
Using Dynamic Pruning Technique for Efficient Depth Estimation for Autonomous Vehicles

Mahmoud Muthana*, Ahmed R. Nasser

Control and Systems Engineering Department, University of Technology- Iraq, Baghdad 10063, Iraq

Corresponding Author Email: mahmoud.m9321@yahoo.com

https://doi.org/10.18280/mmep.090221 ABSTRACT

Received: 22 January 2022

Accepted: 6 April 2022

Even with the significant progress that has been achieved in monocular depth estimation

in recent years, the need for better real-time inference and reduction in computing

resources usage associated with the network performance is persistent. In this paper, an

enquiry into the efficacy of pruning on depth estimation models is performed. Encoder-

decoder model based on the ResNet-50 backbone architecture employing pruning based

on channel prioritization is designed to achieve higher performance and prediction

speed. This is while attempting to keep a balance in the trade-off between accuracy and

performance of the network. The presented approach is trained and evaluated for

outdoor scenery on the KITTI dataset to demonstrate the effectiveness and the

performance improvement of the presented framework when compared to similar

methods. This shows competitive accuracy when compared to state-of-the-art methods

and highlights how pruning can speed up inference time by more than 16% and leading

to fewer operations compared to the non-pruned model.

Keywords:

computer vision, deep learning, depth estimation

1. INTRODUCTION

Monocular depth prediction is a complex task in computer

vision to predict the depth of objects from a single viewpoint

in a particular scene. Numerous applications in fields such as

3D reconstruction [1], robotics [2], and autonomous vehicle

perception systems [3] can make use of this task given its

fundamental function of determining the scene’s geometrical

relationship and acquiring a composition of its spatial structure.

Depth prediction methods usually involve range sensors such

as LiDARs or in the case of a system involving cameras,

various instances and views of the scene to construct a precise

estimation which might require sequences of videos from a

moving camera [4] or stereo imagery [5]. This causes greater

computational resource utilization and more costly equipment

to deal with. Thus, the monocular depth estimation model is

an important concept to obtain less constrained, more compact,

and affordable results for the task.

There are still many difficulties risen from the ill-posed

nature of the issue given that there are infinite perspectives of

3D scenes in a 2D image because of the scale ambiguities

related to the variations in camera movement speeds and

object sizes. Humans can solve these challenges by leveraging

local cues such as being aware of occlusion and texture which

can also be applied to monocular depth estimators in the

learning stage. Earlier techniques in monocular depth

estimation relied on handcrafted and probabilistic methods for

estimation [6]. But due to the progress made in recent years in

convolutional neural networks and deep learning along with

the emergence of quality depth datasets enhanced the

monocular depth prediction task performance. One of the first

methods in this regard was proposed by Eigen et al. [7] by

using multi-scale CNNs for depth prediction. First, they

carried out global coarse estimation on the scene of the image.

Then, the results are sent through an additional CNN to create

a more accurate and refined local estimation. Liu et al. [8]

presented feature maps up-sampling to enhance the output

resolution of the depth prediction.

The design of the encoder-decoder is commonly

implemented owing to its robust ability to address the depth

prediction task (and numerous other tasks such as sentiment

analysis [9] and semantic segmentation [10]), the abundance

of depth data, and its relatively easy implementation. These

techniques usually consist of two main stages. The first stage

is an encoder for extracting low-resolution features of the

image using networks such as ResNet [11], DenseNet [12]

usually for their higher accuracy, or MobileNet [13] for using

less resources.

The second stage is the decoder with the objective of up-

sampling the features, and fusing them by convolutions to

upscale the spatial resolution of the image for improved

quality. Among the many methods that can be used in the

decoder, the bilinear method was chosen due to its smoother

surface results, and less complicated approach when compared

to other methods such the bicubic interpolation. It’s achieved

by performing linear interpolation in two directions and using

the neighboring pixels to estimate the value of the up-sampling

block. This is done by adding padded zeros and then

calculating the weighted average between two translated

pixels for the output value.

