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The main requirement of parametric path planning techniques in robot manipulators is 

to create continuous, smooth, and easy-to-modify path such as to move the end-effector 

from start point to destination point. To meet these requirements, the rational Bezier 

and NURBS algorithms have been proposed for path planning of 2R manipulator in 

environment with known and static obstacles. In this study, a comparison in terms of 

path length and time consumption of algorithm has been conducted to show the superior 

of one method to another. Based on numerical simulation, it has been shown that the 

rational Bezier algorithm generates shorter path and takes less time to complete the path 

planning task as compared to NURBS method. In addition, this study presented the 

design of real-time set-up based on Arduino UNO microcontroller and micro-stepping 

actuators. It has been shown that the experimental results could successfully verify the 

numerical results for both proposed path planning methods for different configuration 

of obstacles. 
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1. INTRODUCTION

Path planning is a completely geometrical task in nature, 

since it's defined as a geometrical path construction without 

regard to any specific time law [1]. Path planning is considered 

offline when it develops the plan in advance, depending on a 

known model of the environment (workspace), and then 

delivers the path to an executor (manipulator). It is defined to 

be online if the plan is gradually developed while the executor 

(manipulator) is working. In this situation, the planner could 

be sensor-based, which means it includes sensing, analysis, 

and execution [2]. 

Robot path planning is concerned with deciding how a robot 

will move and navigate in a workspace or environment in 

order to achieve its goals. Aside from avoiding obstacles, the 

path planning task demands the robot to compute a collision-

free path between a start and a destination point. In addition, 

the robot must fulfill certain specifications or optimize specific 

performance characteristics. The amount of information 

available about the environment (i.e., completely known 

environment, partially known environment, and entirely 

unknown environment) influences the type of path planning. 

The environment is only partially known most of the time, 

with the robot already identifying certain locations inside the 

workplace prior to path planning and navigating (i.e., areas 

likely to pose local minimum problems). The status of an 

obstacle can be static (when its position and orientation 

relative to a known fixed reference system stays constant over 

time) or dynamic (when its location and orientation relative to 

the fixed reference system changes over time) [3]. 

Path planning can be either local or global. The local Path 

planning occurs, whereas the manipulator being moving and 

acquiring data from various sensors. In the present case, the 

robot possesses the capability for implementing a new course 

in response to the variations in environment. The global path 

planning is merely achievable when the robot's surroundings 

(obstacles) are static and well-recognized. In this context, the 

Path planning algorithm generates a complete path before the 

manipulator starts its movement [4, 5]. 

A review of the most recent studies in the field of current 

work has been conducted. Chen et al. [6] proposed an effective 

strategy for generating a Path planning with an obstacle 

avoidance based on Bezier Curve and Particle Swarm 

Optimization (PSO) for a super redundant manipulator. 

Tharwat et al. [7] introduced a unique Chaotic Particle Swarm 

Optimization (CPSO) approach for optimizing Bezier curve 

control points to generate optimal and smooth path between 

the start and destination points. Wu and Snasel [8] introduced 

an effectual Bezier Curve-based path planning method for a 

robot soccer that incorporates position modification features, 

path smoothing, obstacle avoidance, and path planning, in the 

static obstacles presence. AL-Qassar and Abdulnabi [9] 

presented an optimum path planning method for 5-DOF Lab-

Volt 5250 robot manipulator, where the strategy was provided 

in the joint space utilizing the Bezier curve method with 

obstacles avoidance, and the PSO approach was employed for 

finding an optimum path. Li et al. [10] proposed a novel path 

planning method founded based on Fire-fly Optimization 

(FAO) as well as Bezier Curve that generates optimal and 

collision-free path. Jalel et al. [11] introduced a unique 

roadmap technique to generate an optimal path based on 

NURBS method. The efficiency of proposed technique has 

been proven via numerical simulation. Marthon [12] proposed 

a new technique for optimal path planning in complex 2D 

environments with static obstacles. The study utilized the 

graph theory to find shortest path which can avoid the 
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obstacles. Lai et al. [13] developed a novel obstacle avoidance 

technique for a robot manipulator based on NURBS. Raheem 

and Abdulkareem [14] introduced a new approach of 

manipulator path planning using probabilistic roadmap as well 

as the artificial prospective field methods. and then used a A* 

method to the enhanced roadmap after that used a NURBS 

curve for improving the generated path. Shi et al. [15] 

proposed a path planning method for six-degree of freedom 

articulated robot arm founded upon quintic NURBS, then a 

genetic algorithm was adopted for optimizing the path of 

manipulators aims to get an optimal path length. Chen et al. 

