛼 ∈ ℝ| 𝑔𝑚(𝐹, 𝛼) =
0} takes place, so 𝐹(𝑥) ≥ �̅� , for any 𝑥 ∈ 𝐸. Hence, 

 

𝑔𝑚(𝐹, �̅�) = ∫[|𝐹(𝑥) − �̅�| − 𝐹(𝑥) + �̅�]𝑚𝑑µ

𝐸

= ∫[(𝐹(𝑥) − �̅�) − 𝐹(𝑥) + �̅�]𝑚𝑑µ = 0.

𝐸

 

 

The necessity is proved. 

Let's prove sufficiency in the opposite way. Assume that (3) 

is fulfilled and �̅� is not the point of the global minimum, where 

�̅� = 𝐹(�̅�)  and �̅� = 𝑠𝑢𝑝{𝛼 ∈ ℝ| 𝑔𝑚(𝐹, 𝛼) = 0}  takes place. 

Let the value of the global minimum be �̃�. Note 2𝛽 = �̅� −
 �̃� > 0 and note that in this case Е(𝐹, α̃) is strictly contained 

in the set Е(𝐹, α̅) and hence 𝜇(Е(𝐹, α̅)) > 𝜇(Е(𝐹, α̃)).  

 

𝑔𝑚(𝐹, �̅�) = ∫[|𝐹(𝑥) − �̅�| − 𝐹(𝑥) + �̅�]𝑚𝑑µ

𝐸

= ∫ [|𝐹(𝑥) − �̅�| − 𝐹(𝑥) + �̅�]𝑚𝑑µ +

𝐸\𝐸(𝐹,�̅�)

 

+ ∫ [|𝐹(𝑥) − �̅�| − 𝐹(𝑥) + �̅�]𝑚𝑑µ =

𝐸(𝐹,�̅�)

 

= ∫ [(𝐹(𝑥) − �̅�) − 𝐹(𝑥) + �̅�]𝑚𝑑µ

𝐸\Е(𝐹,α̅)

+ ∫ [−(𝐹(𝑥) − �̅�) − 𝐹(𝑥) + �̅�]𝑚𝑑µ

Е(𝐹,α̅)

= 

= ∫ [2(�̅� − 𝐹(𝑥))]
𝑚

𝑑µ

Е(𝐹,α̅)

. 

 

Thus, 

 

𝑔𝑚(𝐹, �̅�) = ∫ [2(�̅� − 𝐹(𝑥))]
𝑚

𝑑µ

Е(𝐹,α̅)

. (4) 

 

From the equality 2𝛽 = �̅� − α̃ , we express �̅� = α̃ + 2𝛽 

and note that �̅� > α̃ + 𝛽 > α̃.  Since 𝐸(𝐹, �̅�) =
{𝑥 ∈ E|𝐹(𝑥) ≤ �̅�}, 𝐸(𝐹, α̃ + 𝛽) = {𝑥 ∈ E|𝐹(𝑥) ≤ α̃ + 𝛽}, 
𝐸(𝐹, α̃) = {𝑥 ∈ E|𝐹(𝑥) ≤ α̃} , it is obvious that 𝐸(𝐹, α̃) ⊂
𝐸(𝐹, α̃ + 𝛽) ⊂  𝐸(𝐹, �̅�). 

When α̃ < 𝐹(𝑥) ≤ α̃ + 𝛽 < �̅�  it is easy to see that �̅� −
𝐹(𝑥) > �̅� − (α̃ + 𝛽) = 𝛽. Now let's evaluate (4). 

 

𝑔𝑚(𝐹, �̅�) = ∫ [2(�̅� − 𝐹(𝑥))]
𝑚

𝑑µ

Е(𝐹,α̅)\Е(𝐹,α̃+𝛽)

+ ∫ [2(�̅� − 𝐹(𝑥))]
𝑚

𝑑µ ≥

Е(𝐹,α̃+𝛽)

 

≥ ∫ [2(�̅� − 𝐹(𝑥))]
𝑚

𝑑µ >

Е(𝐹,α̃+𝛽)

[2𝛽]𝑚 ∫ 𝑑µ 

Е(𝐹,α̃+𝛽)

> [2𝛽]𝑚𝜇(Е(𝐹, α̃ + 𝛽)) > 0. 

