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Birds are a reflection of environmental health as pollution and climate change affect bio- 

diversity. Experts in ecology and machine learning stand to benefit the most from large-

scale monitoring of biodiversity. Today, convolutional neural networks (CNNs) are the 

preferred choice for species recognition as their performance has consistently outperformed 

humans. However, CNNs are disadvantaged by their high computational complexity and the 

need to provide vast amounts of training data. This paper compares the performance versus 

the complexity of two widely used CNNs, namely ResNet- 50 and MobileNetV1. ResNet-

50 is a high-complexity CNN while MobilenetV1 is a low-complexity CNN targeted for 

mobile applications. We used spectrogram images of Brazilian bird sounds as inputs to both 

networks. These birds were chosen due to their abundance of samples in the Xeno-canto 

bird sound repository. Short-Time Fourier Transform (STFT) and Mel Frequency Cepstral 

Coefficient (MFCC) algorithms are used to extracting spectrogram images. To validate the 

precision of the classifier, 1,000 spectrogram images of each of ten bird species are produced 

and fed into both classifiers. The findings indicate that the accuracy of MobileNetV1 is close 

to that of ResNet-50, with MFCC which is 85.73 and 90.56 respectively. 
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1. INTRODUCTION

Birds are particularly useful ecological markers as they 

reflect changes in their environment. Studies on the diversity 

of birds are therefore indispensable [1]. Autonomous recorders 

are used in bioacoustics monitoring to collect large amounts of 

audio data from fauna vocalisations [2]. Domain experts can 

manually identify birds but with larger volumes of information, 

the process is tedious and time-consuming. Hence a more 

realistic approach is through machine learning [3-6]. Several 

bird identifications challenges such as BirdCLEF [2, 7, 8] have 

been held to evaluate bird sound classifiers. From 2016 

onwards, convolutional neural networks (CNNs) have 

consistently outperformed other classifiers in classifying bird 

sounds in BirdCLEF [7]. 

CNN architectures such as Inception-v3 [9] and ResNet [10] 

perform classification tasks based on the ability of the deep 

layers of neural network models to extract high-level features 

from the input images. They are benchmarked using the 1000-

image ImageNet dataset [11]. CNNs classify by first 

converting bird sounds to spectrogram images. However, 

CNNs are noted for their high computational complexity thus 

making them unsuitable for applications where the power 

budgets are restricted. Hence, simpler architectures are 

continuously being explored to cater to applications where 

excess accuracy is not required.  

The ResNet-50 architecture is a typical state-of-the-art 

CNN with a depth of 50 layers, 25.6 million arithmetic 

operations and parameter size of 96 MB [11]. In contrast, the 

MobileNetV1 has 28 layers deep, requiring 4.2 million 

operations and a parameter size of 16.9 MB [12]. 

It is an evolution of the earlier MobileNet targeted for 

embedded applications [13]. With the simplicity comes to a 

slight loss in accuracy which is investigated in this paper. 

Since the performance of both architectures has been 

measured by ImageNet, they can both classify images into up 

to 1000 object categories.  

CNNs need vast amounts of data to train their network 

parameters. For bird sounds, training data is plentiful for the 

more common species. For rarer species, data augmentation is 

regularly performed to create synthetic samples. In our 

experiments, both networks were fed with 10,000 sound 

samples of Brazilian birds. These birds were selected due to 

the abundance of samples from the Xeno-Canto repository. 

Each audio clip is resampled and segmented into 1-second 

samples data at 16 kHz. Each sample containing the bird call 

signal is then expanded into three samples. Using Short-Time 

Fourier Transform (STFT) and Mel Frequency Cepstral 

Coefficient (MFCC) algorithms, the spectrogram 

representation of the samples is obtained, and then all images 

are resized using MATLAB 2019b to 224*224. We 

hypothesize that MobileNetV1 will achieve near ResNet-50 

classification accuracy while benefitting from significantly 

lower computational costs based on the disparity in the number 

of arithmetic operations of both CNN models. 
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2. RESEARCH METHOD 

 

The CNN-based bird call classifiers are implemented using 

the methods mentioned below. 

