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Cloud computing has grown into a critical technology by enabling ground-breaking 

capabilities for Internet-dependent computer platforms and software applications. As 

cloud computing systems continue to expand and develop, the need for a more 

guaranteed, reliant service, and an early task execution status from Cloud Service 

Providers (CSP) is vital. Additionally, efficient prediction of task failure significantly 

improves the running time as well as resource utilization in cloud computing. Task 

failure forecasting in the cloud is regarded as a challenging task based on the literature 

review conducted in this study. To address these issues, the goal of this study aimed to 

create fast machine learning approaches for reliably predicting task failure in cloud 

computing and analyzing their performance using multiple assessment criteria. The 

Google cluster dataset was used in this study, coupled with Artificial Neural Network 

(ANN), Support Vector Machine (SVM), and a stacking ensemble method, to forecast 

job failure in a cloud computing context. The results show that the proposed models can 

predict the failed tasks both effectively and efficiently. The stacking ensemble 

outperformed the experimented models, reaching a 99.8%. The suggested paradigm 

could greatly benefit cloud service providers by decreasing wasted resources and costs 

associated with task failures. 
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1. INTRODUCTION

Cloud computing has become a prevalent method of 

managing and providing software, platform, and infrastructure 

services through the internet [1-4]. However, due to its 

commodity infrastructure and various scheduling issues, task 

failure occurring is inevitable [1]. Task failure can be defined 

as the point at which the system is no longer able to meet the 

task execution demand [2]. When task failure occurs, complete 

workflow performance is affected due to the dependency 

nature of tasks. Subsequently, to provide satisfactory results to 

businesses and customers, task failures transpiring in data 

centers must be detected and predicted so that cloud service 

providers (CSPs) can prepare proper contingency plans in the 

event of service failure. Task failure prediction on cloud 

computing has been considered as a challenging task [3]. This 

is due to the increasing revolution on technology and the 

continual growth of cloud computing complexity. Many 

research works have been addressed the problem of task 

failure prediction on cloud computing. However, due to the 

cloud’s exponential growth and heterogeneous nature, the 

achieved results still demand for greater improvements. As a 

result, there is a pressing need to design a reliable model that 

can forecast task failure and produce better results. 

The main objective of this study is to create and apply 

various machine learning methods that use mathematical 

models to properly forecast task failure in cloud computing. 

Furthermore, based on the review of literature conducted as 

part of this study, we compared and measured the performance 

efficiency of the proposed task failure prediction techniques 

using an accuracy, precision, and confusion matrix against 

most frequently employed models. The experiment 

methodology consists of dataset preparation, dataset cleaning, 

prediction model development, and performance evaluation. 

In this work, the Google cluster dataset is used, which is a 

massive cloud system available publicly. The size of this 

dataset is 2.4 TB and consists of five tables, which are as 

follows: Collection_events, Instance_events, Instance_usage, 

Machine_arttributes, and Machine_events [4].  

Google cloud is considered one of the leading companies in 

cloud computing infrastructure and it consists of huge amount 

of compute clusters where each cluster consists of machines 

that has hundreds of massive numbers of tasks. These tasks 

cloud is used daily for searching through the web, making 

video calls or web hosting by millions of users worldwide. The 

dataset used in this paper is Google Cluster Workload Traces 

that has been released by Google in 2019. The dataset consists 

of the jobs/tasks that have been submitted from May 1st until 

May 31st which is represented in 96,400 machines. Google 

Cluster Workload Traces consists of run-time task resource 

usage for CPU, memory, and disk [5]. After extracting 

targeted data using SQL, Artificial Neural Network (ANN) 
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and Support Vector Machine (SVM) machine learning 

techniques are applied to the dataset to predict task failure. 

Stacking is an ensemble method used to improve the 

prediction by combining two algorithms. Thus, stacking will 

be used by combining both SVM and ANN.  

This study aims to help the IT managers in cloud data 

centers to predict task failure earlier and provide the 

opportunity to respond effectively to the predicted failures 

adequately. Moreover, it could immensely benefit cloud 

computing service providers including Amazon and Microsoft 

in enhancing performance and quality of service. The 

remainder of this paper is structured as shown in Figure 1. 

Section 2 investigates the most recent advances in task failure 

prediction literature. Section 3 describes the 

methodology used to conduct this research. Our experimental 

design is described in Section 4. Section 5 contains knowledge 

analysis and discussion of our research. Finally, section 6 

summarizes our findings and future research. 

