
Task Failure Prediction Using Machine Learning Techniques in the Google Cluster Trace

Cloud Computing Environment

Mohammed Gollapalli1*, Maissa A. AlMetrik2, Batool S. AlNajrani2, Amal A. AlOmari2, Safa H. AlDawoud2, Yousof

Z. AlMunsour1, Mamoun M. Abdulqader2, Khalid M. Aloup2

1 Department of Computer Information Systems, College of Computer Science and Information Technology, Imam

Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
2 Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal

University, P.O. Box 1982, Dammam, Saudi Arabia

Corresponding Author Email: magollapalli@iau.edu.sa

https://doi.org/10.18280/mmep.090234 ABSTRACT

Received: 30 November 2021

Accepted: 20 February 2022

Cloud computing has grown into a critical technology by enabling ground-breaking

capabilities for Internet-dependent computer platforms and software applications. As

cloud computing systems continue to expand and develop, the need for a more

guaranteed, reliant service, and an early task execution status from Cloud Service

Providers (CSP) is vital. Additionally, efficient prediction of task failure significantly

improves the running time as well as resource utilization in cloud computing. Task

failure forecasting in the cloud is regarded as a challenging task based on the literature

review conducted in this study. To address these issues, the goal of this study aimed to

create fast machine learning approaches for reliably predicting task failure in cloud

computing and analyzing their performance using multiple assessment criteria. The

Google cluster dataset was used in this study, coupled with Artificial Neural Network

(ANN), Support Vector Machine (SVM), and a stacking ensemble method, to forecast

job failure in a cloud computing context. The results show that the proposed models can

predict the failed tasks both effectively and efficiently. The stacking ensemble

outperformed the experimented models, reaching a 99.8%. The suggested paradigm

could greatly benefit cloud service providers by decreasing wasted resources and costs

associated with task failures.

Keywords:

artificial neural networks, cloud computing,

support vector machine, machine learning,

cluster tracing

1. INTRODUCTION

Cloud computing has become a prevalent method of

managing and providing software, platform, and infrastructure

services through the internet [1-4]. However, due to its

commodity infrastructure and various scheduling issues, task

failure occurring is inevitable [1]. Task failure can be defined

as the point at which the system is no longer able to meet the

task execution demand [2]. When task failure occurs, complete

workflow performance is affected due to the dependency

nature of tasks. Subsequently, to provide satisfactory results to

businesses and customers, task failures transpiring in data

centers must be detected and predicted so that cloud service

providers (CSPs) can prepare proper contingency plans in the

event of service failure. Task failure prediction on cloud

computing has been considered as a challenging task [3]. This

is due to the increasing revolution on technology and the

continual growth of cloud computing complexity. Many

research works have been addressed the problem of task

failure prediction on cloud computing. However, due to the

cloud’s exponential growth and heterogeneous nature, the

achieved results still demand for greater improvements. As a

result, there is a pressing need to design a reliable model that

can forecast task failure and produce better results.

The main objective of this study is to create and apply

various machine learning methods that use mathematical

models to properly forecast task failure in cloud computing.

Furthermore, based on the review of literature conducted as

part of this study, we compared and measured the performance

efficiency of the proposed task failure prediction techniques

using an accuracy, precision, and confusion matrix against

most frequently employed models. The experiment

methodology consists of dataset preparation, dataset cleaning,

prediction model development, and performance evaluation.

In this work, the Google cluster dataset is used, which is a

massive cloud system available publicly. The size of this

dataset is 2.4 TB and consists of five tables, which are as

follows: Collection_events, Instance_events, Instance_usage,

Machine_arttributes, and Machine_events [4].

Google cloud is considered one of the leading companies in

cloud computing infrastructure and it consists of huge amount

of compute clusters where each cluster consists of machines

that has hundreds of massive numbers of tasks. These tasks

cloud is used daily for searching through the web, making

video calls or web hosting by millions of users worldwide. The

dataset used in this paper is Google Cluster Workload Traces

that has been released by Google in 2019. The dataset consists

of the jobs/tasks that have been submitted from May 1st until

May 31st which is represented in 96,400 machines. Google

Cluster Workload Traces consists of run-time task resource

usage for CPU, memory, and disk [5]. After extracting

targeted data using SQL, Artificial Neural Network (ANN)

Mathematical Modelling of Engineering Problems
Vol. 9, No. 2, April, 2022, pp. 545-553

Journal homepage: http://iieta.org/journals/mmep

545

https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.090234&domain=pdf

and Support Vector Machine (SVM) machine learning

techniques are applied to the dataset to predict task failure.

Stacking is an ensemble method used to improve the

prediction by combining two algorithms. Thus, stacking will

be used by combining both SVM and ANN.

This study aims to help the IT managers in cloud data

centers to predict task failure earlier and provide the

opportunity to respond effectively to the predicted failures

adequately. Moreover, it could immensely benefit cloud

computing service providers including Amazon and Microsoft

in enhancing performance and quality of service. The

remainder of this paper is structured as shown in Figure 1.

