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In the last five decades, Box Jenkins methodology has been in existence to model 

univariate time series data but fails or has limitations on modeling volatility. Most 

financial time series data do exhibit heavy tail and thick distribution, to this effect 

various parametric and semi-parametric non –linear time series models have been 

proposed two or three decades ago to capture volatility. However, this research entails 

measuring volatility and its forecasting using time series exchange rate annual data over 

the period from 1981 to 2020 (wide periodicity). The exchange rate was transformed to 

return, and parametric non –linear time series was modeled on it. It was found out that 

GARCH (1,2) reveals continuous volatility for short while and was the best model to 

predict the exchange rate volatility based on the evidence from measurement volatility 

tool; RMSE, MAE, MAPE among other extensions of GARCH models; EGARCH and 

TGARCH. EGARCH (1, 4) captures the asymmetry effect revealing that negative 

shocks will persistently have an effect on the volatility of the naira/dollar exchange rate. 
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1. INTRODUCTION

Time series is a wide area in statistics focusing on 

forecasting, and understanding the structural behaviors of 

series (stochastic random variable) [1]. Box Jenkins has 

dominantly analyzed time series data for forecasting in the last 

few decades and it is regarded with great usage by the 

scientific community. Also, structural models have been 

developed and applied in the last decades as well but were not 

able to outperform the originality of the random walk model 

proposed by Box and Jenkins in 1976 in aid of forecasting of 

the stochastic random variable [1, 2]. 

Forecasting techniques used in practice can be categorized 

into univariate time series models (GARCH) which capture 

volatility, and it has an edge above Box and Jenkins 

methodology of univariate time series models [3]. One of the 

limitations of the Box Jenkins method is that when there is the 

presence of threshold value, an exhibition of volatility 

clustering, the underlying structure of the series under study 

cannot be modeled but can be modeled with the idea of non-

linear time series models.  

Other types of forecasting techniques that have been in 

existence include but are not limited to market-based 

forecasting techniques. A recent development on forecasting 

time series or economic time series includes chaos theory and 

Artificial Neural Networks according to [4-6]. 

Hsieh [7] shows that different specifications of 

ARCH/GARCH models usually describe different currencies 

better than a unique model (STM or ARIMA models) because 

some currencies show a higher degree of seasonality than 

others due to higher amounts of export of goods around 

Christmas.  

The multivariate regression approach has been used in many 

research to study and predict the exchange rate based on some 

listed variables but these have a limitation in the sense that 

macro-economic variables are available at most monthly 

periods precisely modeling of such explanatory variables will 

lead to a proportion change in the exchange rate [4, 8].  

Majorly, applied econometricians use the giant statistical 

tool (least-squares model) as a natural choice to describe the 

nature of the exchange rate based on another macroeconomic 

variable listed above. The ARCH and GARCH models, which 

stand for autoregressive conditional heteroskedasticity and 

generalized autoregressive conditional heteroscedasticity 

respectively are designed to deal with just this issue [9]. 

In most recent times, they have been declared as a time 

series tool for capturing volatility or measuring volatility 

through the aid of measures of dispersion (variance or standard 

deviation) and these can be used in financial decisions 

concerning risk analysis, portfolio selecting, asset pricing and 

derivative pricing [10].  

The volatility of financial assets has been a growing area of 

research. The traditional measure of volatility is represented 

by variance or standard deviation as stated above is 

unconditional and does not recognize the interesting patterns 

in asset volatility such as time-varying and cluster properties 

[11]. 

In Nigeria's context, two series were examined; structural 

adjustment program (SAP) where the exchange rate of Nigeria 

depreciated against the major intervention currency (US dollar) 

from 1970 to 1994). During this regime, investors and the 

capital market were not functioning very well. Some few 

business tycoons only invested in the capital market as a result 

of poor awareness. Also, decision-makers, business 

forecasters were not able to generate forecasts since the 

introduction of the regime. In 1994, the Nigerian government 
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introduces foreign exchange markets (FEM) where little 

depreciation of naira was examined in 1994 and steady 

depreciation was examined in 1998 and 1999 and appreciated 

in 2005, 2006. A continuation of depreciation still exists to 

date. With this volatility in the exchange rate, little work has 

been done on modeling naira exchange rate volatility in 

Nigeria or how to capture the volatility using the GARCH 

models.  

Recently, Musa et al. [12] makes use of GARCH models 

and the extension of GARCH models to model naira/dollar 

exchange using a short spine of periodicity. He found out that 

GJR – GARCH, and T- GARCH model shows the existence 

of a statistically significant asymmetric effect. But in this 

research work, the aim is to check for volatility measurement 

and its accuracy of predicting the naira exchange rate by 

applying a wide periodicity to check for the existence of 

leverage effect. The aim is attained by implementing extended 

GARCH families. The remainder of this research is section as 

section 2 focuses on data sources and empirical framework of 

ARCH models, section 3 describes the methodology, section 

4 focuses on results and discussions, and section 5 describes 

the conclusion and possible recommendation for the research. 

 

 

2. DATA SOURCE AND EMPIRICAL LITERATURE 

OF GARCH MODELS 

 

 
 

Figure 1. Graph of return series 

 

 
 

Figure 2. Graph of exchange rate series 

 

For volatility modeling, the data used in the present study 

consists of the annual foreign exchange rate of the naira/US 

dollar. The data was obtained from www.oanda.com with a 

sample period from 1981 to 2020. To model this data for 

volatility checking, different econometric time series models 

like ARMA, ARCH, GARCH, EGARCH, and TGARCH are 

critically employed. The exchange rate series obtained from 

www.oanda.com is therefore converted for the needs of fitting 

the model to a 1st difference as would be called “𝑦𝑡” return 

series, 𝑥𝑡  is the exchange rate series, then 𝑦𝑡  is called the 

return exchange rate and this is written as 𝑦𝑡 = 𝑥𝑡 − 𝑥𝑡−1 . 

Figure 1 and Figure 2 shows the plot of the return series 𝑦𝑡  and 

the exchange rate series 𝑥𝑡. 

 

 

3. RESEARCH METHODOLOGY 

 

This research work aims to identify volatility, measure 

volatility, and forecast using GARCH models and the selected 

extension of GARCH models via E- GARCH, and T- GARCH 

models using annual financial time series data which covers 

from 1981 to 2021 i.e., a widespread of data (exchange rate).  