 

 
 

Figure 1. Research contributions flow diagram 

 

 

2. LITERATURE REVIEW 

 

Liu et al. [1] conducted extensive research in which the 

authors attempted to predict task failure by focusing on the 

early stages. This experiment made use of three days’ worth of 

data from the Google cluster workload traces dataset. The data 

was preprocessed and thoroughly cleaned until it was reduced 

to almost a fifth of the original data size. Additionally, since 

the study’s goal was time-critical, the authors chose to conduct 

the experiments on the 1/3 stage of the tasks. Moreover, 

various clustering methods were examined and analyzed 

including, k-Mean clustering, Hierarchical clustering, and Job 

clustering; eventually, the job clustering method outperformed 

all other methods and was chosen as the primary clustering 

method. For the prediction model, the authors used a Robust 

Multi-Task Learning (RMTL) model. The results for the 

proposed model regarding the accuracy, F1, FNR, and 

execution time were 98.46, 0.48, 28.34, and 97.06 seconds, 

respectively. 

In Ref. [6], a deep learning algorithm called Bidirectional 

Long Short-Term Memory (Bi-LSTM) was presented for 

forecasting task failure in cloud data centers. The prediction 

model was deployed over a 29-day period using a Google 

cluster of 12.5k workstations, 672,075 jobs, and more than 48 

million processes. The advantages of this model included 

featuring task priority, performing task resubmissions, and 

handling scheduling delays. Also, unlike other models, this 

model handles multiple input features for performing higher 

accuracy. To improve task failure prediction, the authors 

enlarged the input set dimensions by adding selected features 

to the inputs such as examining the priority of each work, 

calculating the number of task resubmissions, and counting the 

scheduling delay. For the evaluation of the introduced 

prediction model, authors have used three types of metrics 

such as counting the percentage of F1 score and accuracy, 

calculating the Receiver Operating Characteristic (ROC), and 

finally measuring the Time Cost Overhead to determine the 

best outcomes. The proposed task prediction algorithm 

showed that Bi-LSTM has achieved 93% of accuracy and 87% 

for predicting both job and task failures. 

Another attempt at task failure prediction was made by 

Shetty et al. [7]. The experiment was conducted using two of 

the Google cluster workload trace datasets. The tables were 

combined in the pre-processing stage, creating a massive 

dataset of 40 GB when compressed. Moreover, after analyzing 

the new dataset, it was evident that it was imbalanced; 

therefore, three balancing methods were used to mitigate this 

issue. The balancing techniques were Synthetic Minority 

Oversampling Technique (SMOTE), Random Undersampling 

(RUS), and Random Oversampling (ROS). The prediction 

model used the XGBoost algorithm on each of the balancing 

techniques. Furthermore, the outcomes were compared and 

analyzed. Results showed that using the SMOTE balancing 

method with XGBoost produced the best results of 92% and 

94.8% for precision and recall. 

Failure detection and prediction were investigated in the 

study [8], where the authors researched, analyzed, and 

compared past detection and prediction models in the cloud. 

The outcomes of this study showed the significance of 

accurately predicting failures in the cloud and creating a 

strategy for handling these failures. Additionally, it was 

evident from the research that Big data models, Recurring 

Neural Networks, and Bayesian Interface, are all effective 

approaches when dealing with failure prediction. Moreover, 

the paper sheds light on the importance of parameter 

evaluation and selection, which can cause significant 

differences in the models’ performance. 

Jassas and Mahmoud [9] compared six different prediction 

models for task failure forecasting. The tested models in this 

study were: Naive Bayes (NB), Decision Trees (DTs), 

Random Forests (RF), Logistic Regression (LR), Quadratic 

Discriminant Analysis (QDA) and K-Nearest Neighbors 

(KNN). The experiment was centered towards the Google 

cluster workload trace, and the data was stored in a pickle 

format due to its massive size. Preprocessing methods for this 

study were based on an earlier study [6]. Additionally, the 

authors investigated the effects of various feature selection 

techniques that included Recursive Feature Elimination (RFE), 

SelectKBest on feature importance, in which the RFE 

concluded to be the chosen technique. For the evaluation, after 

examining numerous k-folds options, the study finally sets on 

5-fold cross-validation. Ultimately, the RF classifier 

outperformed the other machine learning algorithms, resulting 

in a 97% precision, 93% recall, and 95% F1-score. 