Section 2 investigates the most recent advances in task failure

prediction literature. Section 3 describes the

methodology used to conduct this research. Our experimental

design is described in Section 4. Section 5 contains knowledge

analysis and discussion of our research. Finally, section 6

summarizes our findings and future research.

Figure 1. Research contributions flow diagram

2. LITERATURE REVIEW

Liu et al. [1] conducted extensive research in which the

authors attempted to predict task failure by focusing on the

early stages. This experiment made use of three days’ worth of

data from the Google cluster workload traces dataset. The data

was preprocessed and thoroughly cleaned until it was reduced

to almost a fifth of the original data size. Additionally, since

the study’s goal was time-critical, the authors chose to conduct

the experiments on the 1/3 stage of the tasks. Moreover,

various clustering methods were examined and analyzed

including, k-Mean clustering, Hierarchical clustering, and Job

clustering; eventually, the job clustering method outperformed

all other methods and was chosen as the primary clustering

method. For the prediction model, the authors used a Robust

Multi-Task Learning (RMTL) model. The results for the

proposed model regarding the accuracy, F1, FNR, and

execution time were 98.46, 0.48, 28.34, and 97.06 seconds,

respectively.

In Ref. [6], a deep learning algorithm called Bidirectional

Long Short-Term Memory (Bi-LSTM) was presented for

forecasting task failure in cloud data centers. The prediction

model was deployed over a 29-day period using a Google

cluster of 12.5k workstations, 672,075 jobs, and more than 48

million processes. The advantages of this model included

featuring task priority, performing task resubmissions, and

handling scheduling delays. Also, unlike other models, this

model handles multiple input features for performing higher

accuracy. To improve task failure prediction, the authors

enlarged the input set dimensions by adding selected features

to the inputs such as examining the priority of each work,

calculating the number of task resubmissions, and counting the

scheduling delay. For the evaluation of the introduced

prediction model, authors have used three types of metrics

such as counting the percentage of F1 score and accuracy,

calculating the Receiver Operating Characteristic (ROC), and

finally measuring the Time Cost Overhead to determine the

best outcomes. The proposed task prediction algorithm

showed that Bi-LSTM has achieved 93% of accuracy and 87%

for predicting both job and task failures.

Another attempt at task failure prediction was made by

Shetty et al. [7]. The experiment was conducted using two of

the Google cluster workload trace datasets. The tables were

combined in the pre-processing stage, creating a massive

dataset of 40 GB when compressed. Moreover, after analyzing

the new dataset, it was evident that it was imbalanced;

therefore, three balancing methods were used to mitigate this

issue. The balancing techniques were Synthetic Minority

Oversampling Technique (SMOTE), Random Undersampling

(RUS), and Random Oversampling (ROS). The prediction

model used the XGBoost algorithm on each of the balancing

techniques. Furthermore, the outcomes were compared and

analyzed. Results showed that using the SMOTE balancing

method with XGBoost produced the best results of 92% and

94.8% for precision and recall.

Failure detection and prediction were investigated in the

study [8], where the authors researched, analyzed, and

compared past detection and prediction models in the cloud.

The outcomes of this study showed the significance of

accurately predicting failures in the cloud and creating a

strategy for handling these failures. Additionally, it was

evident from the research that Big data models, Recurring

Neural Networks, and Bayesian Interface, are all effective

approaches when dealing with failure prediction. Moreover,

the paper sheds light on the importance of parameter

evaluation and selection, which can cause significant

differences in the models’ performance.

Jassas and Mahmoud [9] compared six different prediction

models for task failure forecasting. The tested models in this

study were: Naive Bayes (NB), Decision Trees (DTs),

Random Forests (RF), Logistic Regression (LR), Quadratic

Discriminant Analysis (QDA) and K-Nearest Neighbors

(KNN). The experiment was centered towards the Google

cluster workload trace, and the data was stored in a pickle

format due to its massive size. Preprocessing methods for this

study were based on an earlier study [6]. Additionally, the

authors investigated the effects of various feature selection

techniques that included Recursive Feature Elimination (RFE),

SelectKBest on feature importance, in which the RFE

concluded to be the chosen technique. For the evaluation, after

examining numerous k-folds options, the study finally sets on

5-fold cross-validation. Ultimately, the RF classifier

outperformed the other machine learning algorithms, resulting

in a 97% precision, 93% recall, and 95% F1-score.

For task failure prediction in cloud workflows,

546

Padmakumari and Umamakeswari [10] presented a new

classification technique termed as mixed bagging ensemble.

They have also employed Naïve Bayes, Random Forest, Rule-

based, and Multilayer Feed-Forward Neural Networks as

machine learning classifiers to predict task failure. The dataset

was taken from the implementation of scientific workflow of

tasks for an interval period of 3 seconds. Also, the authors used

Principal Component Analysis and feature selection

techniques to extract relevant metrics. Additionally, the Weka

software tool was used to assess the efficacy of the employed

categorization algorithms. WorkflowSim and CloudSim

classes were used to collect the expected task failure during

data preparation. The results revealed that Naïve Bayes had the

highest accuracy rate of 94.4%. The given combined bagging

ensemble, on the other hand, achieved an overall accuracy of

95.8%.