The E-GARCH model will capture the asymmetric effect of 

the response of disturbance on volatility while T – GARCH 

model will capture the leverage effect (the reaction of 

volatility to changes in exchange rate prices. This aim requires 

several steps to be taken, firstly a descriptive statistic is 

encouraged to be found to understand the nature of the 

exchange rate returns. It is expected that the mean return 

would be zero identifying stationarity else non-stationary. 

It is also expectant that most financial data series have 

heavy tails i.e., their kurtosis exceeds 3 signifying that the 

distribution is leptokurtic and has a high value or peak; more 

also for normality the Jarque test will signify for the 

randomness of the return series i.e., are the data followed a 

normal distribution. It is also not to be forgotten the 

unconditional standard deviation which measures the spread 

of data values and the volatile measure, a high value of 

standard deviation signifies high volatility which reverse is the 

low volatility. Less, the asymmetric distribution (Skewness) 

which equals zero indicates normality, a negative value of 

Skewness indicates negative Skewness or left tail is 

particularly extreme while a positive value indicates positive 

Skewness or right tail is particularly extreme.  

Once descriptive statistics are defined, we performed ADF 

test for test of stationarity of the return series. Once the unit 

root is tested, we developed a series of ARMA models of Eq. 

(1) below using least square estimation methods or a well-

defined maximum likelihood estimation. 

 

𝜇𝑡(𝜃) = 𝜑0 + 𝜑1𝑦𝑡−1 + ⋯ + 𝜑𝑝𝑦𝑡−𝑝 + 𝜃1𝜀𝑡−1 + ⋯

+ 𝜃𝑞𝜀𝑡−𝑞 + 𝜖𝑡 
(1) 

 

where 𝜑0 =  constant term, 𝜑1, … . 𝜑𝑝 =  autoregressive 

coefficients from order 1 to 𝑝𝑡ℎ order and 𝜀1, … . 𝜀𝑞 = moving 

average coefficients from order 1 to 𝑞𝑡ℎ  order and 𝜖𝑡 = 

ARMA error term. 

According to Ref. [13], both methods of estimations give 

the same results. Akaike information and Bayesian 

information criteria are the two criteria used to select the best 

ARMA model, once the best ARMA model is developed we 

generate the error (𝜀𝑡) and check for the optimality of the best 

ARMA model, and plot the ACF (autocorrelation function) of 

the squared disturbance terms and also disturbance terms; if 

the disturbances hover the zero line, hence the best ARMA 

model is good. Once determine the optimality of the best 

ARMA model, we test for the ARCH effect (serial correlation 

in conditional variance).  
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Let 

 

𝜖𝑡 = 𝑦𝑡 − 𝜑0 − ∑ 𝜑𝑖𝑦𝑡−𝑖 + ∑ 𝜃𝑗𝜀𝑡−𝑗

𝑞

𝑗=1

𝑝

𝑖=1

 (2) 

 

Be the residuals of ARMA model of Eq. (1). The squared 

error series 𝜀2
𝑖is then check for conditional heteroscedasticity, 

which is known as the ARCH effect. The test for conditional 

heteroscedasticity is the Lagrange multiplier test of Engle [14]. 

The test is equivalent to usual F – statistics for testing 𝛼𝑖 = 0 

(𝑖 = 1,2, … . . 𝑞) in Eq. (3) below. 

 

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀

2
𝑡−𝑖

𝑞

𝑖=1

 (3) 

 

where 𝑡 = 𝑞 + 1, … 𝑇 , where 𝜀𝑡  denotes the error term, 𝑞  is 

the specified positive integer, and T is the sample size. 

Specifically, the null hypothesis is: 

 

𝐻0: 𝛼1 = 𝛼2 =. . . . . . . 𝛼𝑞 (No Arch effect) 

 

At least one parameter is not equal to zero (Arch effect). Let 

𝑆𝑆𝑅0 = ∑ (𝜀2
𝑡 − 𝐾)2𝑇

𝑡=𝑞+1 , where 𝐾 =
∑ 𝜀2

𝑡
𝑇
𝑡=𝑞+1

𝑇
, the sample 

is mean of 𝜀2
𝑡 and let 𝑆𝑆𝑅1 = ∑ 𝜀̂2𝑡

𝑇
𝑡=𝑞+1 , where 𝜀�̂�, the least 

square residual of Eq (1) is, then we have:  

 

𝐹𝑠𝑡𝑎𝑡 =

(𝑆𝑆𝑅1 − 𝑆𝑆𝑅2)
𝑞⁄

𝑆𝑆𝑅1(𝑇 − 2𝑄 − 1)
 ~ 𝑋2(𝑞) (4) 

 

where 𝑞 = the degree of freedom. The decision rule is to reject 

the null hypothesis if 𝐹𝑠𝑡𝑎𝑡 ≻ 𝑋2
𝑞(𝛼) is the upper 100(1 −

𝛼)𝑡ℎ  percentile of 𝑋2
𝑞  or the p-value of Fstat is less than 𝛼. 

Otherwise, no rejection of Ho. if found ARCH effect is present 

i.e. a serial correlation in conditional variance of the error 

derived in Eq. (1), we estimate GARCH models to measure 

volatility. The essence of this ARCH effect will aid in the 

effect of exchange rate volatility which is been caused by some 

factors such as government policies or trade in balance etc. in 

fact this point out how effective are these factors have on naira 

dollar exchange rate. 