For task failure prediction in cloud workflows, 
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Padmakumari and Umamakeswari [10] presented a new 

classification technique termed as mixed bagging ensemble. 

They have also employed Naïve Bayes, Random Forest, Rule-

based, and Multilayer Feed-Forward Neural Networks as 

machine learning classifiers to predict task failure. The dataset 

was taken from the implementation of scientific workflow of 

tasks for an interval period of 3 seconds. Also, the authors used 

Principal Component Analysis and feature selection 

techniques to extract relevant metrics. Additionally, the Weka 

software tool was used to assess the efficacy of the employed 

categorization algorithms. WorkflowSim and CloudSim 

classes were used to collect the expected task failure during 

data preparation. The results revealed that Naïve Bayes had the 

highest accuracy rate of 94.4%. The given combined bagging 

ensemble, on the other hand, achieved an overall accuracy of 

95.8%.  

Mohammed et al. [2] proposed an advanced failure 

prediction system employing Auto-Regressive Moving 

Average (ARMA) and the R programming language with data 

acquired from the National Energy Research Scientific 

Computing Centre (NERSC). The authors have used 

computing system that was consisting of 574 computing nodes 

with RAM of 10 Gbyte and local disk space of 430. Login and 

administrative nodes have also been implemented within the 

system. Moreover, autocorrelation and partial autocorrelation 

functions were used in the identification step for building the 

time series model. The presented model proved its capabilities 

in predicting monthly failure rates of components and gained 

an overall accuracy of 95%.  

Liu et al. [11] introduced an online job failure prediction 

model using extreme incremental learning strategy. The 

dataset contained the first 12 hours of the Google cluster trace 

and was thoroughly cleaned and preprocessed to remove any 

records that are irrelevant to the experiment, which lead to the 

disposal of 12,961 jobs from the dataset. The four prediction 

models, Online Sequential Extreme Learning Machine (OS-

ELM), Support Vector Machine (SVM), ELM, as well as OS-

SVM, were used with a 1:3 ratio split for testing. Additionally, 

various parameter selection methods depending on hidden 

layer nodes were tested. The results illustrated the validity of 

using 10-100 hidden layer nodes with the OS-ELM model in 

predicting online job failures, where it achieved an accuracy 

of 93%.  

Islam and Manivannan [12] identified the key 

characteristics of the observed failures in the cloud 

environment with the aim of conducting better reliability and 

scalability to cloud systems. The analysis on the Google 

cluster workload trace proved that killed and failed jobs have 

a direct correlation to the increased consumption of resources 

in the cloud. Furthermore, the study investigated the potential 

to early predict the termination state of both job and task 

weaken to be finished, failed, or killed to minimize resource 

consumption by adopting better job and task scheduling 

algorithms. To achieve this goal, model Long Short-Term 

Memory Network (LSTM) built on Recurrent Neural Network 

(RNN) was created for forecasting application failure in the 

cloud. A prototype of the prediction system was implemented 

on a Google cluster dataset that contained hundreds of 

thousands of jobs, while a single job could reach to tens of 

thousands of tasks collected form 12,500 machines. The 

experiment was carried out using python and the performance 

was evaluated in terms of accuracy, F1 Score, precision, True 

Positive Rate (TPR), False Positive Rate (FPR), and True 

Negative Rate (TNR). The results demonstrated that the 

LSTM model successfully achieved 87% and 81% accuracy of 

predicted task failures and job failures, respectively. 

Furthermore, when compared to FNN and SVM, LSTM 

outperformed the others in terms of accuracy, precision, and 

recall. LSTM predicted task failures with a TPR of 85% and 

an FPR of only 11%. Furthermore, a set of failed predicted 

jobs was simulated on the GloudSim simulator, and the results 

revealed that the prediction model was capable of saving from 

12% to 20% of the resources involving service time, memory, 

and CPU.  

An automated job status prediction model was introduced in 

Ref. [13]. To solve the classification problem, the authors 

compared five classifiers: Naïve Bayes, SVM, Random forest 

(RF), Decision tree, and Logistic regression. The experiments 

were tested on a Genepool cluster from National Energy 

Research Scientific Computing (NERSC), consisting of over 

five million records and 13 features using 5-fold cross-

validation. Furthermore, the study aimed to predict failed jobs 

while the jobs are currently ongoing. The experimental results 

showed that the RF achieved better results with 99.8% 

accuracy, 94.8% precision, and 83.6% recall. However, the 

dataset was highly imbalanced with many failed jobs and 

consisted of less than an eighth of the successful jobs.  