Mohammed et al. [2] proposed an advanced failure

prediction system employing Auto-Regressive Moving

Average (ARMA) and the R programming language with data

acquired from the National Energy Research Scientific

Computing Centre (NERSC). The authors have used

computing system that was consisting of 574 computing nodes

with RAM of 10 Gbyte and local disk space of 430. Login and

administrative nodes have also been implemented within the

system. Moreover, autocorrelation and partial autocorrelation

functions were used in the identification step for building the

time series model. The presented model proved its capabilities

in predicting monthly failure rates of components and gained

an overall accuracy of 95%.

Liu et al. [11] introduced an online job failure prediction

model using extreme incremental learning strategy. The

dataset contained the first 12 hours of the Google cluster trace

and was thoroughly cleaned and preprocessed to remove any

records that are irrelevant to the experiment, which lead to the

disposal of 12,961 jobs from the dataset. The four prediction

models, Online Sequential Extreme Learning Machine (OS-

ELM), Support Vector Machine (SVM), ELM, as well as OS-

SVM, were used with a 1:3 ratio split for testing. Additionally,

various parameter selection methods depending on hidden

layer nodes were tested. The results illustrated the validity of

using 10-100 hidden layer nodes with the OS-ELM model in

predicting online job failures, where it achieved an accuracy

of 93%.

Islam and Manivannan [12] identified the key

characteristics of the observed failures in the cloud

environment with the aim of conducting better reliability and

scalability to cloud systems. The analysis on the Google

cluster workload trace proved that killed and failed jobs have

a direct correlation to the increased consumption of resources

in the cloud. Furthermore, the study investigated the potential

to early predict the termination state of both job and task

weaken to be finished, failed, or killed to minimize resource

consumption by adopting better job and task scheduling

algorithms. To achieve this goal, model Long Short-Term

Memory Network (LSTM) built on Recurrent Neural Network

(RNN) was created for forecasting application failure in the

cloud. A prototype of the prediction system was implemented

on a Google cluster dataset that contained hundreds of

thousands of jobs, while a single job could reach to tens of

thousands of tasks collected form 12,500 machines. The

experiment was carried out using python and the performance

was evaluated in terms of accuracy, F1 Score, precision, True

Positive Rate (TPR), False Positive Rate (FPR), and True

Negative Rate (TNR). The results demonstrated that the

LSTM model successfully achieved 87% and 81% accuracy of

predicted task failures and job failures, respectively.

Furthermore, when compared to FNN and SVM, LSTM

outperformed the others in terms of accuracy, precision, and

recall. LSTM predicted task failures with a TPR of 85% and

an FPR of only 11%. Furthermore, a set of failed predicted

jobs was simulated on the GloudSim simulator, and the results

revealed that the prediction model was capable of saving from

12% to 20% of the resources involving service time, memory,

and CPU.

An automated job status prediction model was introduced in

Ref. [13]. To solve the classification problem, the authors

compared five classifiers: Naïve Bayes, SVM, Random forest

(RF), Decision tree, and Logistic regression. The experiments

were tested on a Genepool cluster from National Energy

Research Scientific Computing (NERSC), consisting of over

five million records and 13 features using 5-fold cross-

validation. Furthermore, the study aimed to predict failed jobs

while the jobs are currently ongoing. The experimental results

showed that the RF achieved better results with 99.8%

accuracy, 94.8% precision, and 83.6% recall. However, the

dataset was highly imbalanced with many failed jobs and

consisted of less than an eighth of the successful jobs.

Soualhia et al. [14] examined task scheduling in cloud

computing and discovered that 40% of tasks along with 45%

of jobs were not completed correctly. Jobs failed based on the

study because some of its tasks failed before they could be

finished, and the tasks failed due to the failure to perform

dependent tasks. As a result, they used 10-fold cross-

validation to test several machine learning algorithms in R to

anticipate task failures earlier. On Google clusters data, the

General Linear Model (GLM), Random Forest, Boost, Neural

Network, Tree, and Conditional Tree (CTree) were tested for

accuracy, recall, and precision. Due to processing resource

constraints and high execution times, only 10 files containing

2,594 jobs and 6,3234 tasks with a total processing duration of

100 minutes were utilized. Random Forest outperformed other

methods in the experiments, with an accuracy of 95.8%, a

recall of 96.2%, and a precision of 97.4%. At the same time,

GloudSim was deployed and integrated with the Random

Forest prediction model using 8 virtual machines (VMs). The

results revealed an improvement in maximizing finished tasks

as well as jobs up to 40%, and 20%, respectively, and

minimizing the failed tasks and jobs’ numbers. Moreover, this

extended model effectively improved the execution time

optimization as an effect of the decreased amount of

rescheduled failed jobs which lead to reducing the overall

execution time. Besides, the study implemented the prediction

models with the Hadoop framework on Amazon EC2. These

extensive schedulers’ outputs were tested by gene expression

association applications which are related to breast cancer.

This new technique managed to decrease job failures by 70%.