Feature extraction networks play an important role in

determining the performance of the prediction model through

many factors such as the number of layers and the techniques

used to build the network which set it apart from other

approaches. ResNet is one of the most widely used networks

in many fields including image classification, and depth

estimation given its innovative architecture which offers the

use of the residual blocks to reduce the associated training

error in addition to the large number of possible layers that can

be added especially in ResNet-50 and ResNet-101 providing

Mathematical Modelling of Engineering Problems
Vol. 9, No. 2, April, 2022, pp. 451-457

Journal homepage: http://iieta.org/journals/mmep

451

https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.090221&domain=pdf

50 and 101 layers respectively.

The encoder-decoder architecture has been used in the depth

estimation problem in Ref. [14] where they presented an

unsupervised method that estimated depth without the need for

prior depth data by relying on the disparity of the right and left

images captured by a stereo camera and their novel training

loss technique applying consistency between the prediction

from each camera during the training. Facil et al. [15] used

Camera Aware Multi Scale Convolutions in their encoder-

decoder architecture. This allowed the network to estimate the

patterns of depth based on the intrinsic values of the camera.

The convolution layers capture the camera parameters

including the focal length, calibration, angle, etc. Yin and Shi

[16] trained an encoder-decoder network to estimate both the

surface normals and the depth in order to enforce the

geometrical consistency between the planar regions to address

the existing blur in the image.

Alhashim and Wonka [17] demonstrated that transfer

learning can be leveraged to construct supervised depth

estimation with better accuracy. The network employs an

encoder-decoder structure based on denseNet-169 backbone

architecture. The ImageNet dataset is used to pre-train the

network with augmentation techniques to enhance the final

estimation of depth while Laina et al. [18] introduced up-

sampling feature maps technique to improve output resolution

of the estimation depth and built a deeper network based on

residual learning. They also introduced the commonly used

reverse Huber loss function (berHu) used in this work.

These learning-based prediction models rely on the concept

of training a model to predict the depth value for each pixel.

The training of these models requires substantial amount of

data: more data available during training lead to more

reliability in predicting depth. However, this will increase the

complexity of these networks which means more parameters,

larger model sizes, increased processing resources, and

memory utilization required in addition to longer prediction

time. This means that increasing the complexity of the model

increases the accuracy but at the expense of runtime. Reducing

the complexity of the model and computation requirements

associated with it while maintaining the same performance has

long been a popular issue which necessitates the need for

alternative approaches in this regard. Network pruning can be

used to mitigate the effects of the mentioned problems to

obtain smaller and more efficient networks with faster

inference time and less required calculations preferably

without significant loss of accuracy [19]. Prior method [20]

presented an encoder-decoder based network for depth

prediction with a pruning strategy to reduce the model

complexity and introduce faster inference time for embedded

devices (specifically the NVIDIA Jetson TX2 GPU) using the

lightweight MobileNet architecture. Given the work is being

done on a lightweight network to accommodate the relatively

low processing power of the TX2 GPU and other embedded

devices, the trade-off between the accuracy and the size of the

model is too big which manifests into a clear compromise in

the quality of depth prediction. This work attempts to achieve

an improvement in runtime performance and better accuracy

results by carrying out the pruning process on a larger

backbone network (ResNet-50) in order to create a solution

that includes most types of GPUs and hardware. Data

augmentation techniques and transfer learning are used to

increase the accuracy of the prediction network as shown in

the study [17]. This elaborate method can be used on larger

systems with a pruning approach [21] based on dynamic

pruning that relies on channel prioritization by amplifying and

suppressing channels and skipping the unimportant at runtime.

The neurons of the model are preserved which will reduce the

impact on accuracy while gaining the same efficiency metrics.

Hence, the depth estimation network shown in Figure 1 can

adequately preserve accuracy and provide better runtime

results. The method is evaluated on the KITTI dataset,

demonstrating how pruning can reduce the runtime of the

network from 90 ms to 76 ms and decrease in the multiply and

accumulate operations (MACs) from 3.4G to 2.9G without a

significant loss of accuracy.

Thus, to summarize the goal of this paper:

▪ Design an efficient depth estimation network using

data augmentation and transfer learning.

▪ Apply a pruning technique to provide an insight on

how pruning affects depth estimation accuracy and

performance of the network.