Soualhia et al. [14] examined task scheduling in cloud 

computing and discovered that 40% of tasks along with 45% 

of jobs were not completed correctly. Jobs failed based on the 

study because some of its tasks failed before they could be 

finished, and the tasks failed due to the failure to perform 

dependent tasks. As a result, they used 10-fold cross-

validation to test several machine learning algorithms in R to 

anticipate task failures earlier. On Google clusters data, the 

General Linear Model (GLM), Random Forest, Boost, Neural 

Network, Tree, and Conditional Tree (CTree) were tested for 

accuracy, recall, and precision. Due to processing resource 

constraints and high execution times, only 10 files containing 

2,594 jobs and 6,3234 tasks with a total processing duration of 

100 minutes were utilized. Random Forest outperformed other 

methods in the experiments, with an accuracy of 95.8%, a 

recall of 96.2%, and a precision of 97.4%. At the same time, 

GloudSim was deployed and integrated with the Random 

Forest prediction model using 8 virtual machines (VMs). The 

results revealed an improvement in maximizing finished tasks 

as well as jobs up to 40%, and 20%, respectively, and 

minimizing the failed tasks and jobs’ numbers. Moreover, this 

extended model effectively improved the execution time 

optimization as an effect of the decreased amount of 

rescheduled failed jobs which lead to reducing the overall 

execution time. Besides, the study implemented the prediction 

models with the Hadoop framework on Amazon EC2. These 

extensive schedulers’ outputs were tested by gene expression 

association applications which are related to breast cancer. 

This new technique managed to decrease job failures by 70%. 

In Ref. [3], the Recurrent Neural Network (RNN) model 

was applied for the prediction of job and task failures in the 

Google cluster traces to limit the wasted resources in the cloud 

computing environment. The experiment was implemented for 

29 days on Google cluster workload traced dataset containing 

670,000 jobs and 26 million tasks. MySQL database was used 

to process data, then the predictive model was developed using 

python. The study identified features: Task Priority, Task Re-

submission, Resource Usage, and User Profile having a direct 

relation to job failures. Furthermore, the proposed model 

correctly predicted the failed and finished jobs with an at most 

True Positive Rate (TPR) of 40% and a 6% False Positive Rate 
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(FPR). The study efficiently utilized the computational 

resources with a 6% up to 10% improvement on average. 

The evaluated literature on analyzing tasks and job failures 

is summarized in Appendix 1. There is still a lot of opportunity 

for improvement in terms of mitigating the negative effects of 

failed tasks. Furthermore, a model that can accurately forecast 

task failures must be implemented. To circumvent these 

restrictions, we introduced ANN and SVM prediction 

algorithms, as well as an ensemble of both, that have never 

been utilized on Google clusters previously to help accurately 

predict failed tasks in this study. The study achieved 

satisfactory results in early prediction of task failures 

providing an opportunity to respond effectively by preparing 

proper contingency plans. The methodology, experimental 

results are detailed in the below sections.  

 

 

3. METHODOLOGY 

 

3.1 Dataset description 

 

Google cluster dataset is a massive cloud system publicly 

available. The dataset is initialized and stored by capturing the 

tasks and jobs that have been submitted during May 2019 [4]. 

Thus, the size of the dataset adds up to approximately 2.4 TB. 

Each cell in the dataset is representing a collection of machines 

stored in a single cluster that assigns work for the machines. 

Each cluster in the dataset is a collection of machines that have 

been combined into racks connected through a cluster network. 

The dataset consists of multiple tables, which are the Machine 

Event table, Machine Attribute table, Collection Events table, 

Instance Events table, and Instance Usage table [15]. As this 

research deals with task failure predictions, the Instance 

Events tables are used as part of this study. The InstanceEvents 

table contains the following attributes: Time, Type, 

Collection_id, Scheduling_class, Missing_type, 

Collection_type, Priority, Alloc_collection_id, 

Instance_index, Machine_id, Alloc_instance_index, 

Resource_request, and Constraint.  