 

And this contradicts equality (3). The theorem is proved.  

The proved theorem is valid for every fixed positive integer 

𝑚, since no restrictions were imposed on m during the proof.  

Corollary. Let the conditions of Theorem 1 and 𝑚 = 1 be 

fulfilled. Then 

 

�̅� =
1

𝜇(Е(𝐹, α̅))
∫ 𝐹(𝑥) 𝑑µ

Е(𝐹,α̅)

. (5) 

 

For 𝑚 = 1, equality (4) has the form 

 

∫ (2(�̅� − 𝐹(𝑥)))𝑑µ = 0

Е(𝐹,α̅)

. 

 

From here, expressing �̅�, we get (5). 

 

 

5. WEGSTEIN'S METHOD 

 

Despite the fact that the Wegstein’s method [20] converges 

slower than some other methods, it requires almost twice as 

many calculations of the values of the auxiliary function (2). 

And calculating the values of the auxiliary function leads to 

the numerical calculation of multiple integrals with a large 

number of variables, which is associated with great difficulties. 

Therefore, Wegstein's method turns out to be more effective 

for this situation. Besides, it always converges. Next, we will 

give a brief description of this method. According to (3) we 

will solve the equation 𝑔𝑚(𝐹, 𝛼) = 0 with respect to 𝛼. Below 

we will need: 

 

𝛹( 𝛼 ) =  𝛼 − 𝐴𝑔𝑚(𝐹, 𝛼), 

𝐴 =
1

2𝑚+𝑝𝑚𝐵
, 𝐵 = ∫|𝐹(𝑥)|𝑚−1𝑑µ.

𝐸

 

 

In accordance with the study [20], we can choose the 

coefficient A at our discretion. Therefore, here we choose the 

smallest positive integer p in such a way that the following 

inequalities are satisfied: 

 

0 < 1 − 2𝑚𝐴𝑔𝑚−1(𝐹, 𝜏) < 1. (6) 

 

The iterative procedure, according to Wegstein [20], 

consists of the following two formulas: 

 

𝛼𝑛+1 = 𝛹(�̃�𝑛); (7) 

 

�̃�𝑛+1 = 𝛼𝑛+1 −
[𝛼𝑛+1 − 𝛼𝑛][𝛼𝑛+1 − �̃�𝑛]

𝛼𝑛+1 − 𝛼𝑛 − �̃�𝑛 + �̃�𝑛−1

; (8) 

 

After choosing a suitable initial approximation 𝑥0 ∈ 𝐸, 휀 >
0  and accepting 𝛼0 = 𝐹( 𝑥0), 𝛼1 = 𝛹( 𝛼0), �̃�0: = 𝛼0, �̃�1: =
𝛼1 , we apply formulas (7) and (8). Then we check the 

condition 
|�̃�𝑛−�̃�𝑛+1|

|�̃�𝑛|
≥ 휀. If it is executed, then we repeat the 

process; otherwise, the iteration ends and we take the root 

equal to �̃�𝑛+1. 
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To determine the coordinates of the global minimum points, 

we apply the method of statistical tests [21]. Suppose that l 

Wegstein iterations have been performed, that is, �̃�𝑛+1 = �̃�𝑙. 

Following [21], we randomly select s different 𝑛  -

dimensional points 𝑥𝑗 = (𝑥𝑗1, … , 𝑥𝑗𝑛)  from the set E. 

Calculate the values of the objective function at each of these 

points, denote 𝐹𝑗 = 𝐹(𝑥𝑗), 𝑗 = 1, … , 𝑠 . Next, define the sets 

𝑊𝑘 = {𝑥𝑗 ∈ E: 𝐹(𝑥𝑗) ≤ �̃�𝑘, 𝑘 = 0, 1, … , 𝑙} , denote 𝜉𝑘  the 

number of elements in 𝑊𝑘. For each 𝑊𝑘, we define the values 

of n functions: 

 

�̅�𝑖(�̃�𝑘) =
∑ 𝑥𝑗𝑖[2(�̃�𝑘 − 𝐹𝑗)]

𝑚𝜉𝑘
𝑗=1

∑ [2(�̃�𝑘 − 𝐹𝑗)]
𝑚𝜉𝑘

𝑗=1

, 𝑖 = 1, … , 𝑛. (9) 

 

For each of the functions (9) we construct an approximating 

parabola: 

 

𝑥𝑖(�̃�) = 𝑎𝑖�̃�2 + 𝑏𝑖�̃� + 𝑐𝑖 , 𝑖 = 1, … , 𝑛. (10) 

 

The coefficients of the quadratic trinomial (10) can be 

calculated by solving the following systems of linear equations. 