[16] presented a path planning model for industrial 4-D of 

articulated painting manipulator based on T-Bezier curve 

(trigonometric Bezier curve).  

Other than other path planning methods, the rational Bezier 

and the NURBS methods have been proposed due to their 

stability and ease of calculation. The presence of weight 

parameters in their algorithms grants them high flexibility in 

shaping and forming the generating path. As such, these 

methods have suggested for synthesizing the path of 2R 

manipulator in the presence of static and known obstacles. 

The following points highlight the main contribution of this 

study: 

1. Conducting a comparison study based on numerical 

simulation in terms of path length and time 

consumption of algorithm. 

2. Embedded Design and implementation of the path 

planning algorithms for 2R manipulator in real-time 

environment with different obstacle configurations. 

3. Experimental verification of numerical results. 

 

 

2. ROBOT MANIPULATOR MODELLING 

 

The kinematic analysis of a mechanical structure of robot 

manipulator is concerned with the motion depiction regarding 

a fixed reference. It illustrates the analytical link between the 

positions of joint and the position of end-effector and 

orientation in a Cartesian frame via neglecting the forces as 

well as moments that produce a structural motion [17]. 

The kinematic analysis is divided into (2) approaches; the 

forward kinematics, and the inverse kinematics. The robot 

manipulator's forward kinematics relates to the position and 

orientation computation of its end-effector frame from its joint 

coordinates (θ), as shown in Figure 1(a), where L1 and L2 are 

the link lengths of manipulator [18]: 

 

𝑃𝑥 = 𝐿1. cos 𝜃1 +  𝐿2. cos (𝜃1 + 𝜃2) (1) 

 

𝑃𝑦 = 𝐿1. sin  𝜃1 + 𝐿2. sin  (𝜃1 + 𝜃2) (2) 

 

The inverse kinematics concern with the difficulty of 

finding the specified angles of joints for getting a particular 

wanted end-effector's position and orientation. In this work, 

the elbow-up configuration as indicated in Figure 1(b) [19].  

The simplest method to solve the inverse kinematics 

problem based on geometrical method is to pursue the 

following steps (see Figure 1): 

 

Step 1: Determination of the length between the end-

effector and manipulator base. 

 

𝑅2 =  𝑃𝑥
2 +  𝑃𝑦

2 (3) 

 

Step 2: Determination of angle between the two links of 

manipulator.  

 

𝛼 = cos−1 (
𝑙1

2 + 𝑙2
2 − 𝑅2

2𝑙1𝑙2

) (4) 

 

where, 𝛼 has been derived based on cosine law.  

 

𝑅2 = 𝑙1
2 + 𝑙2

2 − 2𝑙1𝑙2 cos 𝛼 (5) 

 

Step 3: Obtaining the angle of elbow joint 𝜃2 using: 

 

𝜃2 = 𝛼 − 𝜋 (6) 

 

Using Eq. (4), one can write above equation as follows: 

 

𝜃2 =  cos−1 (
𝑙1

2 + 𝑙2
2 − 𝑅2

2𝑙1𝑙2

) −  𝜋 (7) 

 

Step 4: The joint angle 𝜃1  of shoulder (base) can be 

determined using: 

 

𝜓 = tan−1 (
𝑙2 sin 𝜃2

𝑙1 + 𝑙2 cos 𝜃2

) (8) 

 

where, 𝜓 is the angle between the line R and the first link. 

 

𝜃1 = tan−1 (
𝑃𝑦

𝑃𝑥

) + tan−1 (
𝑙2 sin 𝜃2

𝑙1 + 𝑙2 cos 𝜃2

) (9) 

 

 
(a) 

 
(b) 

 

Figure 1. Forward kinematics and inverse kinematics of a 2R 

planar manipulator 
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3. RATIONAL BEZIER CURVE 

 

The Bezier curve is a parametric curve P(t). The polynomial 

(n) degree relies upon the control points (n+1) number used 

for defining the approximating curve. An nth order Bezier 

curve with control input (Pn) being characterized into Eq. (10) 

[20]. 