▪ Emphasize the work on faster prediction time for the

network.

▪ Visualize the final depth results as demonstrated in

Figure 2.

The rest of the paper is organized as follows: The

architecture of the depth estimation model and the pruning

process are explained in Section 2. Experimental results are

showcased and compared with other state-of-the-art methods

in Section 3 followed by the conclusion in Section 4.

Figure 1. Encoder-decoder concept

Figure 2. Visualization of the final depth results before and

after the pruning process

452

2. METHOD

This section presents the specific details of the depth

estimation model shown in Figure 3 starting with the

implementation of the encoder-decoder and the network

architecture. In Section 2.1, the encoder-decoder design is

described and with the overall framework. To improve the

accuracy of the depth prediction online data augmentation is

applied and reviewed in Section 2.2. The depth loss function

is discussed in Section 2.3. In the last section, the pruning

technique is explained to improve the performance and

increase the efficiency of the system.

Figure 3. Encoder-decoder architecture

2.1 Encoder-decoder architecture

The general structure of the model is shown in Figure 3.

Images consist of spatial information [22] which is minimized

by down-sampling the 𝐻 × 𝑊 × 𝑐 (𝑐 representing the

number of channels) image once it gets delivered to the

encoder to increase the network’s receptive field and decrease

the computational operations. By applying the successive

pooling and convolution layers, the image features are

extracted. In this model, the encoder is based on the ResNet-

50 backbone architecture. It consists of 50 layers with 48

convolutional layers, a max-pooling layer, and a 1 average-

pooling layer. The Res-Net model is selected over other

encoders such as VGG and DenseNet since it’s been shown

that the sparse models tend to better perform in pruning than

dense ones [23]. As a substitute for random weight

initialization, transfer learning that uses cross-domain

knowledge transfer is employed by pretraining the model on

the ImageNet dataset since it demonstrated that it can

drastically improve the performance of the depth prediction

model without any observed downsides as illustrated by the

Ref. [17]. The last classifying and average pooling layers of

the encoder are discarded so that the decoder can be linked to

the encoder with various configurations for the skip

connection implemented for the preservation of the details

between the decoder and the encoder. The decoding layer

consists of 5 bilinear up-sampling layers to establish the depth

estimation by up-scaling and fusing the output of the encoder

gradually to construct the final depth map. As mentioned

earlier, the decoder uses the bilinear method due to its

straightforward design and smoother surface compared to the

other methods such as the linear interpolation and the bicubic

interpolation.

2.2 Data augmentation

As mentioned earlier, depth prediction networks require

enormous amount of data in order to obtain good accuracy and

produce better depth quality reliably. The more data

introduced during the training phase, the better the accuracy.

The perpetual limited availability of depth data leads to the

exploration of alternative methods such as data augmentation

which includes making changes to the existing data in order to

be used during training as new instances. Also, employing data

augmentation methods for a specific task has been shown to

be very effective during the learning stage to minimize the

problem of over-fitting and adopt better generalization [24, 25].

These techniques are implemented based on trials and

experiments for improved encoder extraction results:

▪ Image mirroring horizontally by a probability of

60%.

▪ Rotating the Image with a random degree between

15 and -15.

▪ Scaling the image by a randomized number

between 1 and 2.

▪ Adjusting the saturation, brightness, and contrast

by 0.5.

▪ Multiplying the color input values globally by a

randomized RGB amount between 0.7 and 1.2.

2.3 Depth loss

There are many considerations that can have an effect on

the depth prediction performance and the training speed. This

leads to many variations in the depth estimation literature for

loss functions [14, 20, 26]. Generally, the depth loss function

is calculated using the difference between the output of the

depth network y and the ground truth of that depth value y*.