 

3.1 Estimation techniques (arch models) 

 

Three likelihood functions proposed by Fan and Yao [15] 

were used in ARCH estimation. If the series assumes 

normality, then, the likelihood function for the ARCH (𝑞) 

model is: 

 

𝑓(𝑦1, 𝑦2, … . . 𝑦𝑇|𝛼) = 𝑓(𝑦𝑇|𝜑𝑡−1)𝑓(𝑦𝑇−1|𝜑𝑡−2) 

𝑓(𝑦𝑞+1|𝜑𝑞)𝑓(𝑦1, 𝑦2 , … . . 𝑦𝑞|𝛼) 
(5) 

 

where 𝛼 = (𝛼0, 𝛼1, . . . . . . 𝛼𝑞)
′
 and 𝑓(𝑦1, 𝑦2. . . . . 𝑦𝑞|𝛼)  is the 

joint probability density function of 𝑦1, 𝑦2, . . . . 𝑦𝑞,. Since the 

exact form of 𝑓(𝑦1, 𝑦2. . . . . 𝑦𝑞|𝛼) is complicated, it is 

commonly dropped from the prior likelihood function, 

especially when the sample size is sufficiently large. This 

results in using the conditional likelihood function: 

 

𝑓(𝑦𝑞+1, 𝑦𝑞+2 … . 𝑦𝑇|𝛼, 𝑦1, 𝑦2, … . 𝑦𝑞) (6) 

= ∏
1

√2𝜋𝜎𝑡

𝑒
(

−𝑦2
𝑡

2𝜎2
𝑡

)
𝑇

𝑡=𝑞+1

 

 

where, 𝜎2
𝑡  can be evacuated recursively. We prefer the 

estimates obtained by maximizing likelihood estimates 

(MLE's) under which is easier to handle. In addition, it ensures 

that the maximum value of the log of the probability of Eq. (7) 

occurs at the same point as the original probability function in 

Eq. (5). Moreover, one of the usefulness of maximum 

likelihood estimate is that the population parameters in Eq. (5) 

are selected, by selecting the parameters such that the 

population distribution has the moments that are equivalent to 

the observed moments in the sample. Therefore, we can work 

with the simpler log-likelihood instead of the original 

likelihood. The conditional log likelihood function is: 

 

𝑓(𝑦𝑞+1, 𝑦𝑞+2 … . 𝑦𝑇|𝛼, 𝑦1, 𝑦2, … . 𝑦𝑞) 

= ∑ (−
1

2
𝑙𝑛(2Π) −

1

2
𝑙𝑛(𝜎𝑡) −

1

2

𝑦2
𝑡

𝜎2
𝑡

)

𝑇

𝑇=𝑞+1

 
(7) 

 

Since the first two terms 𝑙𝑛(2𝛱)  do not involve any 

parameter, the log likelihood function becomes: 

 

𝑓(𝑦𝑞+1, 𝑦𝑞+2 … . 𝑦𝑇|𝛼, 𝑦1, 𝑦2, … . 𝑦𝑞) 

= − ∑ (
1

2
𝑙𝑛(𝜎𝑡) +

1

2
(

𝑦2
𝑡

𝜎2
𝑡

))

𝑇

𝑡=𝑞+1

 
(8) 

 

where, 𝜎2
𝑡 = 𝛼0 + 𝛼1𝜀2

𝑡−1 + 𝛼2𝜀2
𝑡−2+. . . . . . . . . . . . 𝛼𝑞𝜀𝑡−𝑞 

can be evaluated recursively. Now in some applications, it is 

more appropriate to ensure that 𝜀𝑡  follows a heavy tailed 

distribution such as standard t – distribution. There are two 

approaches to deal with the problem via robust inference and 

fat tail conditional distribution. For robust inference, see Ref. 

[16], for fat tailed conditional distribution; two approaches 

were involved parametric [17], non-parametric (semi 

parametric, [18], semi – non parametric density estimation; 

[19]. Following Ref. [17],  

Let Xv be a student t – distribution with v degrees of freedom. 

Then 𝑣𝑎𝑟(𝑥𝑣) =
𝑣

𝑣−2
 for 𝑣 ≻ 2 and use 𝜀𝑡 =

𝑥𝑣

√𝑣(𝑣−2)
, then 

probability density function of 𝜀𝑡 is: 
 

𝑓(𝜀𝑡|𝑣) =
𝛾 (

𝑣 + 1
2

)

𝛾 (
𝑣
2

) √(𝑣 − 2)𝛱
(1 +

𝜀2
𝑡

𝑣 − 2
)

−
𝑣+1

2

, 

𝑣 ≻ 2 

(9) 

 

where, 𝛾(𝑥)  is the use of gamma function i.e. 𝛾(𝑥) =

∫ 𝑡𝑥−1𝛼

0
𝑒−𝑡𝜕𝑡 now using 𝑦𝑡 = 𝜀𝑡𝜎𝑡 we obtain the conditional 

likelihood function of 𝑦𝑡  as: 
 

𝑓(𝑦𝑞+1, 𝑦𝑞+2 … . 𝑦𝑇|𝛼, 𝑦1, 𝑦2, … . 𝑦𝑞) 

= ∏

𝛾 (
𝑣 + 1

2
)

𝛾 (
𝑣
2) √𝑣 − 2𝜋

1

𝜎𝑡

(1 +
𝑦2

𝑡

(𝑣 − 2)𝜎2
𝑡

)

−
𝑣+1

2

,

𝑣 > 2

𝑇

𝑡=𝑞+1

 
(10) 

 

Now we now refer to the estimates that maximize the prior 

likelihood function as the conditional MLE’s under the t – 

distribution. The degrees of freedom of the t – distribution can 
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be specified a prior or estimated jointly with other parameters. 

Now a value between 3 or 6 is often used if it is per specified, 

then the conditional log likelihood function is: 

 

𝑙𝑛(𝑦𝑞+1, 𝑦𝑞+2 … . 𝑦𝑇|𝛼, 𝑦1, 𝑦2, … . 𝑦𝑞) 

= − ∑ [
𝑣 + 1

2
𝑙𝑛 (1 +

𝑦2
𝑡

(𝑣 − 2)𝜎2
𝑡

+
1

2
𝑙𝑛(𝜎2

𝑡))]

𝑇

𝑡=𝑞+1

 
(11) 

 

Now finally, it may assume a generalized error distribution 

GED), a situation where errors (the difference between the 

expected value of Eq. (3) and the observed values) are not 

normally distributed, i.e. if it does not obey the rule of 

symmetry or asymptotical rule. The probability function: is 

defined as: 

 

𝑓(𝑣𝑠) =
𝑣𝑒𝑥𝑝 (−

1
2

|
𝑠
𝑣

|
𝑣

)

𝜆2
(1+

1
𝑣

)
𝛾 (

1
𝑣

)
, 

−𝛼 < 𝑥 ≤ 𝛼;  0 < 𝑣 < 𝛼 

(12) 

 

And 𝜆 = [2
(

−2

𝑣
) 𝛾(

1

𝑣
)

𝛾(
3

𝑣
)
]

1

2

, this distribution reduces to Gaussian 

distribution if 𝑣 = 2, and it has heavy tail i.e. the distribution 

will have a high kurtosis value indicating high peak of outliers 

when 𝑣 < 2. But if 𝑣 > 2, the distribution diverges as a result 

of convolutions problems or gradient problems. 