 

𝑃(𝑡) =  ∑ 𝐵𝑖
𝑛

𝑛

𝑖=0

(𝑡)𝑃𝑖,           𝑡 ∈ [0,1] (10) 

 

where, 𝑃𝑖  represent the coordinates of ith control points 

governing the shape of the curve and 𝐵𝑖
𝑛(𝑡)  defines the 

Bernstein polynomial which given by [21]: 

 

𝐵𝑖
𝑛(𝑡) = (

𝑛
𝑖

) (𝑖 − 𝑡)𝑛−𝑖  𝑡𝑖 ,       𝑖 ∈ [0,1, … , 𝑛] (11) 

 

And (
𝑛
𝑖

) binomial coefficient is specified via [20]: 

 

(
𝑛
𝑖

) = (
𝑛!

𝑖! (𝑛 − 𝑖)!
) (12) 

 

The control polygon of Bezier curve is the polygon 

determined if the control points are being linked. The curve's 

geometrical features are determined from the control polygon 

merely. In addition to that, the curve initiates with (P0) and 

ends with (Pn), and the other control points just control the 

shape of carve and not intersect with it. Various examples of 

Bezier curve for several nth degree are illustrated in Figure 2 

[22]. 

 
(a) 

 
(b) 

 

Figure 2. (a) 2nd degree. (b) 3rd degree. (c) 3rd degree. (d) 4th 

degree Bezier curve 

The rational Bezier curve is an extension of the standard 

Bezier curve Eq. (10) to: 

 

𝑃(𝑡) =  ∑ 𝑅𝑖
𝑛

𝑛

𝑖=0

(𝑡)𝑃𝑖,           𝑡 ∈ [0,1] (13) 

 

where, 𝑅𝑖
𝑛(𝑡) is the weight functions, which can be expressed 

by: 

 

𝑅𝑖
𝑛(𝑡) = (

𝑤𝑖𝐵𝑖
𝑛(𝑡)

∑ 𝑤𝑗𝐵𝑗
𝑛(𝑡)𝑛

𝑗=0

) (14) 

 

The weight functions 𝑅𝑖
𝑛(𝑡) being the polynomials ratios 

(which is the cause for the word rational), and also, they rely 

upon the weights (wi). 

 

3.1 Weights parameter influence on Bezier curve 

 

The weights (wi) work as further parameters controlling the 

curve shape [23], and it adds more accurate control and even 

greater flexibility to the curve shape, where the weights 

varying at a particular control point are shown in Figure 3 

revealing (5) curves, where the weight (w1) rose from (0) to 

(5). This curve is dragged to the (P1) in a manner that the 

distinct points upon the curve converge at the (P1). For w1 = 0, 

point P1 has no effect. As w1 raises to (5), this curve gets 

further and further appealed to the (P1) [24]. 

 

 
 

Figure 3. Weight effect on the 2nd degree Bezier curve 

 

 

4. NON-UNIFORM RATIONAL B-SPLINE CURVE 

(NURBS) 

 

NURBS curves are defined as a function of the control 

points as well as the basis functions. B-spline curve is a curve 

consisting of several polynomial pieces (the segments). It 

defined by the degree of each of its polynomial pieces (the 

segments), and by the number n of segments [25, 26]. 

The rational B-spline curves has a new set of (n + 1) 

parameter, named weights wi, for providing more flexibility to 

the curve, the (non-rational) B-spline curve is [23, 27]: 

 

𝑃𝑛𝑟(𝑡) = ∑ 𝑄𝑖𝑁𝑖𝑘(𝑡)

𝑛

𝑖=0

 (15) 
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where, Qi = (xi, yi, wi) being the 3D control points. Thus, one 

gets the rational B-spline Pr(t) via segregating that part of Pnr(t) 

that relies upon the 3rd coordinates (wi) and dividing via this 

part. 