Reverse Huber loss (BerHu) used in the study [18] is

employed because it offers a good balance between the Least

Absolute Deviations L1 in Eq. (1) providing the ability to

propagate and the Least Square Errors L2 in Eq. (2) which

offers lower gradient for the small residuals. The BerHu loss

function is shown in Eq. (3)

𝐿1(𝑦∗ − 𝑦) = ∑|𝑦𝑖
∗ − 𝑦𝑖|

𝑛

𝑖=1

(1)

𝐿2(𝑦∗ − 𝑦) = ∑(𝑦𝑖
∗ − 𝑦𝑖)2

𝑛

𝑖=1

(2)

𝐵(𝑦∗ − 𝑦) = {

𝐿1(𝑦∗ − 𝑦) 𝑖𝑓 (𝑦∗ − 𝑦) < 𝑐

𝐿2(𝑦∗ − 𝑦) + 𝑐2

2𝑐
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

2.4 Dynamic pruning process

For optimal results, an established dynamic pruning

453

technique based on channel feature boosting and suppression

[21] is modified to prune the ResNet-50. This will not only

conserve computational resources but will also reduce the

impact on accuracy in the trade-off balance without affecting

the neurons like other pruning methods. Deep sequential

CNNs are used to prune the parameters so that the information

flow can be restricted or amplified allowing the salient

information to flow from the important channels while

suppressing the rest. To demonstrate the work being done in

the original paper, the auxiliary component shown in Figure 4

determines the importance of the channels based on a

parametric function p(xl−1) that can be evaluated based on the

previous layer xl-1 using Eq. (4).

𝑝(𝑥𝑙−1) = 𝑤𝑡𝑎𝑇(𝑔(𝑥𝑙−1)) (4)

The function wta() is a k-winner-takes-all function that

returns a tensor with zeros (i.e., suppressing the unnecessary

channels) for each entry smaller than T which represents the

salient channels predicted by the channel saliency predictor

g(xl−1).

The spatial dimensions of each channel are reduced to scalar

further to preserve computational resources by using the

following function in Eq. (5):

𝑠𝑐(𝑥𝑙−1) =
𝑠(𝑥𝑙−1

1)𝑠(𝑥𝑙−1
2) … 𝑠(𝑥𝑙−1

𝑐)

𝐻. 𝑊
(5)

where, H, W represent the height and the width of the channel

respectively while c represents the number of channels. g(xl−1)

may then can be calculated with the following Eq. (6) Where

φl here denotes the weight tensor of the layer.

𝑔(𝑥𝑙−1) = 𝑠𝑐(𝑥𝑙−1). φl (6)

Figure 4. The pruning process

Finally, the dynamically pruned channel can be described

with Eq. (7) using the ReLU activation function. Where θ𝑙

representing the weight tensor for the layer.

𝑓(𝑥𝑙−1) = 𝑝(𝑥𝑙−1). 𝑛𝑜𝑟(𝑐𝑜𝑛𝑣(𝑥𝑙−1, θ𝑙)) (7)

From (7) we see that for each layer xl, convolution is

performed on the previous layer xl-1 then each channel of

features in a population of z is normalized based on Eq. (8):

𝑛𝑜𝑟(𝒛) =
𝒛 − 𝑚𝑒𝑎𝑛(𝒛)

√𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝒛)+ ∈
(8)

where, ∈ is a small number to avoid division by zero.

Normalizing layers are used to stabilize the training and enable

learning with faster convergence at a higher rate.

3. RESULTS AND DISCUSSION

3.1 Implementation details

The method is implemented on the PyTorch [27] framework.

The 50-layers ResNet-50 is pretrained on the ImageNet dataset

for better initialization and then trained with the parameters

according to Table 1. It takes 49 hours for the training of the

encoder-decoder network using a GTX 3080 Ti GPU.

Table 1. The training parameters

Parameters 𝐕𝐚𝐥𝐮𝐞

Learning Rate 0.0001

Epochs 30

Optimizer SGD

Batch Size 8

3.2 KITTI dataset & benchmarking suite

The training and the evaluation process of this network are

implemented on the KITTI dataset and benchmark suite [28].

KITTI is a publicly available large-scale outdoor scenes

dataset for various tasks such as semantic segmentation,

optical flow, object detection, and is widely used for depth

estimation. It consists of thousands (about 21k images for

training) of labeled RGB images with a resolution of 375 ×

1241 of diverse scenes recorded with cameras and depth

sensing equipment (such as the Velodyne HDL-64E laser)

from outdoor environments and streets with the conforming

ground truth depth maps acquired using mounted equipment

on a vehicle. It consists of 8 categories including the “car” and

“pedestrian“ classes. The depth network is trained using 7k

images from 32 training scenes and use 698 images for testing

from 29 scenes. The splitting policy is based on the Eigen

policy suggested by Liu et al. [8]. The images were resized to

a resolution of 640×480 from 375×1241 for improved

computation efficiency to generate an output of 320×224.