 

3.2 Estimation technique (GARCH models) 

 

From Fan and Yao [15], the conditional normal GARCH 

process is: 

 

(𝑦𝑡|𝜑𝑡−1)~𝑁(𝑢𝑡(𝜃), 𝜎2
𝑡) (13) 

 

And their conditional density is: 

 

𝑓(𝑦𝑡|𝜑𝑡−1); 𝜃 =
1

√2𝜋
𝜎2

𝑡𝑒
(−

1
2

(
𝑦𝑡−𝜇𝑡(𝜃)

𝜎2
𝑡

))

2

 (14) 

 

Its prediction error decomposition is given by: 

 

𝑓(𝑦𝑇 , 𝑦𝑇−1, … 𝑦1; 𝜃) 

= 𝑓(𝑦𝑇|𝜑𝑡−1) × 𝑓(𝑦𝑇−1|𝜑𝑡−2) × 𝑓(𝑦1|𝜑0) 
(15) 

 

The log likelihood function is given by: 

 

𝑙𝑜𝑔𝑙(𝑦𝑇 , 𝑦𝑇−1, … 𝑦1; 𝜃) = 𝑙𝑜𝑔𝑓(𝑦𝑇 , 𝑦𝑇−1, … 𝑦1; 𝜃) 

= −
𝑇

2
𝑙𝑜𝑔2𝜋 −

1

2
∑ 𝑙𝑜𝑔𝜎2

𝑡

𝑇

𝑖=1

−
1

2
∑(𝑦𝑡 − 𝜇𝑡(𝜃))

2
𝑇

𝑡=1

 
(16) 

 

Looking at Eq. (16), there is a non – linear function θ, so 

according to [15], numerical optimization techniques would be 

applied to estimate the persistent parameters in Eq. (17) below: 

 

𝜎2
𝑡 = 𝛼0 + 𝛼1𝜀2

𝑡−1 + 𝛼2𝜀2
𝑡−2 + ⋯ 𝛼𝑝𝜀2

𝑡−𝑝 

+𝛽1𝜎2
𝑡−1 + 𝛽2𝜎2

𝑡−2 + ⋯ 𝛽𝑞𝜎2
𝑡−𝑞 

(17) 

 

We fit different types of GARCH models using the 

numerical optimization techniques as described above to 

estimate significant parameters and the best GARCH model is 

selected base on the smallest AIC and BIC criteria. The 

optimality of the GARCH model selected passed through 

diagnosis testing (plot of ACF of the standardized squared 

errors terms generated to test for continuous arch effect and 

the ACF of the standardized residuals for normality. If the 

ACF hovers around the line then the GARCH model estimated 

is satisfied. Hence the sum of coefficients of ARCH lags with 

GARCH lags would be less than unity and the coefficients of 

GARCH LAGS must be greater than zero. All the parameters 

must be (statistically significant). We proceed to perform the 

presence of ARCH effect from the ACF of the standardized 

squared residual if found out no ARCH effect we base our 

interpretation on the persistent parameter (𝛽𝑗)  in Eq. (17). 

Estimation of E – GARCH and T- GARCH are estimated and 

the optimality of the models are followed in the same way as 

for GARCH models. For E – GARCH models the parameters 

that measure the leverage effect must be less than zero for the 

positivity of the variance while for the T – GARCH model; the 

parameter that measures the leverage effect must be greater 

than zero for the positivity of conditional variance. 

 

3.3 H-step ahead forecast of the conditional variance of the 

error 

 

Detail on the forecast conditional variance of GARCH 

model to be estimated in this research is given by: 

Recall from 𝐺𝐴𝑅𝐶𝐻 (1,1) 

 

𝜎2
𝑡 = 𝛼0 + 𝛼1𝜀2

𝑡 + 𝛽𝜎2
𝑡 (18) 

 

1 − 𝑠𝑡𝑒𝑝 Ahead prediction is given by: 

 

(𝜎2
ℎ+𝑘|𝑡) = 𝛼0 + 𝛼1𝜀2

𝑡 + 𝛽𝜎2
𝑡 (19) 

 

𝑘 = 𝑠𝑡𝑒𝑝 Ahead prediction is given by: 

 

(𝜎2
ℎ+𝑘|𝑡) = 𝛼0 + 𝛼1𝜀2

𝑡+𝑘−1 + 𝛽𝜎2
𝑡+𝑘−1 (20) 

 

For the long run – predictions: 

 

lim
𝑘→∞

(ℎ𝑡+𝑘|𝑡) =
𝛼0

1 − 𝛼 − 𝛽
= �̅�0 (21) 

 

For higher order 𝐺𝐴𝑅𝐶𝐻 (𝑝, 𝑞)  

 

𝜎2
𝑡 = 𝛼0 + 𝛼1 ∑ 𝜀2

𝑡−𝑖

𝑝

𝑖=1

+ 𝛽 ∑ 𝜎2
𝑡−𝑗

𝑞

𝑗−1

 (22) 

 

Taking conditional expectations and assuming that a sample 

size of T, and for the conveniences that parameters in the 

forecast function are known, a forecast function for the 

optimal h – step ahead forecast of the conditional variance is 

written as: 

 

𝐸(𝜎2
𝑡+𝑘|𝜑𝑡) = 𝛼0 

+ ∑ 𝛼𝑖𝐸(𝜀2
𝑡±𝑖|𝜑𝑇) + ∑ 𝛽𝑗𝐸(ℎ𝑡+𝑘−𝑗|𝜑𝑡)

𝑞

𝑗=1

𝑝

𝑖=1

 
(23) 

 