 

3.2 Artificial neural networks 

 

The fundamental concept of ANNs is based on how the 

human brain connects neurons and dendrites. The same idea 

applies to ANNs, but with silicon and wires instead. The 

human brain is made up of 86 billion nerve cells called neurons, 

which are linked to thousands of cells in the human body via 

Axons [16]. Dendrites accept input from the surrounding 

environment. These inputs’ job is to generate electric impulses 

that can travel to a neural network. Furthermore, any neuron 

within the neural network can send a message to another 

neuron to handle any problem that arises in the network system. 

ANNs are made up of many nodes that are linked together 

by a network of links. The nodes can then take any input data 

and perform some operations on it. The result of the process 

operations is then passed to other nodes via an output called 

node value. Each link in the neural network is assigned a 

weight that can change the weight values. There are two 

artificial neural network types, Feedforward and Feedback. In 

Feedforward ANNs, the information follows unidirectionally 

with no feedback loops, and they mainly are used in 

classification problems. While in Feedback ANNs, the 

feedback loops are possible to attend, and they can be used in 

content addressable memory [17].  

The work of an ANN, as shown in Figure 2, is that the arrow 

represents a connection between two nodes and record the 

pathway for the following information. For each connection, 

it gains a weight, which is an integer number that can control 

a signal between two nodes. Altering weights is unnecessary 

if the neural network generates satisfactory results. However, 

in cases where the network produces low-quality results, the 

ANN applies the change of weights to enhance output results. 

 
 

Figure 2. Model of artificial neuron [16] 

 

ANNs are adaptive systems that can change the weights of 

inputs, or the structure of the network based on the data that 

flows through it during the learning or training stages. ANNs 

have also been shown to be capable of modeling both linear 

and non-linear relationships in datasets. Furthermore, ANNs 

are employed in a variety of settings to forecast real-time task 

scheduling and cloud failure jobs. 

 

3.3 Support vector machine 

 

The Support Vector Machine (SVM) is a supervised 

learning model that can tackle regression and classification 

problems adequately. SVM is a powerful strategy for dealing 

with the dimensionality curve, which can degrade machine 

learning model performance. Moreover, it has strength in 

solving non-separable cases using the kernel function. 

According to the study [18], this is done through mapping a 

non-separable problem to a new space with a higher 

dimensionality such that the cases can be distinguished and 

separated easily. SVM is considered a linear classifier that 

works on finding the best hyperplane based on the maximum 

margin to categorize the data samples to the correct classes. 

The optimal hyperplane is the one that obtains the maximum 

margin linear discriminates from both classes, which is the 

most considerable distance to the nearest element of each class. 

It has also been commonly used for fault identification in 

many applications due to its strong non-linear discrimination 

capability. 

To find the hyperplane, let’s suppose attributes A1 and A2, 

training instances are 2-D for instance €=(e1,e2), where 

attributes’ values of A1 and A2 are represented as e1 and e2. 

The hyperplane can be found by a dot product of the weight 

vector ¥={y1,y2,..,yn} where n represent attributes count; and 

€ plus s which is a bias. The hyperplane is calculated as: 

 

¥. € + 𝑠 = 0 (1) 

 

The maximal margin size [19] is defined as: 

 
𝟐

||¥||
 (2) 
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||¥|| is the Euclidean norm of ¥, which is √¥. ¥𝟐 if:  

 

¥ = {𝑦1, 𝑦2, . . , 𝑦𝑛}, 𝑡ℎ𝑒𝑛  

√¥. ¥ = √𝑦1
2 + 𝑦2

2+. . +𝑦𝑛
2 

(3) 

 

When the SVM is trained, the maximal margin equation is 

converged to below equation: 

 

𝑑(€𝑇) = ∑ 𝑜𝑖 𝛼𝑖 

𝑣

𝑖=1

€𝑖  €
𝑇 +  𝑠0 (4) 

 

where, €𝑇 is the test instance; v is the support vectors count; 

𝑜𝑖  is the class output of support vector €𝑖 ; 𝛼𝑖 𝑎𝑛𝑑 𝑠0  are 

numeric parameters that obtained during the optimization 

automatically. For the kernel function 𝑘(€𝑖 , €𝑗) there are 

different functions that could be used. However, the used 

function in this work is polynomial kernel function with d 

degree that is defined as: 

 

𝑘(€𝑖 , €𝑗) =  (€𝑖 . €𝑗 + 1)𝑑 (5) 

 

Furthermore, SVM has proved itself as a powerful 

technique that shows an excellent performance in various 

fields such as spam email detection [20], chronic kidney 

disease diagnosing [21], and failure prediction in cloud 

computing [22, 11].  