 

𝑃𝑟(𝑡) =
∑ 𝑃𝑖

𝑛
𝑖=0 𝑤𝑖𝑁𝑖𝑘

∑ 𝑤𝑖
𝑛
𝑖=0 𝑁𝑖𝑘

= ∑ 𝑃𝑖

𝑛

𝑖=0

𝑅𝑖𝑘(𝑡) (16) 

 

where, Pi = (xi, yi) being the 2D control points, and Rik(t) being 

the fresh, rational blending functions described via 

 

𝑅𝑖𝑘(𝑡) =
𝑤𝑖𝑁𝑖𝑘(𝑡)

∑ 𝑤𝑖𝑁𝑖𝑘(𝑡)𝑛
𝑖=0

 (17) 

 

And, non-rational basis functions Nik(t) calculation depends 

on knot vector T, it is defined recursively by: 

 

𝑁𝑖𝑘(𝑡) =
𝑡 − 𝑡𝑖

𝑡𝑖+𝑘−1 − 𝑡𝑖

𝑁𝑖,𝑘−1(𝑡)

+
𝑡𝑖+𝑘 − 𝑡

𝑡𝑖+𝑘 − 𝑡𝑖+1

𝑁𝑖+1,𝑘−1(𝑡) 
(18) 

 

Now, for Knot Vector, it has a significant influence upon 

the B-spline basis functions Nik(t) and therefore upon the 

obtained B-spline curve. Basically, (2) kinds of Knot vector 

being utilized, Open and Periodic, in (2) kinds, Uniform and 

Non-uniform, as shown in Figure 4 [24]. 

The uniform basis functions symmetry is noticed in Figures 

(4-a) and (4-c), and the way that the symmetry being lost in 

the non-uniform basis functions in Figures (4-b) and (4-d). 

 

 
(a) T = [0 0 0 1 2 3 3 3] 

 
(b) T = [0 0 0 1 1 3 3 3] 

 
(c) T = [0 1 2 3 4 5 6] 

 
(d) T = [0 1 1 2 3 4 4] 

 

Figure 4. Uniform and Non-uniform basis functions for (n + 

1 = 5) and (k = 3) with Open and periodic Knot vector 

 

4.1 Weights parameter influence on NURBS curve 

 

As being said earlier, the weights (wi) that work as further 

parameters govern the curve shape. It is easy to see in Figure 

5 the weight (w2) effect upon the curve shape via governing 

the quantity of pulling that the point (P2) applies upon the 

curve. For weight (w2) equals to zero, the point (P2) possesses 

no influence. As the weight (w2) rises to (5), the curve gets 

further and further appealed to the (P2) [23]. 

 

 
 

Figure 5. Weight effect on 2nd degree (n + 1 = 5 and k = 3) 

NURBS curve 
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5. IMPLEMENTATION THE PATH PLANNING OF 

BEZIER CURVE 

 

To move the robot arm from a start point to a goal point in 

the obstacles existence, a series of joint angles alongside the 

path must be obtained [28].  

The difficulty of obtaining a possible collision free path, 

from the start to the goal, can be resolved via employing Bezier 

method; a no. of middle points within the acceptable area of 

the workspace shall be determined as well as utilized for the 

path planning. The Bezier path planning technique is 

illustrated in the Pseudo Code in Figure 6. 

 

 
 

Figure 6. Bezier path planning procedure 

 

 

6. IMPLEMENTATION THE NURBS CURVE PATH 

PLANNING 

 

NURBS were suggested to find a possible collision free path 

from the start to the goal, in the presence of obstacles, chosen 

due to their flexibility as well as geometrical properties, and 

joined with the truth that the algorithms of the Non-Uniform 

Rational B-Splines being rapid and numerically steady. The 

NURBS permit the of geometric forms depiction in a compact 

shape and they're skillful at depicting the location of a point in 

the workspace [11].  

The NURBS path planning technique for moving the arm 

throughout a no. of middle points within the acceptable area of 

the workspace for reaching the wanted goal point being 

displayed in the Pseudo code in Figure 7. 

 
 

Figure 7. NURBS path planning procedure 

 

 

7. SIMULATION RESULTS 

 

In the present research, the suggested path planning 

algorithms are comprised three parts. The first one is the 

workspace; robot cartesian workspace is described as a space 

made up of points that can only be attained via a specified end-

effector configuration. Inverse kinematics was used to obtain 

these points that are associated with joint angles. However, as 

illustrated in Figure 8, the generation of free Cartesian space 

is limited by mechanical and geometric constraints, which 

affect and limit the motion of the robotic manipulator as well 

as split the workspace into acceptable and forbidden zones. 