When 𝜓𝑡 is the other relevant information pertaining to the 

forecast of 𝜎2
𝑡 . 𝐸(𝜀2

𝑡+𝑖|𝜓𝑡) = 𝐸(𝜎2
𝑡+𝑖|𝜓𝑡)  For 𝑖 > 0 , 

𝐸(𝜀2
𝑡+𝑖|𝜓𝑇) = 𝜎2

𝑡+𝑖  for 𝑖 ≻ 1 . 𝐸(𝜎2
𝑡+𝑖|𝜓𝑡)  is computed 

recursively. Thus, obtaining one- head forecast of 𝜎2
𝑡  is 
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giving by 𝐸(𝜎2
𝑡+1|𝜓𝑡) = 𝛼0 + 𝛼1𝜀2

𝑡 + 𝛽𝜎2
𝑡  which is 

equivalent to Eq. (20). The procedure is continued and the long 

run predictor is equivalent to Eq. (21). According to Ref. [20], 

He stated that for GARCH (1, 1), the two step forecast is a 

little closer to the long run average variance than one – step 

forecast. Ultimately, the long run prediction is the same for all 

time periods as long as𝛼𝑖 + 𝛽𝑖 ≺ 1. Engle [20] regards that it 

is called the unconditional variance, hence GARCH models 

are mean reverting and conditionally heteroscedasticity but 

have a constant unconditional variance. 

For 𝐾 − period’s returns (exchange return):  

 

𝜑𝑡+𝑘(𝐾) = 𝑒𝑡+𝑘 + 𝑒𝑡+𝑘−1 + ⋯ 𝑒𝑡+1 (24) 

 

For 𝐾 −period return variance:  

 

𝑣𝑎𝑟(𝑒𝑡+𝑘(𝐾)|𝜑𝑡) ~ (𝜎2
𝑡+𝑘|𝑡) + (𝜎2

𝑡+𝑘−1|𝑡)
+ ⋯ (𝜎2

𝑡+1|𝑡) 
(25) 

 

3.4 Volatility forecast comparison 
 

Four different measurement forecast accuracy tools would 

be used to compare the very best conditional 

heteroscedasticity models that provide an accurate forecast of 

the conditional variance via root mean squares, mean absolute 

error, mean absolute percentage error, and the Theil inequality. 

The mathematical representations of the above forecast 

measurement tool are as follows: 

 

Root mean square = √
∑ (�̂�2

𝑡−𝜎𝑡)2𝑁
𝑖=1

𝑁
 (26) 

 

Mean absolute error = 
∑ |(�̂�2

𝑡−𝜎𝑡)
2

|𝑁
𝑖=1

𝑁
 (27) 

 

Mean absolute percentage error = ∑
|(�̂�2

𝑡−𝜎𝑡)
2

|

𝜎𝑡

𝑁
𝑖=1  (28) 

 

Theil inequality = 
𝑅𝑀𝑆𝐸

√∑ �̂�2
𝑡

𝑁
𝑖=1

𝑁
+√∑ 𝜎2

𝑡
𝑁
𝑖=1

𝑁

 
(29) 

 

where N is the number of out sample observations, 𝜎𝑡 is the 

actual volatility at forecasting period “𝑡 ” measured as the 

squared daily return, and �̂�2
𝑡 is the forecast at volatility at “𝑡”. 

The first measurement forecasting tool would be used to 

forecast for the same series across all different conditional 

heteroscedasticity models. The smallest error indicates the 

better forecasting ability of that model according to the criteria. 

Under the Theil inequality, it is expected that the coefficient 

or the value of Theil would be zero which would indicate a 

perfect fit. Theil lies between 0 and 1. It is of necessity to 

understand the variability between volatility forecast from the 

actual series and variability between the mean of volatility 

forecast from the actual mean series. The following 

proportions define both clearly. 

 

Bias proportion = 

∑ (�̂�2
𝑡−�̅�)

𝟐𝑵
𝒊=𝟏

𝑵
⁄

∑ (�̂�2
𝑡−𝜎𝑡)2𝑁

𝑖=1
𝑵

⁄
 (30) 

 

This measures how far the mean difference of the volatility 

is from the mean of the actual series. The absolute range of 

tolerance error between the mean difference of the volatility 

and that of the mean of the observed series should not exceed 

±1.5%  and there is no need for normalization of this 

difference. 

 

Variance proportion = 
(𝜹�̂�−𝜹𝒚)

𝟐

∑ (�̂�2
𝑡−𝜎𝑡)2𝑁

𝑖=1
𝑵

⁄
 (31) 

 

This measures the variance of the volatility forecast from 

the variation of the actual series. Where 𝛿�̂�, 𝛿𝑦 are the biased 

standard deviation of �̂�𝑡 and 𝜎𝑡 respectively. 

 

Covariance proportion = 
2(1−𝑟)𝛿�̂�𝛿𝑦

1

𝑁
∑ (�̂�𝑡−𝜎𝑡)𝑁

𝑖=1

 (32) 

 

This measures the remaining unsymmetrical forecasting 

errors. It is expected to be close to unity so that all the bias 

would be concentrated on it and allow variance proportion and 

bias proportion to be small. 

 

 

4. RESULTS AND DISCUSSION 

 

It is mandatory to check for normality of the exchange rate 

return series, the asymmetry distribution of the return, and the 

tail nature of the return. To this effect, Table 1 presents the 

descriptive statistics of the return. From Table 1 above, the 

mean of the return series is almost zero but still can be 

interpreted as the return is stationary and also it exhibits 

volatility clustering. This can be easily seen from Figure 1, 

wide swings of data points. In terms of volatility, the standard 

deviation is so high of value (1.34666) indicating high 

volatility i.e., continuous rise in changes of exchange rate 

series and widespread of data values. 