In Ref. [3], the Recurrent Neural Network (RNN) model

was applied for the prediction of job and task failures in the

Google cluster traces to limit the wasted resources in the cloud

computing environment. The experiment was implemented for

29 days on Google cluster workload traced dataset containing

670,000 jobs and 26 million tasks. MySQL database was used

to process data, then the predictive model was developed using

python. The study identified features: Task Priority, Task Re-

submission, Resource Usage, and User Profile having a direct

relation to job failures. Furthermore, the proposed model

correctly predicted the failed and finished jobs with an at most

True Positive Rate (TPR) of 40% and a 6% False Positive Rate

547

(FPR). The study efficiently utilized the computational

resources with a 6% up to 10% improvement on average.

The evaluated literature on analyzing tasks and job failures

is summarized in Appendix 1. There is still a lot of opportunity

for improvement in terms of mitigating the negative effects of

failed tasks. Furthermore, a model that can accurately forecast

task failures must be implemented. To circumvent these

restrictions, we introduced ANN and SVM prediction

algorithms, as well as an ensemble of both, that have never

been utilized on Google clusters previously to help accurately

predict failed tasks in this study. The study achieved

satisfactory results in early prediction of task failures

providing an opportunity to respond effectively by preparing

proper contingency plans. The methodology, experimental

results are detailed in the below sections.

3. METHODOLOGY

3.1 Dataset description

Google cluster dataset is a massive cloud system publicly

available. The dataset is initialized and stored by capturing the

tasks and jobs that have been submitted during May 2019 [4].

Thus, the size of the dataset adds up to approximately 2.4 TB.

Each cell in the dataset is representing a collection of machines

stored in a single cluster that assigns work for the machines.

Each cluster in the dataset is a collection of machines that have

been combined into racks connected through a cluster network.

The dataset consists of multiple tables, which are the Machine

Event table, Machine Attribute table, Collection Events table,

Instance Events table, and Instance Usage table [15]. As this

research deals with task failure predictions, the Instance

Events tables are used as part of this study. The InstanceEvents

table contains the following attributes: Time, Type,

Collection_id, Scheduling_class, Missing_type,

Collection_type, Priority, Alloc_collection_id,

Instance_index, Machine_id, Alloc_instance_index,

Resource_request, and Constraint.

3.2 Artificial neural networks

The fundamental concept of ANNs is based on how the

human brain connects neurons and dendrites. The same idea

applies to ANNs, but with silicon and wires instead. The

human brain is made up of 86 billion nerve cells called neurons,

which are linked to thousands of cells in the human body via

Axons [16]. Dendrites accept input from the surrounding

environment. These inputs’ job is to generate electric impulses

that can travel to a neural network. Furthermore, any neuron

within the neural network can send a message to another

neuron to handle any problem that arises in the network system.

ANNs are made up of many nodes that are linked together

by a network of links. The nodes can then take any input data

and perform some operations on it. The result of the process

operations is then passed to other nodes via an output called

node value. Each link in the neural network is assigned a

weight that can change the weight values. There are two

artificial neural network types, Feedforward and Feedback. In

Feedforward ANNs, the information follows unidirectionally

with no feedback loops, and they mainly are used in

classification problems. While in Feedback ANNs, the

feedback loops are possible to attend, and they can be used in

content addressable memory [17].

The work of an ANN, as shown in Figure 2, is that the arrow

represents a connection between two nodes and record the

pathway for the following information. For each connection,

it gains a weight, which is an integer number that can control

a signal between two nodes. Altering weights is unnecessary

if the neural network generates satisfactory results. However,

in cases where the network produces low-quality results, the

ANN applies the change of weights to enhance output results.

Figure 2. Model of artificial neuron [16]

ANNs are adaptive systems that can change the weights of

inputs, or the structure of the network based on the data that

flows through it during the learning or training stages. ANNs

have also been shown to be capable of modeling both linear

and non-linear relationships in datasets. Furthermore, ANNs

are employed in a variety of settings to forecast real-time task

scheduling and cloud failure jobs.

3.3 Support vector machine

The Support Vector Machine (SVM) is a supervised

learning model that can tackle regression and classification

problems adequately. SVM is a powerful strategy for dealing

with the dimensionality curve, which can degrade machine

learning model performance. Moreover, it has strength in

solving non-separable cases using the kernel function.

According to the study [18], this is done through mapping a

non-separable problem to a new space with a higher

dimensionality such that the cases can be distinguished and

separated easily. SVM is considered a linear classifier that

works on finding the best hyperplane based on the maximum

margin to categorize the data samples to the correct classes.

The optimal hyperplane is the one that obtains the maximum

margin linear discriminates from both classes, which is the

most considerable distance to the nearest element of each class.

It has also been commonly used for fault identification in

many applications due to its strong non-linear discrimination

capability.

To find the hyperplane, let’s suppose attributes A1 and A2,

training instances are 2-D for instance €=(e1,e2), where

attributes’ values of A1 and A2 are represented as e1 and e2.