The generation of free cartesian space can be achieved by 

analyzing all possible solutions for acceptable points in the 

environment, which are dependent on the obstacles collision 

checking function as revealed in the Figure 8 [29]. 

The workspace has a dimension of (50 to 50) cm in x-axis 

and (0 to 50) cm in y-axis. The length of the manipulator links 

is 30 cm for link 1 and 20 cm for link 2. The obstacle type is 

static and its arrangement in the workspace has two cases for 

each proposed method. The cases are composed of four 

obstacles, each one of various shapes with a diameter of 10 cm 

and coordinates as shown in Table 1: 
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Table 1. Obstacles coordinates for the PP algorithms 

 
Sequence coordinates Case 1 Case 2 

1st Obstacle 
X (cm) 37 34 

Y (cm) 15 17 

2nd Obstacle 
X (cm) 35 18 

Y (cm) 36 31 

3rd Obstacle 
X (cm) 15 8 

Y (cm) 36 42 

4th Obstacle 
X (cm) -11 -12 

Y (cm) 39 36 

 

 
 

Figure 8. Work space analysis with different obstacle shape 

based on elbow up manipulator 

 

 
(a) 

 
(b) 

 

Figure 9. Bezier path planning with two obstacle 

configurations: (a) Case 1, (b) Case 2 

 

Table 2. Control points coordinates for the PP algorithms 

 

Variables Symbol 
Coordinates 

Weight 
X (cm) Y (cm) 

1st Control Point P0 49 2 1 

2nd Control Point P1 29 6 1.5 

3rd Control Point P2 23 23 1 

4th Control Point P3 3 31 1 

5th Control Point P4 1 45 1 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 10. Bezier path planning joint variation θ1 (a, c) and 

θ2 (b, d) for both cases 

 

384



 

 
(a) 

 
(b) 

 

Figure 11. NURBS path planning: (a) Case 1 and (b) Case 2 

 

The second part of the proposed path planning algorithms is 

the workspace analysis for obstacle avoidance. This part is the 

same as the obstacle-free space excluding all the points which 

make contact with obstacle area. In other words, this part 

includes all points of workspace where there is no collision of 

manipulator’s links with resident obstacles during the path 

planning from start to destination points. Accordingly, one can 

detect three forbidden regions; one is due to allowable lengths 

of arms (outer region), the second area is due to presence of 

obstacle, while the third area (inner region) is due to 

singularity and mismatch in length of the first and second arms. 

The latter area has a radius equal to the length of second link 

as shown in Figure 8. 

The third part is the path planning process. As we mentioned 

in Sections 5, and 6, the path planning process for both Bezier 

and NURBS curves is explained in Pseudo Code in Figures 5, 

and 6 respectively. This process is restricted only to an 

acceptable area. In other words, the algorithms should find the 

shortest path from start to destination point within the 

acceptable area in shortest time as possible, otherwise the 

algorithm will shut down. Figure 9 shows two cases of a path 

planning algorithm using the Bezier curve. 

The fourth degree Bezier path planning as shown in Figure 

9, is plotted due to the location of the control polygon and the 

value of the weight of every control point, where the control 

points coordinates and the weight for both cases are given in 

Table 2. 

The generated paths in both cases are smooth, flexible, and 

continuous, where in case 1, the total length of the path from 

start to destination point is 66.164 cm, in total estimated time 

11.776 sec, whereas in case 2, the path's entire length being 

66.7018 cm, in total estimated time 12.5161 sec. 

Also, Figure 10, shows the variation of the joint’s angles 

with the estimated time for both cases. 

Now the third order NURBS curve, as shown in Figure 11, 

is plotted based on the knot vector as explained in Section 5, 

where the sequence and type of knot vector are like in Figure 

4(b), in addition to the control polygon location and the weight 

values, as manifested in Table 2. 