 

Table 1. Descriptive statistics of return series (sample period 1981:2021) 

 
Variable Mean Median Standard dev. Skewness Kurtosis Jarqua Bera P - value 

Return 0.0187 0.000 1.34666 14.796 736.789 1.67E+8 0.000 

 

Table 2. ADF unit root test on exchange returns 

 
Variable 

lag 
Intercept Trend plus intercept 

Exchange rate return 

ADF stat Critical value ADF stat Critical value 

1 -72.932 
-3.43 (1%) 

-72.937 
-3.964 (1%) 

2 -59.140 -59.149 

3 -52.322 
-2.863 (5%) 

-2.567 (10%) 

-52.333 
-3.413 (5%) 

-3.128 (10%) 
4 -48.589 -48.604 

 5 -43.075 -43.092 
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Existence of positive Skewness and non – asymmetric 

distribution presence (i.e., the right tail is particularly at the 

extreme. It is empirical that most financial series deviate from 

normality (mean zero). The kurtosis value indicates a high 

value which indicates tall and thick distribution (leptokurtic) 

distribution since the kurtosis value exceeds 3. Most financial 

time series data do have heavy tails. A rejection of normality 

was rejected by Jarqua Bera test since its 𝑝 − 𝑣𝑎𝑙𝑢𝑒 (0.00) 

was less than the exact probability value of 0.05 and 0.01 level 

of significance. Hence meaning that the exchange return is 

non-normal distributed. We proceed to test for stationarity of 

the exchange return using the procedures discussed by Dickey 

and Fuller [21]. Table 2 displays the ADF test of return using 

two assumptions in the test equations; intercept, trend plus 

intercept up to lag 5. 

This test was based on ADF test and was conducted on the 

levels of the return. The full sample period is from 1981 to 

2020 annual exchange rate data. For the test, five lags were 

chosen to study the stationarity of the return using two 

assumptions: intercept and trend plus intercept. 

Based on the five lags chosen, the ADF test statistics for all 

the five lags were greater than ADF critical value at 1%, 5%, 

and 10% respectively indicating that the return is stationary at 

level form up to five (5) lags. To proceed in modeling 

volatility, it is expected for the return to be stationary and has 

ADF test has confirmed it is stationary. We proceed to develop 

an ARMA model, we regress the return with a constant “𝑐" 

and generate the errors or residual then series of ARMA 

models were developed. The best ARMA model was chosen 

base on 𝐴𝐼𝐶  and 𝐵𝐼𝐶 , based on the criteria’s 𝐴𝑅𝑀𝐴 (2, 1) 

was found to be the best among the five ARMA models we 

built. Table 3 reports the summary of its component. 

 

Table 3. ARMA (2, 1) model components 

 
Variable Coefficients Std. Error T. stat. Prob. 

(𝜙1) 0.11066 0.5225 1.3501 0.177 

(𝜙2) -0.1168 0.0115 -10.137 0.000 

Res 1 (𝜃1) -1.2586 0.8227 -1.5298 0.01261 

 

Res 1: denotes the 1st lagged period at time (𝑡 − 1) of the 

residual. 

The sample period covers from 1981 to 2020 with 41 

observations after adjusting the endpoints. With attaining AIC 

of value 3.402 and BIC value of 3.405. 

The optimality of the model ARMA (2, 1) was judged by 

the ACF of squared residual. Table 4 displays the value of 

ACF of squared residual up to lag 10. 

 

Table 4. Autocorrelation function of squared residual of 

ARMA (2, 1) model 

 
Lag ACF PACF Q-stat. P-value 

1 0.005 0.05 0.2083 0.648 

2 0.001 0.001 0.2211 0.895 

3 0.002 0.002 0.2564 0.968 

4 0.002 0.002 0.2760 0.991 

5 0.01 0.01 1.0076 0.962 

6 0.003 0.003 1.0929 0.982 

7 0.002 0.001 1.1106 0.993 

8 0.001 0.001 1.1245 0.997 

9 0.001 0.001 1.1334 0.999 

10 0.002 0.002 1.614 0.999 

 

 

From Table 4, the 𝐴𝐶𝐹  values of the squared residual of 

𝐴𝑅𝑀𝐴 (2,1) model hover round the zero-line indicating that 

residuals are normally distributed or presence of no serial 

correlations. Since the error is Gaussian, hence 𝐴𝑅𝑀𝐴 (2, 1) 

is selected to be accurate. We proceed to test for 𝐴𝑅𝐶𝐻 effect, 

we generated the squared residual from the 𝐴𝑅𝑀𝐴 (2,1) 

model estimated and modeled it in a linear combination to the 

past lagged terms of the squared residuals with the presence of 

constants. Following the usage of AIC and BIC criteria for 

selecting the model, it was found out that 𝐴𝑅𝐶𝐻 (1)  was 

selected. Table 5 presents the model component. 

 

Table 5. ARCH (1) Model components 

 
Variable Coefficient Std. error T. stat. P-value 

𝛼0 1.80389 0.57098 3.15924 0.0016 

Res 1 (-1) 𝛼1 0.005292 2.0116 4.45616 0.04483 

 

Res 1(-1): squared residual lagged at (t-1) periods. 

The sample period covers from 1981 to 2020 with 41 

observations after adjusting the endpoints. With attaining 𝐴𝐼𝐶 

of value 10.6297 and BIC value of 10.63156. 

From Table 5, the coefficient of the squared residual at 

lagged (𝑡 − 1) period was less than 1 and significant since its 

p-value (0.04483) is less than 0.05 level of significance. For 

testing hetereoskedasticity, the remaining components of 

𝐴𝑅𝐶𝐻 (1) are summarized below in Table 6. 

From Table 6, it shows that F -stats indicated as (***) shows 

that it is great to reject the null hypothesis of (no arch effect) 

or no presence of conditional heteroscedasticity since the p-

value to have a larger value of F- stat > 6.208 is 0.02648 lesser 

than exact probability value at 0.05. Hence, we conclude that 

ARCH (1) model shows the presence of conditional 

heteroscedasticity or error variance is serially correlated. The 

interpretation of the coefficient obtained signifies that 

volatility of the return in a current period (t) has little effect 

from the volatility exhibited in the past month. 

We further justify studying the volatility persistence, by 

building the different GARCH models, and AIC and BIC 

criteria was been used to identify the best GARCH class model. 

Based on the AIC & BIC it was found out that GARCH (1, 2) 

model was found to be the best among series of higher 

GARCH orders. Table 7 reports the component of GARCH (1, 

2) model. 

The sample period covers from 1981 to 2020 with 41 

observations after adjusting the endpoints. With attaining 𝐴𝐼𝐶 

of value 3.338842 and 𝐵𝐼𝐶 value of 3.34256. 