 

3.4 Stacking 

 

Stacking is an effective ensemble technique that uses meta-

level classifiers as inputs which are retrieved by the outputs of 

several base or weak level classifier predictions. Stacked 

ensemble methods have developed to become a well-

established technique of enhancing prediction accuracy [23]. 

Stacking has a framework of two levels: classifiers at level-0 

(also called base-level or weak) and classifiers at level-1 

(called meta). Using the training set, the base-level classifiers 

are trained to produce their predictions. Afterwards, the meta-

classifier is used to map the level-0 classifiers’ outputs to the 

actual target class, with assistance of the meta-data. An 

example of the meta-data may be defined by 

( (𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝑚)𝑥𝑖)  where 𝑥𝑖

𝑚 refers to the prediction 

provided on the 𝑖𝑡ℎ instances by the 𝑥𝑡ℎ base-level classifier, 

and 𝑥𝑖 defines the target class. After the base-level classifiers 

are trained, each classifier will produce an individual 

prediction during the process of classifying a new case. Finally, 

the predictions are considered as the meta-classifier’s input to 

produce the final classification decision [24]. To create a 

stacking ensemble with 𝑥  number of weak predictors, the 

training data is split into two separate folds.  

(1) The x classifiers are fitted to the data 

contained in the first fold.  

(2) Each x classifier computes a prediction to 

observe for the second fold.  

(3) Using the predictions in step 2, the meta-

data classifier is fitted to the second fold.  

In the preceding steps, only the data in the first fold is used 

as input for the final meta classifier, while the data in the 

second fold is not used for the learning process. Therefore, an 

apparent weakness from the stacking method is that 

information contained in the second half that might be of great 

use to the weak learners is overlooked and vice versa for the 

first half and the meta classifier. To address this limitation, a 

“k-fold cross-training” approach (such as the k-fold cross-

validation approach) should be implemented, so that for every 

observation or prediction made by the weak learners that may 

be used as an input to the meta-mode, the predictions and 

observations are made with iterations of base-level learners 

trained with k-1 folds approach as well as does not include 

considered prediction. Through this approach, it is ensured 

that a valid prediction is generated for each observation of the 

dataset made by the weak learners, allowing the meta-final 

model’s training stage to fully utilize the potential of the base-

predictions model. In this research, the stacking method will 

be constructed with ANN and SVM, also with the SVM 

implemented as the meta-classifier.  

 

 

4. EXPERIMENTAL SETUP 

 

The study was officially carried out using Weka data mining 

software [25]. 

 

4.1 Cleaning and pre-processing 

 

Table 1. Tasks types description 

 
Event type Value Event description 

SUBMIT 0 The task was submitted 

QUEUE 1 
The task is in queue for the 

scheduler 

ENABLE 2 
The task is ready for 

scheduling 

SCHEDULE 3 The task is scheduled  

EVICT 4 The task was de-scheduled  

FAIL 5 
The task was unable to be 

executed 

FINISH 6 
The task was executed 

successfully 

KILL 7 The task was cancelled 

LOST 8 
The task is ended but the final 

state wasn’t recorded 

UP-

DATE_PENDING 
9 

Attributes of a task is awaiting 

an update 

UPDATE_RUNNING 10 
Attributes of a task is 

currently updating 

 

The size of the Google trace cluster dataset used in this 

study is 2.4 TB. Therefore, to extract the required data, 

experimental dataset was uploaded within the Google Cloud 

Platform. The data pre-processing steps included data 

uploading and extraction stages. The dataset was uploaded 

through the Google Cloud Platform using the BigQuery tool. 

SQL query was then applied to extract the required part of the 

dataset from the Instance Events table. Several attributes in the 

InstanceEvents table were of no relevance to the prediction 

model. Therefore, among all the attributes in the 

InstanceEvents table, the feature selection of attributes 

included time, scheduling class, priority, alloc collection id, 

alloc instance index, CPUs, memory, and type, which is the 

targeted class. There are nine types for the event types as listed 

in Table 1. Since our study aimed to predict the final state of a 

task with being either failed or successful, the event types 

“fail”, and “finish” are considered as the target class. Hence, 

only samples that either contained the event type value of 5 

(which represent the failed tasks) and 6 (which represents the 

successful tasks) were extracted using SQL from the Google 
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cloud computing BigQuery environment. 