 

{

𝑀4𝑎𝑖 + 𝑀3𝑏𝑖 + 𝑀2𝑐𝑖 = 𝑀2,1,               

𝑀3𝑎𝑖 + 𝑀2𝑏𝑖 + 𝑀1𝑐𝑖 = 𝑀1,1, 𝑖 = 1, … , 𝑛.

𝑀2𝑎𝑖 + 𝑀1𝑏𝑖 + 𝑀0𝑐𝑖 = 𝑀0,1;                
 

 

Here the coefficients and free terms of the system are 

determined by the following formulas [21]. 

 

𝑀0 = 1, 𝑀1 =
1

𝑙
∑ �̃�𝑘,𝑙

𝑘=1  𝑀2 =
1

𝑙
∑ �̃�𝑘

2,𝑙
𝑘=1  𝑀3 =

1

𝑙
∑ �̃�𝑘

3,𝑙
𝑘=1  

𝑀4 =
1

𝑙
∑ �̃�𝑘

4.𝑙
𝑘=1  

𝑀0,1 =
1

𝑙
∑ �̅�𝑖(�̃�𝑘),𝑙

𝑘=1  𝑀1,1 =
1

𝑙
∑ �̃�𝑘 ∙ �̅�𝑖(�̃�𝑘),𝑙

𝑘=1  𝑀2,1 =
1

𝑙
∑ �̃�𝑘

2 ∙ �̅�𝑖(�̃�𝑘).𝑙
𝑘=1  

 

Substituting the value �̃�𝑙  instead of �̃�  in (10), we obtain 

approximate coordinates of the global minimum 𝑥∗ =

(𝑥1(�̃�𝑙), … , 𝑥𝑛(�̃�𝑙)). It should be noted that if the objective 

function is multiextremal, then the set 𝑊𝑘 at the 𝑘 - th iteration 

can be decomposed into the union of several sets 𝑊𝑘 =

⋃ 𝑊𝑘
(𝜂)𝑟𝑘

𝜂=1 . After that, the above procedure for determining 

the coordinates of the global minimum is performed for each 

partial set 𝑊𝑘
(𝜂)

. 

Next, we formulate and prove a theorem on the convergence 

rate of this algorithm. 

Theorem 2. Let the conditions of Theorem 1 be fulfilled. 

Then the iterative sequence {�̃�𝑛} constructed according to the 

Wegstein’s algorithm (8) converges to the global minimum of 

the objective function 𝐹(𝑥) with linear convergence rate, that 

is, there are 𝛽 ∈ (0,1) and for 𝑁 ∈ ℕ and such that ∀ 𝑛 > 𝑁 

is fulfilled |�̃�𝑛+1 − �̅�| < 𝛽|�̃�𝑛 − �̅�|. 
Proof of Theorem 2. The convergence of the iterative 

sequence {α̃n} to the global minimum �̅� follows from Lemma 

3 and Theorem 1. Next, we show that for all 𝑛 ≥ 3 there is 

𝛼𝑛+1 ≤ �̃�𝑛. It follows from Wegstein's algorithm that 𝛼𝑛+1 =
𝛹( �̃�𝑛).  It is equivalent to the equality 𝛼𝑛+1 − �̃�𝑛 =
−𝐴 ∫ [|𝐹(𝑥) − �̃�𝑛 | − 𝐹(𝑥) + �̃�𝑛]𝑚𝑑µ.

𝐸
 The right part of the 

last equality is non-positive by virtue of statement 1 of Lemma 

1, therefore 𝛼𝑛+1 − �̃�𝑛 ≤ 0. Thus, for all 𝑛 ≥ 3 it is fulfilled: 

 

𝛼𝑛+1 ≤ �̃�𝑛, (11) 

 

Since Wegstein's algorithm is applied starting from 𝑛 = 3. 