 

2.1 Data preparation 

 

The availability of training data is one of the challenges in 

employing CNNs. Sound files are readily available for the 

more common species. For rarer species, data augmentation is 

regularly performed to create synthetic samples. To address 

this issue, we used sounds of Brazilian birds as they are 

abundant in the Xeno-canto sound repository. 

The training dataset for 10 bird species consists of audio 

files downloaded from the Xeno-canto website, which are then 

resampled to 16 kHz. Since the training process requires more 

samples than directly available, the downloaded samples are 

augmented by segmenting each audio file into several 1 second 

sound clip files using voice activity detection (VAD) as shown 

in Figure 1 [14] with 1000 samples are taken for each type of 

bird selected. 

After segmentation, each sound clip is converted into 

spectrogram images representing the frequency content of the 

audio in colours. Two algorithms, Short-Time Fourier 

Transform (STFT) [15] and Mel Frequency Cepstral 

Coefficients (MFCC) [16] are used to convert sound to image. 

STFT is applied to the audio signal by splitting the signal into 

separate overlapping frames, and then computing the Discrete-

Time Fourier Transform. 

(DTFT) for each frame, resulting in a matrix with complex 

values as shown in Eq. (1), 

 

𝑆𝑇𝐹𝑇{𝑋}(𝑚, 𝜔) = 𝑋𝑚(𝜔) = ∑ 𝑥𝑛𝜔(𝑛 −
∞

𝑛=−∞

𝑚𝑅)𝑒−𝑗𝜔𝑛  
(1) 

 

where, Xn is the input signal at time n, the ω(n) is a Hann 

window with length m=1024 centred on n, and R = 256 is the 

hop size between successive frames. The Hann window of size 

1024 has a 75% overlap. Once STFT is computed, it can be 

used to compute MFCC as in Eq. (2): 

 

𝑀𝑒𝑙 (𝑓)  =  2595 𝑙𝑜𝑔10 (1 + 
𝑓

700
)  (2) 

 

where, m is the Mel scale of the normal frequency scale f. Then, 

the spectrograms were resized from the original dimension to 

224*224*1 to match the input sizes of ResNet50 and 

MobileNetV1 as shown in Figures 2 and 3 as the 3D image has 

the highest size compared to the grayscale images. Therefore, 

1,000 samples will be prepared to train our proposed classifier 

for every ten types of bird species. 

 

 
 

Figure 1. Voice Activity Detection (VAD) for framing bird vocalizations 

 

 
 

Figure 2. Stages in generating STFT and MFCC images 
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Figure 3. Graphical representation raw audio converted to 

spectrogram images using STFT and MFCC 

 

2.2 Training setup 

 

The proposed classifier is implemented in MATLAB as 

follows: the training setup for the 10,000 data samples is done 

using MATLAB tools. 

• Calling the data: Image Datastore is used to load and 

manage the dataset. 

• Checking the data: CountEachLabel is used to check and 

summarize the number of images per category (species). 

• Load pre-trained Network: Neural Network Toolbox is 

used to load ResNet-50 and MobileNetV1 model. 

• Prepare the data: The dataset is split into training and 

validation data, where 80% of samples from each category 

are prepared for the training data and 20% are for the 

validation data. Also, we used the Randomize function to 

avoid biasing. 

• Reduce output: CNN models' deep layers are reduced to 

10 layers. 

 

2.3 Transfer learning 

 

Transfer learning is applied in the proposed classifier to 

improve learning efficiency in the CNN model. In transfer 

learning, information that has been previously learned while 

solving a problem is transferred and reused to solve another 

related problem [17]. To perform transfer learning, we need to 

create two components: 

• An array of layers represents the network architecture. 

This is created by modifying a pre-existing network such 

as ResNet-50 and MobileNetV1 architectures. 

• Dataset (Images) with known labels to be used as training 

data, which is typically provided by the data store. 

• These two components were provided as the inputs to the 

train network function that returns the trained network as 

output. 

These two components were provided as the inputs to the 

train network function that returns the trained network as an 

output. 

The methodology can descripted as;after completing all the 

data processing steps, the proposed classifier is built using the 

MobileNet-v1 architectures. The same classifier is also built 

using the ResNet50 for validation purposes. 