The hyperplane can be found by a dot product of the weight

vector ¥={y1,y2,..,yn} where n represent attributes count; and

€ plus s which is a bias. The hyperplane is calculated as:

¥. € + 𝑠 = 0 (1)

The maximal margin size [19] is defined as:

𝟐

||¥||
 (2)

548

||¥|| is the Euclidean norm of ¥, which is √¥. ¥𝟐 if:

¥ = {𝑦1, 𝑦2, . . , 𝑦𝑛}, 𝑡ℎ𝑒𝑛

√¥. ¥ = √𝑦1
2 + 𝑦2

2+. . +𝑦𝑛
2

(3)

When the SVM is trained, the maximal margin equation is

converged to below equation:

𝑑(€𝑇) = ∑ 𝑜𝑖 𝛼𝑖

𝑣

𝑖=1

€𝑖 €
𝑇 + 𝑠0 (4)

where, €𝑇 is the test instance; v is the support vectors count;

𝑜𝑖 is the class output of support vector €𝑖 ; 𝛼𝑖 𝑎𝑛𝑑 𝑠0 are

numeric parameters that obtained during the optimization

automatically. For the kernel function 𝑘(€𝑖 , €𝑗) there are

different functions that could be used. However, the used

function in this work is polynomial kernel function with d

degree that is defined as:

𝑘(€𝑖 , €𝑗) = (€𝑖 . €𝑗 + 1)𝑑 (5)

Furthermore, SVM has proved itself as a powerful

technique that shows an excellent performance in various

fields such as spam email detection [20], chronic kidney

disease diagnosing [21], and failure prediction in cloud

computing [22, 11].

3.4 Stacking

Stacking is an effective ensemble technique that uses meta-

level classifiers as inputs which are retrieved by the outputs of

several base or weak level classifier predictions. Stacked

ensemble methods have developed to become a well-

established technique of enhancing prediction accuracy [23].

Stacking has a framework of two levels: classifiers at level-0

(also called base-level or weak) and classifiers at level-1

(called meta). Using the training set, the base-level classifiers

are trained to produce their predictions. Afterwards, the meta-

classifier is used to map the level-0 classifiers’ outputs to the

actual target class, with assistance of the meta-data. An

example of the meta-data may be defined by

((𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝑚)𝑥𝑖) where 𝑥𝑖

𝑚 refers to the prediction

provided on the 𝑖𝑡ℎ instances by the 𝑥𝑡ℎ base-level classifier,

and 𝑥𝑖 defines the target class. After the base-level classifiers

are trained, each classifier will produce an individual

prediction during the process of classifying a new case. Finally,

the predictions are considered as the meta-classifier’s input to

produce the final classification decision [24]. To create a

stacking ensemble with 𝑥 number of weak predictors, the

training data is split into two separate folds.

(1) The x classifiers are fitted to the data

contained in the first fold.

(2) Each x classifier computes a prediction to

observe for the second fold.

(3) Using the predictions in step 2, the meta-

data classifier is fitted to the second fold.

In the preceding steps, only the data in the first fold is used

as input for the final meta classifier, while the data in the

second fold is not used for the learning process. Therefore, an

apparent weakness from the stacking method is that

information contained in the second half that might be of great

use to the weak learners is overlooked and vice versa for the

first half and the meta classifier. To address this limitation, a

“k-fold cross-training” approach (such as the k-fold cross-

validation approach) should be implemented, so that for every

observation or prediction made by the weak learners that may

be used as an input to the meta-mode, the predictions and

observations are made with iterations of base-level learners

trained with k-1 folds approach as well as does not include

considered prediction. Through this approach, it is ensured

that a valid prediction is generated for each observation of the

dataset made by the weak learners, allowing the meta-final

model’s training stage to fully utilize the potential of the base-

predictions model. In this research, the stacking method will

be constructed with ANN and SVM, also with the SVM

implemented as the meta-classifier.

4. EXPERIMENTAL SETUP

The study was officially carried out using Weka data mining

software [25].

4.1 Cleaning and pre-processing

Table 1. Tasks types description

Event type Value Event description

SUBMIT 0 The task was submitted

QUEUE 1
The task is in queue for the

scheduler

ENABLE 2
The task is ready for

scheduling

SCHEDULE 3 The task is scheduled

EVICT 4 The task was de-scheduled

FAIL 5
The task was unable to be

executed

FINISH 6
The task was executed

successfully

KILL 7 The task was cancelled

LOST 8
The task is ended but the final

state wasn’t recorded

UP-

DATE_PENDING
9

Attributes of a task is awaiting

an update

UPDATE_RUNNING 10
Attributes of a task is

currently updating

The size of the Google trace cluster dataset used in this

study is 2.4 TB. Therefore, to extract the required data,

experimental dataset was uploaded within the Google Cloud

Platform. The data pre-processing steps included data

uploading and extraction stages. The dataset was uploaded

through the Google Cloud Platform using the BigQuery tool.