Now we note that based on the basic idea of this method [20], 

it follows that for any 𝑛 ≥ 3: �̃�𝑛  always lies in the interval 

between 𝛼𝑛+1 and 𝛼𝑛. Therefore, taking into account (11), the 

inequalities 𝛼𝑛+1 ≤ �̃�𝑛 ≤ 𝛼𝑛  are satisfied for all 𝑛 ≥ 3 . 

Therefore, 

 

𝛼𝑛+2 ≤ �̃�𝑛+1 ≤ 𝛼𝑛+1. (12) 

 

Further, by (12) we get the following estimate of the 

absolute value of the difference: 

 
|�̃�𝑛+1 − �̅�| ≤ |�̃�𝑛+1 − �̅�| = |𝛹( �̃�𝑛) − 𝛹( �̅�)|

= |(�̃�𝑛 − �̅�)𝛹′(𝜏)| 
(13) 

 

where, τ lies between �̃�𝑛  and �̅� . Note that from the 

convergence of the sequence {α̃n} it follows that there will be 

𝑁 ∈ ℕ  such that ∀ n > 𝑁  there will be an estimate |𝜏 −
𝐹(𝑥)| ≤ |𝐹(𝑥)|. Now we estimate the derivative 𝛹′(𝜏) on the 

set E, taking into account inequalities (6). 

 

0 ≤ |𝛹′(𝜏)| = |( 𝛼 − 𝐴𝑔𝑚(𝐹, 𝛼))
𝛼=𝜏

′
|

= |1 − 2𝑚𝐴𝑔𝑚−1((𝐹, 𝜏))| = 

= |1 −
2𝑚 ∫ [|𝐹(𝑥) − 𝜏| − 𝐹(𝑥) + 𝜏]𝑚−1𝑑µ

𝐸

2𝑚+𝑝𝑚 ∫ |𝐹(𝑥)|𝑚−1𝑑µ.
𝐸

|

= |1 −
2𝑚 ∫ [2(𝜏 − 𝐹(𝑥))]

𝑚−1
𝑑µ

Е(𝐹,τ)

2𝑚+𝑝𝑚 ∫ |𝐹(𝑥)|𝑚−1𝑑µ.
𝐸

| ≤ 

≤ |1 −
2𝑚𝑚 ∫ |𝐹(𝑥)|𝑚−1𝑑µ

Е(𝐹,τ)

2𝑚+𝑝𝑚 ∫ |𝐹(𝑥)|𝑚−1𝑑µ
𝐸

| = 𝛽 < 1. 

 

Thus, based on (13), we obtain an estimate: 

 
|�̃�𝑛+1 − �̅�| ≤ |𝛹′(𝜏)||�̃�𝑛 − �̅�| < 𝛽|�̃�𝑛 − �̅�|. 

 

Theorem 2 is proved. 

From the proof of this theorem, we can notice the following 

fact. Given that for any τ inequality ∫ |𝐹(𝑥)|𝑚−1𝑑µ
Е(𝐹,τ)

 ≤

∫ |𝐹(𝑥)|𝑚−1𝑑µ
𝐸

, we get the following estimate of the rate of 

convergence: 

 

𝛽 = |1 −
2𝑚𝑚 ∫ |𝐹(𝑥)|𝑚−1𝑑µ

Е(𝐹,τ)

2𝑚+𝑝𝑚 ∫ |𝐹(𝑥)|𝑚−1𝑑µ
𝐸

| ≤ |1 −
1

2𝑝
|. 

 

 

6. CONCLUSION 

 

The basic properties of the auxiliary function are 

investigated. It turned out that the auxiliary function for any 

objective function is non-negative, positively homogeneous, 

uniformly continuous and differentiable. Higher-order 

derivatives are calculated. The criterion of optimality is 

established. A numerical method for finding the global 

minimum of the objective function is constructed, which is 

based on the Wegstein method. The proposed algorithm 

converges in any case. An estimate of the convergence rate of 

the iterative procedure is obtained. 
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