First, the important libraries are prepared, such as Deep 

Learning Toolbox, Statistics, and Machine Learning Toolbox. 

These libraries were loaded through the Add-Ons window and 

then installed on the MATLAB 2019b in order for the code to 

properly work. The important thing here is using a CUDA-

capable NVIDIA GPU with compute capability 3.0, or higher 

is highly recommended for running this code, where the use of 

a GPU requires the Parallel Computing Toolbox. Second, 

Calling the data, the dataset is loaded using an Image Datastore 

as a data manager. Since Image Datastore operates on image 

file locations, images are not loaded into memory until reading, 

making it efficient for the usage of large image collections. 

Second, we use the imds variable. Third, load images, the 

classifier contains the images and the category labels 

associated with each image. The labels are automatically 

assigned from the folder names of the image. Fourth, Checking 

the data, in this part, countEachLabel function is used to check 

and summarize the number of images per category, because 

the number of images in each class file is unknown. Fifth, 

Load pre-trained Network, CNN has several pre-trained 

networks that have gained popularity. Most of these have been 

trained on the ImageNet dataset, which has 1000 object 

categories and 1.2 million training images. ResNet50 and 

MobileNetv1 are such models that could be loaded using the 

function from Neural Network Toolbox. Sixth, Prepare the 

data, Preparation of training and testing image datasets 

involves splitting the sets into training and validation data. As 

a common practice, 80% of images from each set are chosen 

randomly for the training data and the remainder, 20%, for the 

validation (testing) data. Randomization is important during 

the split to avoid biasing results. Seventh, Reduce output, The 

CNN architectures are suitable for large-scale classification of 

up to 1000 species due to the deep layer of neural network 

models to obtain high-level feature extraction from the 

spectrogram image. However, the proposed classifier system 

is targeting low complexity devices. Therefore, the 1000 

layers are reduced to 10 layers. 

 

 

3. RESULTS 

 

This section discusses the validation results of our low 

complexity CNN model, MobileNetV1, where the accuracy is 

benchmarked with the high complexity model, ResNet-50. 

 

3.1 Training stage outcome 

 

In the proposed classifier, there are 8,000 images extracted 

from the training dataset, where each bird species derives 800 

spectrogram images. These images were processed in the 

training stage of two CNN models: 

In both CNN models, five epochs are applied, which means 

that each type of dataset is processed in the training stage five 

times. Thus, we have 6665 iterations and 1333 iterations per 

epoch. The details of the results are shown in Table 2. 

 

 
 

Figure 4. Training accuracy 
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Table 1. Six-letter alpha codes for birds in the study 

 
No English Name Scientific Name Six-letter Alpha 

Codes 

1 Eurasian Wigeon Mareca penelope MARPEN 

2 American Robin Turdus 

migratorius 

TURMIG 

3 Eurasian Skylark Alauda arvensis ALAARV 

4 Purple 

Honeycreeper 

Cyanerpes 

caeruleus 

CYACAE 

5 White-winged 

Dove 

Zenaida asiatica ZENASI 

6 Brown Shrike Lanius cristatus LANCRI 

7 Northern 

Lapwing 

Vanellus vanellus VANVAN 

8 Long-billed 

Hermit 

Phaethornis 

longirostris 

PHALON 

9 Pigeon Guillemot Cepphus columba CEPCOL 

10 Swallow Tanager Tersina viridis TERVIR 

 

Accuracy and loss are observed through the training 

progress as shown in Figure 4. The accuracy increases as the 

epoch increase until it reaches a saturated level, where 

inaccuracy is very small and it fluctuates at a certain level. It 

is decaying, but the loss decreases as the epoch decreases until 

it reaches a certain saturation level. In other words, accuracy 

determines how good the model is, and loss determines how 

bad the model is. A good model usually comes with high 

accuracy and low loss. 

 

3.2 Testing stage (validation) outcome 

 

The testing or validation dataset is a dataset that is 

independent of the training dataset, but that follows the same 

probability distribution as the training dataset. In the proposed 

classifier, there are 2,000 images of ten bird species, where 

each bird species has 200 images. Table 1 lists the (English 

Name, Scientific Name and Six-letter Alpha Codes) for all the 

ten birds [18]. 