The generated paths in both cases consist of three segments, 

each segment controlled by three control points. In case 1, the 

path entire length being 70.1078 cm, in total estimated time of 

14.4257 sec, whereas in case 2, the path entire length being 

68.8791 cm, in total estimated time of 15.8199 sec. Figure 12, 

evinces the variation of the joint’s angles with the estimated 

time for both cases. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 12. NURBS path planning joint variation θ1 (a, c) and 

θ2 (b, d) for both cases 
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8. EXPERIMENTAL RESULTS 

 

The obtained paths based on Bezier and NURBS path 

planning algorithms for both cases have been implemented in 

real time using MATLAB programming software, Arduino 

UNO, and two stepper motors. The first stepper motor - type 

Nema-17 is used to actuate the elbow joint, while the second 

stepper motor-type Nema-23 is utilized to drive the shoulder 

joint. Figure 13, shows some orientations and positions of 

manipulator’s links during Bezier path planning. Figure 14, 

represents real-time implementation of NURBS path planning. 

 

 
(1) 

 
(2) 

 
(3) 

 
(4) 

 
(5) 

 
(6) 

 
(7) 

 
(8) 

 

Figure 13. Real time Bezier path planning: (1, 2, 3, 4) Case 1 

and (5, 6, 7, 8) Case 2 

 

 
(1) 

 
(2) 

 
(3) 

 
(4) 

 
(5) 
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(6) 

 
(7) 

 
(8) 

 

Figure 14. Real time NURBS path planning: (1, 2, 3, 4) Case 

1, (5, 6, 7, 8) Case 2 

 

Based on simulated and experimental results, the length and 

the time taken by proposed path planning algorithms are listed 

in Table 3. The table indicates that the length of path based on 

NURBS curve is longer than that based on Bezier curve. Also, 

the NURBS algorithm takes longer time than the Bezier 

algorithm. According to this, Bezier path planning is 

significantly faster and more efficient than NURBS path 

planning in generating the shortest path from start to 

destination point in the absence of static obstacles at various 

locations, as shown in Table 3. 

 

Table 3. Comparison of the proposed path planning 

algorithms 

 

Algorithm 

Case 1 Case 2 

Length 

(cm) 

Time 

(sec) 

Length 

(cm) 

Time 

(sec) 

Bezier Path 

Planning 
66.164 11.776 66.7018 12.5161 

NURBS Path 

Planning 
70.1078 14.4257 68.8791 15.8199 

 

This study can be extended for future work to include the 

dynamic model of the manipulator and to apply advanced 

control techniques in implementation of path planning 

methods [30-36]. Another update of this work is to in-

cooperate modern optimization techniques in finding the 

optimal path in the presence of obstacles. One may propose 

recent optimization algorithms like particle swarm 

optimization (PSO), social spider optimization (SSO), Whale 

optimization algorithm (WOA), Butterfly optimization 

algorithm (BOA), Grey-wolf optimization (GWO) [37-43]. 

 
 

9. CONCLUSIONS 

 

This study has addressed the analysis and implementation 

of path planning algorithm for planar and two-arm 

manipulator in the presence of obstacles. Two algorithms have 

been presented for executing path planning: Bezier and 

NURBS curves. Simulation based on MATLAB has been 

performed for both algorithms. Also, experimental and real-

time scenarios have been conducted to show the validity of 

proposed algorithms. The results showed that the path 

obtained by Bezier curve is shorter than that based on NURBS 

curve. Moreover, the Bezier algorithm could take the robot 

gripper form start to end in less time than its counterpart. This 

work can be extended to consider other techniques of path 

planning such as A*, D*, and RRT. 
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NOMENCLATURE 

 

k Order of polynomial 

l1 First link length, cm 

l2 Second link length, cm 

n Degree of polynomial 

P(t) Parametric curve 

Pi 2D-Control point Coordinate, cm 

Pn Control Point, cm 

Pnr(t) Non-rational B-spline curve 

Pr(t) Rational B-spline curve 

Px End effector position in x-axis, cm 

Py End effector position in y-axis, cm 

Qi 3D-Control point Coordinate, cm 

R Distance from end effector to base of arm, cm 

T Knot vector 

wi The weight 

 

Greek symbols 

 

𝜃𝑖 Joint angle, rad 

α Angle between the two links, rad 

Ψ Angle between first link and R, rad 

 

Subscripts 

 

𝐵𝑛
𝑖 (𝑡) The Bernstein polynomial 

N𝑖𝑘(𝑡) Rational blending functions 

𝑅𝑖𝑘(𝑡) B-spline basis functions 

𝑅𝑛
𝑖 (𝑡) The weight functions 
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