3.3 Evaluation metrics & results

The assessment of the proposed method is done on outdoor

data with the KITTI dataset. The popular metrics employed for

the depth prediction task evaluation in literature and this

project is presented below. Let yp denote the estimated depth

of a pixel in the image, yg is its ground truth and N is the

number of pixels in the image.

Root mean squared error (RMS): RMS equation is

detailed in Eq. (9):

√
1

𝑁
 ∑(𝑦𝑔

𝑖 − 𝑦𝑝
𝑖)2

𝑁

𝑖=1

 (9)

454

Mean Relative Error (REL): REL equation is detailed in

Eq. (10).

1

𝑁
∑

‖𝑦𝑔
𝑖 − 𝑦𝑝

𝑖 ‖

𝑦𝑝
𝑖

𝑁

𝑖=1

 (10)

RMS log: equation is detailed in Eq. (11).

√
1

𝑁
 ∑‖𝑙𝑜𝑔10𝑦𝑔

𝑖 − 𝑙𝑜𝑔10𝑦𝑝
𝑖 ‖

2
𝑁

𝑖=1

 (11)

Thresholded accuracy(δi): equation is detailed in Eq. (12).

𝑇 > δ = max(
𝑦𝑔

𝑖

𝑦𝑝
𝑖

 ,
𝑦𝑝

𝑖

𝑦𝑔
𝑖
) (12)

where, T = 1.25, 1.252, 1.253.
Table 2 shows a comparison using these metrics between

the proposed method with and without pruning and other state-

of-the-art methods. The network is compared to state-of-the-

art methods and the results are obtained from original papers.

Table 2. Performance comparison on the KITTI dataset

 Higher is better Lower is better

Method/ Metric 𝛅𝟏.𝟐𝟓 𝛅𝟏.𝟐𝟓𝟐 𝛅𝟏.𝟐𝟓𝟑 REL RMS RMS log

Saxena et al. [6] 0.601 0.820 0.926 0.280 8.734 0.361

Eigen et al. [7] 0.702 0.898 0.967 0.203 6.307 0.282

Liu et al. [8] 0.680 0.898 0.967 0.201 6.471 0.273

Alhashim and Wonka [17] 0.886 0.965 0.986 0.093 4.170 0.171

Fu et al. [29] 0.932 0.984 0.994 0.072 2.727 0.120

Lee et al. [30] 0.956 0.993 0.998 0.059 2.756 0.096

Proposed Method 0.865 0.940 0.964 0.096 4.714 0.184

Method + pruning 0.846 0.928 0.958 0.118 4.855 0.202

Experimental results show that pruning can slightly

decrease accuracy by lowering the values of 𝛅 by 1.5% on

average. There’s also an increase of 3.15% on RMS. The

method is again compared in Table 3. to the pre-pruned

ResNet-50 model to establish how pruning affects the

performance and accuracy of the network.

Table 3. Performance comparison between the pruned and

unpruned model

Method MACs Runtime RMS 𝛅𝟏.𝟐𝟓

Without Pruning 3.4G 90 ms 4.714 0.865

After Pruning 2.9G 76 ms 4.855 0.846

Results from Table 3 reveal an almost 16% difference in

inference time compared to the non-pruned model on the GTX

3080 Ti GPU. There’s also an estimated 14.7% reduction in

the multiply and accumulate operations (MACs) without any

significant loss to accuracy on the accuracy metrics as

discussed before RMS (+3.15%), and Thresholded accuracy (-

1.5%) compared to the non-pruned model. Figure 5 visualizes

the depth maps for each prediction. Colour maps are used to

show the difference in depth. Warm-green colors indicate

closer distance while colder colors are for farther distances.