SQL query was then applied to extract the required part of the

dataset from the Instance Events table. Several attributes in the

InstanceEvents table were of no relevance to the prediction

model. Therefore, among all the attributes in the

InstanceEvents table, the feature selection of attributes

included time, scheduling class, priority, alloc collection id,

alloc instance index, CPUs, memory, and type, which is the

targeted class. There are nine types for the event types as listed

in Table 1. Since our study aimed to predict the final state of a

task with being either failed or successful, the event types

“fail”, and “finish” are considered as the target class. Hence,

only samples that either contained the event type value of 5

(which represent the failed tasks) and 6 (which represents the

successful tasks) were extracted using SQL from the Google

549

cloud computing BigQuery environment.

When the percentages of failed tasks are compared to the

percentages of successful tasks, it was evident that the dataset

was unbalanced. Figure 3 depicts the unbalanced dataset class.

However, as this study only takes a fraction of the dataset and

not the entirety of the 400 GB worth of data, equal parts of

both the failed tasks and successful tasks were chosen and

included with 16,000 samples per class.

Figure 3. Imbalanced class

For the proposed models, two primary stages are

implemented. First, because this study deals with

classification and not regression, the target class (failed or

success) is converted from a numeric state to a nominal state;

this ensures that the chosen models would classify the testing

set. Second, all numeric attributes are normalized so that the

inputs are transposed. The following is how the data was

divided: 70% of the data was utilized to train the model, with

the remaining 30% being used to test it.

4.2 Performance of the models

This section depicts the implementation results of the ANN,

SVM, and the ensemble method. The parameters for the

models are detailed in Table 2.

Table 2. Models parameters

 Parameter Value

ANN

HiddenLayers 2

LearningRate 0.3

Seed 0

SVM

C 2

Kernel PolyKernal

RandoomSeed 1

SVM and

ANN

stacking

Base classifier SVM and ANN

Meta classifier SVM

NumFolds 10

Seed 1

The model’s precision, accuracy, False Negative Rate

(FNR), and Area Under the Receiver Operating

Characteristics (AUC) are used to assess their performance

(AUC ROC). The following equations were used to determine

FNR for accuracy, precision, and unsuccessful tasks:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 (6)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7)

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 (8)

Figures 4, 5, and 6 depicts the AUC ROC of each of the

proposed models. AUC is used to compare the performance of

two classifiers and evaluate the performance based on the

given threshold (of 0.5) [19]. ROC illustrates and plots the

tradeoff between the False Positive Rate (FPR) and the True

Positive Rate (TPR), also known as recall or sensitivity. Table

3 shows the outcomes of putting the trained models to work on

the dataset.

Figure 4. SVM AUC ROC Plot

Figure 5. ANN AUC ROC plot

Figure 6. Imbalanced Class

550

Table 3. Result of the trained models

 ANN SVM Stacking

Accuracy 99.7% 98.9% 99.8%

Precision 0.998 0.990 0.998

FNR 0.001% 0.011% 0.001%

AUC ROC 0.996 0.989 0.997

Considering that a perfect AUC score would be 1.0, the best

AUC was achieved by using the stacked ensemble technique

(Figure 6) where it obtained a value of 0.997. The ANN also

produced a value of 0.996 (Figure 5) which is an ideal outcome

when considering the high computational complexity of the

stacked ensemble. The lowest AUC was obtained from SVM

with a value of 0.989 (Figure 4).

5. ANALYSIS AND DISCUSSION

The performance of SVM, ANN, and stacking classifiers for

predicting task failure on the Google cluster trace dataset were

comprehensively investigated in this research. As evidenced

by the results in Table 3, all of the proposed techniques

performed admirably and successfully predicted the task’s

status. All the classification models rigorously experimented

in this study were analyzed based on their optimal parameter

measurements. The highest accuracy of all the models was

obtained by using the stacking ensemble followed by the ANN

with only a 0.1% difference. Although the SVM achieved a

good result, it is outperformed by the stacking ensemble and

ANN. Furthermore, the stacking ensemble and the ANN

outperform the SVM in precision, FNR, and AUC ROC. An

extremely low FNR was achieved equally by ANN and the

stacking ensemble. Although the stacking ensemble

outperforms the ANN in terms of accuracy, precision, and

AUC ROC, it should be noted that the stacking ensemble has

the disadvantage of taking an inordinate amount of time to

train and predict the data. Therefore, in cases where the

implementation speed is critical, trading a fraction of the

accuracy for a faster model would be advised. Hence, using

the ANN model is a better choice.

Table 4. Comparison of experimental results

 RMTL [1] SVM * ANN * Stacking*

Accuracy 98.5% 98.9% 99.7% 99.8%
Precision - 0.990 0.998 0.998
FNR 28.3 0.011 0.001 0.001
AUC ROC - 0.998 0.996 0.997

Notes: *Result of the proposed algorithms in this study

To further evaluate the proposed models, we measured

performance with studies conducted experiments using the

same dataset. Since the dataset used in this research is recent,

only one study investigated similar issue of predicting failed

tasks [1] using same dataset used in this research but applied

different algorithms. Table 4 compares our experimental

results with the optimal result achieved in [1]. As can be seen,

it is evident all the three of the proposed algorithms in this

study achieved higher results in terms of predicting the failure

tasks correctly. Moreover, in terms of the failed tasks that were

incorrectly classified, the proposed algorithms achieved the

lowest result.