When the percentages of failed tasks are compared to the 

percentages of successful tasks, it was evident that the dataset 

was unbalanced. Figure 3 depicts the unbalanced dataset class. 

However, as this study only takes a fraction of the dataset and 

not the entirety of the 400 GB worth of data, equal parts of 

both the failed tasks and successful tasks were chosen and 

included with 16,000 samples per class. 

 

 
 

Figure 3. Imbalanced class 

 

For the proposed models, two primary stages are 

implemented. First, because this study deals with 

classification and not regression, the target class (failed or 

success) is converted from a numeric state to a nominal state; 

this ensures that the chosen models would classify the testing 

set. Second, all numeric attributes are normalized so that the 

inputs are transposed. The following is how the data was 

divided: 70% of the data was utilized to train the model, with 

the remaining 30% being used to test it. 

 

4.2 Performance of the models 

 

This section depicts the implementation results of the ANN, 

SVM, and the ensemble method. The parameters for the 

models are detailed in Table 2. 

 

Table 2. Models parameters 

 
 Parameter Value 

ANN 

HiddenLayers 2 

LearningRate 0.3 

Seed 0 

SVM 

C  2 

Kernel PolyKernal 

RandoomSeed 1 

SVM and 

ANN 

stacking 

Base classifier  SVM and ANN 

Meta classifier SVM 

NumFolds 10 

Seed 1 

 

The model’s precision, accuracy, False Negative Rate 

(FNR), and Area Under the Receiver Operating 

Characteristics (AUC) are used to assess their performance 

(AUC ROC). The following equations were used to determine 

FNR for accuracy, precision, and unsuccessful tasks: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 (6) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7) 

𝐹𝑁𝑅 =  
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 (8) 

 

Figures 4, 5, and 6 depicts the AUC ROC of each of the 

proposed models. AUC is used to compare the performance of 

two classifiers and evaluate the performance based on the 

given threshold (of 0.5) [19]. ROC illustrates and plots the 

tradeoff between the False Positive Rate (FPR) and the True 

Positive Rate (TPR), also known as recall or sensitivity. Table 

3 shows the outcomes of putting the trained models to work on 

the dataset.  

 

 
 

Figure 4. SVM AUC ROC Plot 

 

 
 

Figure 5. ANN AUC ROC plot 

 

 
 

Figure 6. Imbalanced Class 
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Table 3. Result of the trained models 

 
 ANN SVM Stacking 

Accuracy 99.7% 98.9% 99.8% 

Precision 0.998 0.990 0.998 

FNR 0.001% 0.011% 0.001% 

AUC ROC 0.996 0.989 0.997 

 

Considering that a perfect AUC score would be 1.0, the best 

AUC was achieved by using the stacked ensemble technique 

(Figure 6) where it obtained a value of 0.997. The ANN also 

produced a value of 0.996 (Figure 5) which is an ideal outcome 

when considering the high computational complexity of the 

stacked ensemble. The lowest AUC was obtained from SVM 

with a value of 0.989 (Figure 4). 

 

 

5. ANALYSIS AND DISCUSSION 

 

The performance of SVM, ANN, and stacking classifiers for 

predicting task failure on the Google cluster trace dataset were 

comprehensively investigated in this research. As evidenced 

by the results in Table 3, all of the proposed techniques 

performed admirably and successfully predicted the task’s 

status. All the classification models rigorously experimented 

in this study were analyzed based on their optimal parameter 

measurements. The highest accuracy of all the models was 

obtained by using the stacking ensemble followed by the ANN 

with only a 0.1% difference. Although the SVM achieved a 

good result, it is outperformed by the stacking ensemble and 

ANN. Furthermore, the stacking ensemble and the ANN 

outperform the SVM in precision, FNR, and AUC ROC. An 

extremely low FNR was achieved equally by ANN and the 

stacking ensemble. Although the stacking ensemble 

outperforms the ANN in terms of accuracy, precision, and 

AUC ROC, it should be noted that the stacking ensemble has 

the disadvantage of taking an inordinate amount of time to 

train and predict the data. Therefore, in cases where the 

implementation speed is critical, trading a fraction of the 

accuracy for a faster model would be advised. Hence, using 

the ANN model is a better choice. 