(a)

(b)

(c)

(a)

(b)

(c)

(a)

(b)

(c)

(a)

455

(b)

(c)

Figure 5. Qualitative depth prediction results on KITTI (a)

Before pruning results (b) After pruning results (c) Original

Image

4. CONCLUSION

In this work, a dynamically pruned monocular depth

estimation network is implemented using the encoder-decoder

architecture by leveraging transfer learning techniques. The

method achieves competitive results compared to the state-of-

the-art methods on the KITTI dataset. The effects of pruning

on the network were investigated and compared to showcase

how it can affect the performance of the system. It’s been

found that the model performs about 16% faster inference time

and uses fewer MACs with insignificant (about 1.5% on

average) loss of accuracy due to the trade-off balance that

occurs in the pruning process. Demonstrating that pruning can

be an effective technique for increasing the performance of the

depth network.

REFERENCES

[1] Abdul-Kreem, L.I. (2017). Depth estimation and shape

reconstruction of a 2D image using NN and Bézier

surface interpolation. Iraqi Journal of Computers,

Communication, Control & Systems Engineering, 17(1):

24-32.

[2] Hameed, F.S., Alwan, H.M., Ateia, Q.A. (2020). Pose

estimation of objects using digital image processing for

pick-and-place applications of robotic arms. Engineering

and Technology Journal, 38(5): 707-718.

https://doi.org/10.30684/etj.v38i5A.518

[3] Wang, Y., Chao, W.L., Garg, D., Hariharan, B.,

Campbell, M., Weinberger, K.Q. (2019). Pseudo-lidar

from visual depth estimation: Bridging the gap in 3d

object detection for autonomous driving. In Proceedings

of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 8445-8453.

https://doi.org/10.1109/CVPR.2019.00864

[4] Mahmood, S.S., Saud, L.J. (2020). An efficient approach

for detecting and classifying moving vehicles in a video

based monitoring system. Engineering and Technology

Journal, 38(6): 832-845.

http://doi.org/10.30684/etj.v38i6A.438

[5] Furukawa, Y., Hernández, C. (2015). Multi-view stereo:

A tutorial. Foundations and Trends® in Computer

Graphics and Vision, 9(1-2): 1-148.

http://doi.org/10.1561/0600000052

[6] Saxena, A., Chung, S., Ng, A. (2005). Learning depth

from single monocular images. Advances in Neural

Information Processing Systems.

[7] Eigen, D., Puhrsch, C., Fergus, R. (2014). Depth map

prediction from a single image using a multi-scale deep

network. Advances in Neural Information Processing

Systems, 3: 2366-2374.

https://doi.org/10.48550/arXiv.1406.2283

[8] Liu, F., Shen, C., Lin, G. (2015). Deep convolutional

neural fields for depth estimation from a single image. In

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 5162-5170.

https://doi.org/10.48550/arxiv.1411.6387

[9] Albayati, A.Q., Ameen, S.H. (2020). A method of deep

learning tackles sentiment analysis problem in Arabic

texts. Iraqi Journal of Computers, Communications,

Control and Systems Engineering, 20(4): 9-20.

https://doi.org/10.33103/uot.ijccce.20.4.2

[10] Abdul-Kreem, L.I., Abdul-Ameer, H. K. (2020). Object

tracking using motion flow projection for pan-tilt

configuration. Int. J. Electr. Comput. Eng., 10(5): 4687-

4694.

https://doi.org/10.11591/IJECE.V10I5.PP4687-4694

[11] He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual

learning for image recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition, pp. 770-778.

https://doi.org/10.48550/arxiv.1512.03385

[12] Huang, G., Liu, Z., Van Der Maaten, L., Weinberger,

K.Q. (2017). Densely connected convolutional networks.

In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 4700-4708.

https://doi.org/10.1109/CVPR.2017.243

[13] Howard, A.G., Zhu, M., Chen, B., et al. (2017).

Mobilenets: Efficient convolutional neural networks for

mobile vision applications. arXiv preprint

arXiv:1704.04861.

https://doi.org/10.48550/arxiv.1704.04861

[14] Godard, C., Mac Aodha, O., Brostow, G.J. (2017).