The expectation for the sum of (𝛼𝑖 + 𝛽𝑖) was less than 1 i.e., 

0.738455  measured the volatility of shocks today affects 

through the volatility of next periods. The entire primary non 

– negativity condition of both 𝐴𝑅𝐶𝐻 and 𝐺𝐴𝑅𝐶𝐻 coefficients 

were significantly identified and all coefficients were 

statistically significant since their p-value was less than 

observed probability at 1% and 5%. The persistent parameter 

(𝛽1)  and (𝛽2)  allows for continuous volatility of exchange 

returns since greater than zero. This is to say that the exchange 

rate will continue to exhibit wide swings for some periods and 

later be adjusted for short-term periods. This volatility will 

continue for 1 month from this current time till the next 5 

months. The adequacy of 𝐺𝐴𝑅𝐶𝐻 (1, 2) model estimated was 

subjected to the correlogram of the squared residual generated 

from the model. Table 8 displays the correlogram value of the 

squared residuals from the estimated 𝐺𝐴𝑅𝐶𝐻 (1, 2)  up 

𝑙𝑎𝑔𝑠 10. 
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Table 6. Remaining components of 𝐴𝑅𝐶𝐻 (1) 

 

𝑅2 0.000028 Mean Dependent 1.8134 

Adjusted 𝑅2 -0.000107 S.D dependent 49.1915 

S.E of regress 49.19418 AIC 10.6297 

Log likelihood -39503.27 BIC 10.6315 

Durbin Watson 2.023 ***F.stat. 6.208 

Sum of Sq. Res 17983 ***Pvalue of F. stat 0.02648 

 

Table 7. GARCH (1, 2) model estimates 

 
Variable Coefficient Std. Error Z. stats P-value 

𝛼0 0.562480 0.032578 17.2658 0.000 

𝛼1 0.077368 0.005285 14.6379 0.000 

𝛽1 0.089273 0.015626 5.71327 0.000 

𝛽2 0.571814 0.021569 26.5127 0.000 

 

Table 8. Autocorrelation function of squared Residual of 

GARCH (1, 2) model 

 
Lag ACF PACF Q-stat. Pvalue 

1 0.005 0.05 0.2131 0.644 

2 0.001 0.001 0.2266 0.893 

3 0.002 0.002 0.2631 0.907 

4 0.002 0.002 0.2835 0.991 

5 0.01 0.01 1.0295 0.96 

6 0.003 0.003 1.1172 0.981 

7 0.002 0.001 1.1356 0.992 

8 0.001 0.001 1.1502 0.997 

9 0.001 0.001 1.1595 0.999 

10 0.002 0.002 1.1886 0.98 

 

It can be observed that from 𝑙𝑎𝑔 1 up to 𝑙𝑎𝑔 15, the 𝐴𝐶𝐹 

values hover round the zero line, and also their 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 are 

all greater than 1% and 5%. This result indicates that there is 

no presence of serial correlation in error variance, and 

𝐺𝐴𝑅𝐶𝐻 (1,2) model is well fit for return of this kind even 

after subjecting it to a high-frequency data. A further measure 

of asymmetric effect (positive and negative) on volatility was 

judge through the implementation of 𝐸 −  𝐺𝐴𝑅𝐶𝐻  models 

and also measure of leverage effect i.e., the reaction of 

volatility to changes in return. Table 9 presents the summary 

coefficients of 𝐴𝑅𝑀𝐴 (2, 1) , 𝐺𝐴𝑅𝐶𝐻 (1, 2)  model and as 

well as 𝐸 –  𝐺𝐴𝑅𝐶𝐻  and 𝑇 − 𝐺𝐴𝑅𝐶𝐻  coefficients for 

comparisons. 

Both estimations of 𝐸 − 𝐺𝐴𝑅𝐶𝐻  and 𝑇 − 𝐺𝐴𝑅𝐶𝐻  are 

estimated with Marquardt algorithm with maximum iteration 

at 200. The 𝐴𝑅𝐶𝐻  –term was none. 𝐸 − 𝐺𝐴𝑅𝐶𝐻 (1, 4) and 

𝑇 − 𝐺𝐴𝑅𝐶𝐻 (1, 2)  were found to be the best model and 

statistically significant to measure the asymmetry effect of 

shocks on volatility and volatility changes in exchange return 

respectively. The value in parenthesis indicates 𝑧 –  𝑠𝑡𝑎𝑡𝑠. and 

𝑝 − 𝑣𝑎𝑙𝑢𝑒. 

From Table 9, it reports that the asymmetry parameter 𝛾 = 

−0.080297 of 𝐸 − 𝐺𝐴𝑅𝐶𝐻 (1,4) is less than zero i.e., satisfy 

the condition for asymmetry effect to take place and it is 

statistically significant and allows a negative shock will 

automatically have a high value in volatility. These negative 

shocks may arise from changes in government policies of 

Nigeria, structural instability of the foreign exchange market 

from the central bank of Nigeria, trade-in balancing, and other 

negative factors. While for 𝑇 − 𝐺𝐴𝑅𝐶𝐻, the parameter which 

measures the leverage effect 𝛾  = 0.095578 satisfies the 

condition for the presence of leverage effect. The leverage 

parameter is also statistically significant since its 𝑝 −
𝑣𝑎𝑙𝑢𝑒 (0.00) is less than the observed probability. 

 

Table 9. Summary of coefficients of ARMA, ARCH, and 

GARCH 

 

Coeff 
ARMA 

(2,1) 

ARCH 

(1) 

GARCH 

(1,2) 

E-GARCH 

(1,4) 

T-GARCH 

(1,2) 

𝜙1 0.11066 - - - - 

𝜙2 -0.1168 - - - - 

𝜃1 -1.2586 - - - - 

𝛼0 - 1.8038 0.56248 - - 

𝛼1 - 0.00529 0.07737 -0.009491 -0.0003 

𝛽1 - - 0.08927 1.134361 0.337257 

𝛽2 - - 0.571814 0.001357 0.483613 

𝛽3 - - - -0.522890 - 

𝛽4 - - - 0.377235 - 

𝜔 - - - 0.008522 0.255566 

𝛾 - - - 

-0.08029 

(78.2959) 

(0.0000) 

0.095578 

(14.1366) 

(0.000) 

 