Computational and memory resources are significantly

consumed by failed tasks. Consequentially, cloud resources

that include storage space, memory, and CPU will become

depleted as the amount of failed tasks increases. The rates of

failure tasks have dramatically increased as a result of the

expanding sizes of software and hardware operations, as well

as the lack of changes in their efficiency on a similar scale. To

address the issues of providing reliability against emerging

trends in cloud computing infrastructures, it is critical to

provide credible failure forecasts for cloud computing clusters,

and by facilitating accurate predictions that aids in taking

action for potential task failures. Therefore, our proposed

model could successfully help minimize wasted resources and

costs against failures. Furthermore, the proposed models are

able to provide satisfactory results to businesses and customers,

so that the IT managers and potential CSPs could predict task

failure earlier and provide the opportunity to respond

effectively by preparing proper contingency plans. Moreover,

it could benefit cloud computing service providers like

Amazon and Microsoft in tremendously enhancing their

performance and overall service quality.

6. CONCLUSIONS

In the past few years, cloud computing services have been

rapidly increasing. However, there could be a moment where

the services are no longer able to successfully execute the task.

In this paper, an experiment was conducted by applying ANN,

SVM, and a stacking ensemble on the Google trace cluster

dataset. The models performances were evaluated in terms of

accuracy, precision, FNR, and AUC ROC. From the

experimental results, it was evident that using a stacking

classifier gave a higher accuracy of 99.8% and an overall

average of AUC ROC 0.997. However, it requires a high

running time when compared with the ANN and SVM.

Furthermore, using ANN and stacking, we were able to obtain

excellent precision and a low false-negative rate. In addition,

the results were compared to previous studies, and it was

determined that all our proposed models performed better. In

conclusion, this study could help CSPs forecast early task

failures and adopt a better contingency plan to take the

required actions in a timely and effective manner while

enhancing performance and service quality.

For future work, we aspire to explore the performance of

applying stacking of different machine learning algorithms

with less run time speed to detect failures in cloud

environments efficiently in terms of speed and accuracy, both

of which should be further improved. Furthermore, we are also

looking at predicting the task failures in cloud-based

applications in real-time through providing instantaneous

response and assisting in higher level of service availability.

REFERENCES

[1] Liu, C., Dai, L., Lai, Y., Lai, G., Mao, W. (2020). Failure

prediction of tasks in the cloud at an earlier stage: A

solution based on domain information mining.

Computing, 102(9): 2001-2023.

https://doi.org/10.1007/s00607-020-00800-1

[2] Mohammed, B., Modu, B., Maiyama, K.M., Ugail, H.,

Awan, I., Kiran, M. (2018). Failure analysis modelling in

an infrastructure as a service (Iaas) environment.

Electronic Notes in Theoretical Computer Science, 340:

41-54. https://doi.org/10.1016/j.entcs.2018.09.004

551

[3] Chen, X., Lu, C.D., Pattabiraman, K. (2014). Failure

analysis of jobs in compute clouds: A google cluster case

study. IEEE 25th International Symposium on Software

Reliability Engineering, pp. 167-177.

https://doi.org/10.1109/issre.2014.34

[4] Wilkes, J. (2020). Google cluster-usage traces v3.

Google Inc., Mountain View, CA, USA.

https://research.google/tools/datasets/google-cluster-

workload-traces-2019/, accessed on 04 Mar 2021.

[5] Tirmazi, M., Barker, A., Deng, N., Haque, M. E., Qin, Z.

G., Hand, S., Wilkes, J. (2020). Borg: The next

generation. In Proceedings of the Fifteenth European

Conference on Computer Systems, 1-14.

https://doi.org/10.1145/3342195.3387517

[6] Gao, J., Wang, H., Shen, H. (2020). Task failure

prediction in cloud data centers using deep learning.

IEEE Transactions on Services Computing.

https://doi.org/10.1109/tsc.2020.2993728

[7] Shetty, J., Sajjan, R., Shobha, G. (2019). Task resource

usage analysis and failure prediction in cloud. The 9th

International Conference on Cloud Computing, Data

Science & Engineering (Confluence), pp. 342-348.

https://doi.org/10.1109/confluence.2019.8776612

[8] Kumar, K., Sai Sushmitha, K.K.S., Reddy, R.R. (2019).

An exploration of failure prediction and failure detection

in a cloud based environment. International Journal of

Applied Engineering Research, 14(10): 2303-2309.

[9] Jassas, M., Mahmoud, Q.H. (2018). Failure analysis and

characterization of scheduling jobs in google cluster

trace. In IECON 2018-44th Annual Conference of the

IEEE Industrial Electronics Society, pp. 3102-3107.

https://doi.org/10.1109/iecon.2018.8592822

[10] Padmakumari, P., Umamakeswari, A. (2019). Task

failure prediction using combine bagging ensemble

(CBE) classification in cloud workflow. Wireless

Personal Communications, 107(1): 23-40.

https://dx.doi.org/10.1007/s11277-019-06238-9

[11] Liu, C., Han, J., Shang, Y., Liu, C., Cheng, B., Chen, J.