 

Table 4. Comparison of experimental results 

 

 RMTL [1] SVM * ANN * Stacking* 

Accuracy 98.5% 98.9% 99.7% 99.8% 
Precision  - 0.990 0.998 0.998 
FNR 28.3 0.011 0.001 0.001 
AUC ROC - 0.998 0.996 0.997 

Notes: *Result of the proposed algorithms in this study 

 

To further evaluate the proposed models, we measured 

performance with studies conducted experiments using the 

same dataset. Since the dataset used in this research is recent, 

only one study investigated similar issue of predicting failed 

tasks [1] using same dataset used in this research but applied 

different algorithms. Table 4 compares our experimental 

results with the optimal result achieved in [1]. As can be seen, 

it is evident all the three of the proposed algorithms in this 

study achieved higher results in terms of predicting the failure 

tasks correctly. Moreover, in terms of the failed tasks that were 

incorrectly classified, the proposed algorithms achieved the 

lowest result. 

Computational and memory resources are significantly 

consumed by failed tasks. Consequentially, cloud resources 

that include storage space, memory, and CPU will become 

depleted as the amount of failed tasks increases. The rates of 

failure tasks have dramatically increased as a result of the 

expanding sizes of software and hardware operations, as well 

as the lack of changes in their efficiency on a similar scale. To 

address the issues of providing reliability against emerging 

trends in cloud computing infrastructures, it is critical to 

provide credible failure forecasts for cloud computing clusters, 

and by facilitating accurate predictions that aids in taking 

action for potential task failures. Therefore, our proposed 

model could successfully help minimize wasted resources and 

costs against failures. Furthermore, the proposed models are 

able to provide satisfactory results to businesses and customers, 

so that the IT managers and potential CSPs could predict task 

failure earlier and provide the opportunity to respond 

effectively by preparing proper contingency plans. Moreover, 

it could benefit cloud computing service providers like 

Amazon and Microsoft in tremendously enhancing their 

performance and overall service quality.  

 

 

6. CONCLUSIONS 

 

In the past few years, cloud computing services have been 

rapidly increasing. However, there could be a moment where 

the services are no longer able to successfully execute the task. 

In this paper, an experiment was conducted by applying ANN, 

SVM, and a stacking ensemble on the Google trace cluster 

dataset. The models performances were evaluated in terms of 

accuracy, precision, FNR, and AUC ROC. From the 

experimental results, it was evident that using a stacking 

classifier gave a higher accuracy of 99.8% and an overall 

average of AUC ROC 0.997. However, it requires a high 

running time when compared with the ANN and SVM. 

Furthermore, using ANN and stacking, we were able to obtain 

excellent precision and a low false-negative rate. In addition, 

the results were compared to previous studies, and it was 

determined that all our proposed models performed better. In 

conclusion, this study could help CSPs forecast early task 

failures and adopt a better contingency plan to take the 

required actions in a timely and effective manner while 

enhancing performance and service quality. 

For future work, we aspire to explore the performance of 

applying stacking of different machine learning algorithms 

with less run time speed to detect failures in cloud 

environments efficiently in terms of speed and accuracy, both 

of which should be further improved. Furthermore, we are also 

looking at predicting the task failures in cloud-based 

applications in real-time through providing instantaneous 

response and assisting in higher level of service availability. 
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NOMENCLATURE 

 

ANN Artificial Neural Network 

ARMA Auto-Regressive Moving Average 

AUC Area Under the Receiver 

Bi-LSTM Bidirectional Long Short-Term Memory 

Ctree Conditional Tree 

CSP Cloud service providers 

DTs Decision Trees 

FNR False Negative Rate 

FPR False Positive Rate 

GLM General Linear Model 

KNN K-Nearest Neighbors 

LR Logistic Regression 

LSTM Long Short-Term Memory Network 

NB Naive Bayes 

OS-ELM Sequential Extreme Learning Machine 

QDA Quadratic Discriminant Analysis 

RF Random Forests 
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RFE Recursive Feature Elimination 

RNN Recurrent Neural Network 

ROC Receiver Operating Characteristic 

ROS Random Oversampling 

RUS Random Undersampling 

SMOTE Synthetic Minority Oversampling Technique 

SVM  Support Vector Machine  

TCO Time Cost Overhead 

TNR True Negative Rate 

TPR True Positive Rate 

VMs Virtual Machines 
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