Table 10. Autocorrelation function of squared Residual of 

EGARCH (1, 4) model 

 
Lag ACF PACF Q-stat. P_value 

1 0.015 0.025 0.3231 0.724 

2 0.0041 0.0131 0.4367 0.802 

3 0.032 0.064 .342 0.802 

4 0.102 0.022 0.1376 0.873 

5 0.03 0.0167 2.0425 0.8843 

6 0.003 0.0891 1.6243 0.892 

7 0.602 0.301 1.1356 0.984 

8 0.0801 0.079 1.8552 0.99 

9 0.0901 0.067 1.3695 0.99 

10 0.0120 0.093 1.3735 0.98 

 

Table 11. Autocorrelation function of squared Residual of 

TGARCH (1, 2) model 

 
Lag ACF PACF Q-stat. P_value 

1 0.205 0.2315 0.30183 0.555 

2 0.256 0.0321 0.2378 0.901 

3 0.1045 0.02054 0.241 0.8521 

4 0.045 0.0321 0.2910 0.8892 

5 0.091 0.01 1.178 0.971 

6 0.0932 0.003 2.178 0.9432 

7 0.0283 0.00298 3.162 0.8932 

8 0.001 0.001 1.9273 0.991 

9 0.001 0.0034 1.9126 0.999 

10 0.0357 0.00218 1.72 0.991 

 

The simple interpretation of the leverage parameter is that 

the higher volatility the more the changes in the exchange rate. 

This characterized that Nigeria exchange market will continue 

to experience high volatility of exchange rate and this will 

persistently to exhibit. Both 𝐸 − 𝐺𝐴𝑅𝐶𝐻 (1,4)  and 𝑇 −
𝐺𝐴𝑅𝐶𝐻 were subjected to diagnostic testing, and it was found 

out that both correlograms of theirs squared errors hovers 

around the zero-line indicating that both models are a good fit. 

Tables 10 and 11 presents the value of the correlogram of 𝐸 −
𝐺𝐴𝑅𝐶𝐻 and 𝑇 − 𝐺𝐴𝑅𝐶𝐻. 

We proceed ahead and compare the accuracy of volatility 

forecast among the series of extension GARCH models. Table 

12 presents the summary of the comparison of the accuracy of 

volatility forecast. 
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Table 12. Comparison of the accuracy of volatility forecast among extension of GARCH models 

 
Measurement 

Volatility error 
ARCH (1) GARCH (1,2) EGARCH (1,4) TGARCH (1,2) 

RMSE 0.0898 0.054323 0.7045 0.06435 

MAE 0.0679 0.000431 0.04345 0.07645 

MAPE 71.4341 60.4594 78.4697 84.6431 

Theil Inequality 0.0081 0.04 0.1643 0.24578 

Variance proportion 0.000321 0.03478 0.05647 0.21045 

Bias proportion 0.004 0.03214 0.03247 0.07645 

Covariance proportion 0.80445 0.76453 0.87643 0.64324 

 

From Table 12, it reports that 𝐺𝐴𝑅𝐶𝐻 (1, 2)  model was 

found to predict more accurately the conditional variance of 

the error, where its measurement tools were lower among the 

measurement tools of other extensions of 𝐺𝐴𝑅𝐶𝐻  models. 

This 𝐺𝐴𝑅𝐶𝐻 (1, 2) is also accurate in forecasting naira/dollar 

exchange rate volatility. Surprisingly its Theil inequality is 

close to zero and indicating that is a good fit to predict the 

naira/dollar exchange rate while reduction in bias in errors was 

close to zero in both biases, and variance proportion but both 

were accumulated in the covariance proportion. A little error 

of about 0.03214 was detected between the mean of the 

volatility and the mean of the actual return; likewise, also 

0.03478 indicates little error between the variance of 

conditional variance forecast and variance of the return. 

 

 

5. CONCLUSION 

 

This paper focuses on the measurement of volatility and its 

forecasting evidence from the naira/dollar exchange rate using 

financial time series annual data from 1981 to 2020 with a total 

observation of 41 data points. The exchange rate was 

transformed to return by taking the first difference of exchange 

rate, the return was the dependent variable used to generate the 

result of this research. The return was subjected to a 

stationarity test and it was confirmed stationary at level form 

using ADF test. The return exhibited volatility clustering, 

𝐴𝑅𝑀𝐴 (2, 1)  was modeled on return, and the errors were 

generated. It was found out that 𝐴𝑅𝐶𝐻 effect was present. Due 

to the result of ARCH effect further prove of volatility was 

judged by 𝐺𝐴𝑅𝐶𝐻  and it was found out that there is 

continuous volatility and these volatilities will range from 1 

month beginning from this period till next 5 five months 

(based on the high frequency of data). The volatility of shocks 

today affects the volatility of the next 5 months. For 

asymmetry measurement, 𝐸𝐺𝐴𝑅𝐶𝐻 (1,4) was the model that 

captured it and it reveals that negative shocks (change in 

government policies, restructure of foreign exchange market 

by the central bank of Nigeria) will persistently have effect in 

volatility of naira/dollar exchange rate. 𝑇𝐺𝐴𝑅𝐶𝐻  captures 

leverage effect presence and confirms that the higher the 

volatility, the higher the changes in Nigeria exchange rate. 

This means that Nigeria's exchange rate will continue to 

exhibit volatility. For accuracy of volatility forecast, based on 

three measurement volatility tools it was confirmed that 

𝐺𝐴𝑅𝐶𝐻 (1,2)  model was the best model to predict the 

conditional variance and other stylized facts. 

According to [12], 𝑇𝑆 –  𝐺𝐴𝑅𝐶𝐻 model was able to fit the 

naira/dollar exchange rate and this model was attained base on 

a small sample period, but this research confirms a 

𝐺𝐴𝑅𝐶𝐻 (1, 2)  base on a high frequency of data points. 

According to [7], different specifications of 𝐴𝑅𝐶𝐻 /𝐺𝐴𝑅𝐶𝐻 

model usually describe different currencies better than a 

unique model. Hence, further research on higher 𝐺𝐴𝑅𝐶𝐻 

family-like component 𝐺𝐴𝑅𝐶𝐻  and an asymmetric 

component could be investigated to study more on the 

asymmetry and persistent leverage effect.  

The possible recommendation of this research emphasizes 

the central bank of Nigeria to maintain a proper structure of 

the foreign exchange market as this serves as a major factor 

that could linger higher in volatility and also increase in export 

system and perfection in trading system in other to avoid 

persistent volatility on exchange rate. 
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