(2017). Predicting of job failure in compute cloud based

on online extreme learning machine: A comparative

study. IEEE Access, 5: 9359-9368.

https://dx.doi.org/10.1109/access.2017.2706740

[12] Islam, T., Manivannan, D. (2017). Predicting application

failure in cloud: A machine learning approach.

International Conference on Cognitive Computing

(ICCC), pp. 24-31.

https://dx.doi.org/10.1109/ieee.iccc.2017.11

[13] Yoo, W., Sim, A., Wu, K. (2016). Machine learning

based job status prediction in scientific clusters. SAI

Computing Conference (SAI), pp. 44-53.

https://dx.doi.org/10.1109/sai.2016.7555961

[14] Soualhia, M., Khomh, F., Tahar, S. (2015). Predicting

scheduling failures in the cloud: A case study with

google clusters and hadoop on amazon EMR. IEEE 17th

International Conference on High Performance

Computing and Communications, 2015 IEEE 7th

International Symposium on Cyberspace Safety and

Security, and 2015 IEEE 12th International Conference

on Embedded Software and Systems, pp. 58-65.

https://dx.doi.org/10.1109/hpcc-css-icess.2015.170

[15] Lin, Y. Barker, A., Ceesay, S. (2020). Exploring

characteristics of inter-cluster machines and cloud

applications on google clusters. 2020 IEEE International

Conference on Big Data (Big Data), pp. 2785-2794.

https://doi.org/10.1109/BigData50022.2020.9377802

[16] Staub, S., Karaman, E., Kaya, S., Karapınar, H., Güven,

E. (2015). Artificial neural network and agility. Procedia-

Social and Behavioral Sciences, 195: 1477-1485.

https://doi.org/10.1016/j.sbspro.2015.06.448

[17] Li, E.Y. (1994). Artificial neural networks and their

business applications. Information & Management, 27(5):

303-313. https://doi.org/10.1016/0378-7206(94)90024-8

[18] Mao, W., Mu, X., Zheng, Y., Yan, G. (2014). Leave-one-

out cross-validation-based model selection for multi-

input multi-output support vector machine. Neural

Computing and Applications, 24(2): 441-451.

https://doi.org/10.1007/s00521-012-1234-5

[19] Han, J., Kamber, M., Pei, J. (2012). Outlier detection.

Data Meichuangining: Concepts and Techniques, 543-

584.

[20] Olatunji, S.O. (2019). Improved email spam detection

model based on support vector machines. Neural

Computing and Applications, 31(3): 691-699.

https://doi.org/10.1007/s00521-017-3100-y

[21] Alassaf, R.A., Alsulaim, K.A., Alroomi, N.Y., Alsharif,

N.S., Aljubeir, M.F., Olatunji, S.O., Alturayeif, N.S.

(2018). Preemptive diagnosis of chronic kidney disease

using machine learning techniques. International

Conference on Innovations in Information Technology

(IIT), pp. 99-104.

https://doi.org/10.1109/INNOVATIONS.2018.8606040

[22] Adamu, H., Mohammed, B., Maina, A.B., Cullen, A.,

Ugail, H., Awan, I. (2017). An approach to failure

prediction in a cloud based environment. IEEE 5th

International Conference on Future Internet of Things

and Cloud (FiCloud), pp. 191-197.

https://doi.org/10.1109/FiCloud.2017.56

[23] Xia, Y., Chen, K., Yang, Y. (2021). Multi-label

classification with weighted classifier selection and

stacked ensemble. Information Sciences, 557: 421-442.

https://doi.org/10.1016/j.ins.2020.06.017

[24] Wolpert, D.H. (1992). Stacked generalization. Neural

Networks, 5(2): 241-259. https://doi.org/10.1016/S0893-

6080(05)80023-1

[25] “Weka 3: Machine Learning Software in Java.” [Online].

Available: https://www.cs.waikato.ac.nz/ml/weka/,

accessed on 05-Aug-2021.

NOMENCLATURE

ANN Artificial Neural Network

ARMA Auto-Regressive Moving Average

AUC Area Under the Receiver

Bi-LSTM Bidirectional Long Short-Term Memory

Ctree Conditional Tree

CSP Cloud service providers

DTs Decision Trees

FNR False Negative Rate

FPR False Positive Rate

GLM General Linear Model

KNN K-Nearest Neighbors

LR Logistic Regression

LSTM Long Short-Term Memory Network

NB Naive Bayes

OS-ELM Sequential Extreme Learning Machine

QDA Quadratic Discriminant Analysis

RF Random Forests

552

RFE Recursive Feature Elimination

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

ROS Random Oversampling

RUS Random Undersampling

SMOTE Synthetic Minority Oversampling Technique

SVM Support Vector Machine

TCO Time Cost Overhead

TNR True Negative Rate

TPR True Positive Rate

VMs Virtual Machines

553