Unsupervised monocular depth estimation with left-right

consistency. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 270-279.

https://doi.org/10.1109/CVPR.2017.699

[15] Facil, J.M., Ummenhofer, B., Zhou, H., Montesano, L.,

Brox, T., Civera, J. (2019). CAM-Convs: Camera-aware

multi-scale convolutions for single-view depth. In

Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 11826-11835.

https://doi.org/10.1109/CVPR.2019.01210

[16] Yin, Z., Shi, J. (2018). Geonet: Unsupervised learning of

dense depth, optical flow and camera pose. In

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 1983-1992.

https://doi.org/10.1109/CVPR.2018.00212

[17] Alhashim, I., Wonka, P. (2018). High quality monocular

depth estimation via transfer learning. arXiv Preprint

arXiv:1812.11941.

https://doi.org/10.48550/arxiv.1812.11941

[18] Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F.,

Navab, N. (2016). Deeper depth prediction with fully

convolutional residual networks. In 2016 Fourth

International Conference on 3D Vision (3DV), pp. 239-

248. https://doi.org/10.1109/3DV.2016.32

[19] Liu, Z., Sun, M., Zhou, T., Huang, G., Darrell, T. (2018).

Rethinking the value of network pruning. arXiv preprint

456

arXiv:1810.05270.

https://doi.org/10.48550/arXiv.1810.05270

[20] Wofk, D., Ma, F., Yang, T.J., Karaman, S., Sze, V.

(2019). Fastdepth: Fast monocular depth estimation on

embedded systems. In 2019 International Conference on

Robotics and Automation (ICRA), pp. 6101-6108.

https://doi.org/10.1109/ICRA.2019.8794182

[21] Gao, X., Zhao, Y., Dudziak, Ł., Mullins, R., Xu, C.Z.

(2018). Dynamic channel pruning: Feature boosting and

suppression. arXiv preprint arXiv:1810.05331.

https://doi.org/10.48550/arXiv.1810.05331

[22] A Mahdi, S. (2021). An improved method for combine

(LSB and MSB) based on color image RGB. Engineering

and Technology Journal, 39(1): 231-242.

https://doi.org/10.30684/ETJ.V39I1B.1574

[23] Blalock, D., Gonzalez Ortiz, J.J., Frankle, J., Guttag, J.

(2020). What is the state of neural network pruning?

Proceedings of Machine Learning and Systems, 2: 129-

146. https://doi.org/10.48550/arxiv.2003.03033

[24] Uthaib, M.A., Croock, M.S. (2021). Multiclassification

of license plate based on deep convolution neural

networks. International Journal of Electrical & Computer

Engineering, 11(6): 5266-5276.

https://doi.org/10.11591/IJECE.V11I6.PP5266-5276

[25] Shorten, C., Khoshgoftaar, T.M. (2019). A survey on

image data augmentation for deep learning. Journal of

Big Data, 6(1): 1-48. https://doi.org/10.1186/s40537-

019-0197-0

[26] Ahmed, S.T., Kadhem, S.M. (2021). Using machine

learning via deep learning algorithms to diagnose the

lung disease based on chest imaging: A survey.

International Journal of Interactive Mobile Technologies,

15(16): 95-112.

https://doi.org/10.3991/IJIM.V15I16.24191

[27] Paszke, A., Gross, S., Massa, F., et al. (2019). Pytorch:

An imperative style, high-performance deep learning

library. Advances in Neural Information Processing

Systems. https://doi.org/10.48550/arXiv.1912.01703

[28] Geiger, A., Lenz, P., Stiller, C., Urtasun, R. (2013).

Vision meets robotics: The kitti dataset. The

International Journal of Robotics Research, 32(11):

1231-1237. https://doi.org/10.1177/0278364913491297

[29] Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.

(2018). Deep ordinal regression network for monocular

depth estimation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 2002-

2011. https://doi.org/10.1109/CVPR.2018.00214

[30] Lee, J.H., Heo, M., Kim, K.R., Kim, C.S. (2018). Single-

image depth estimation based on Fourier domain analysis.

In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 330-339.

https://doi.org/10.1109/CVPR.2018.00042

457