A confusion matrix shows how well the model can 

accurately predict the class that is used in supervised learning. 

In the validation test of the proposed model, the model predicts 

the respective classes of the ten species. Each column of the 

matrix represents the number of predictions of each class, 

while each row represents the instances in the real class. The 

outputs are recorded in the confusion matrix. The highlighted 

area is the number of correctly predicted output. It presents the 

prediction by using the colour hue. For example, for the class 

with high accuracy which is between 90-100%, the block has 

a dark colour, but when the model is slightly confused between 

two or more classes and cause the accuracy drop to between 

80-89%, the block has a lighter colour. The much lighter block 

is applied when the model is quite confused and cause the 

accuracy to drop between 60-79%, and so on. 

The first confusion matrix, as shown in Table 2 is for the 

high complexity model, ResNet-50 with STFT feature 

extraction. It is clearly showing that there are several 

significantly dark blocks such as classes 1, 3, 4, 6, 7, 8, and 9 

since the accuracy is above 90%, which is very high. A slightly 

lighter shade is applied to blocks with accuracy between 80-

89% such as classes 2 and 5. Another class, which is class 10 

is in the much lighter shade since it has the lowest accuracy, 

which is 68%. The blocks which are the confused classes have 

quite a lighter shade rather than the correct classes in the 

diagonal line. 

The second confusion matrix, as in Table 3 is for the 

ResNet-50 model with MFCC feature extraction. The 

significantly dark blocks have high accuracy such as classes 3, 

4, 7, 8, and 10, which are above 90%. The lighter shade blocks 

such as classes 1 and 9 have an accuracy between 80-89%, 

while classes 2 and 6 are in the much lighter shade with the 

lowest accuracy of 59%. The confused blocks are rather lighter 

than the correct blocks in the diagonal, which is less than 30% 

of accuracy. 

 

Table 2. Confusion matrix for ResNet-50 with STFT 

 
1 94.1 0.5 0 2.5 2.5 0 2 0.5 0 3.3 

2 2.2 87.2 0 1 6.1 0.6 0.5 0.5 1.7 4.1 

3 0 0 97.1 0 0 0 0 0 0 0 

4 0 0 0 93.6 2 0 0 0.5 0 0.8 

5 0 0 0 0.5 81.1 0 0 0 0 0.4 

6 1.1 1.6 0.5 1 4.9 94.2 0 0 2.8 12.4 

7 0 0 0 1 0.8 0 96 0 0 0.8 

8 0 0.5 0 0 0 0 0.5 98 0 0 

9 0 5.9 0 0 0.8 1.3 0 0.5 92 9.1 

10 1.6 3.7 2.4 0.5 1.6 3.9 1 0 3.4 68.9 

 1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

1
0
 

 

Table 3. Confusion matrix for ResNet-50 with MFCC 

 
1 91.3 3.9 0 0 0 1.4 1.7 0 0 1 

2 0 49.7 0 0 1.1 1 0 0 1.8 0 

3 0 0 99.5 0 0 1.4 0 0 0 0 

4 1 3.1 0 98.9 1.1 1 0 0 0 0 

5 0 4.9 0 0 95.8 0 0 0 0 0 

6 1 4.9 0 0.5 0 83.3 0 0 1.8 0 

7 1.5 6.4 0 0 0.5 0 97.7 0 0 0 

8 2.6 2.1 0 0 0 0 0.6 98 0 0 

9 0 8 0 0 0.5 2.4 0 0.5 94.1 2.9 

10 2.6 17 0.5 0.5 1.1 9.5 0 0 2.4 96.2   

1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

1
0
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Table 4. Confusion matrix for MobileNetV1 with STFT 

 
1 64.3 3.9 0.9 1.6 0 0 2.5 1.3 3.4 4.1 

2 2.9 48.9 2.3 2.6 0 0 1.3 2.2 1 5.4 

3 2 0.3 85.5 1.6 0 0 0.6 0.9 1 0 

4 2 0.6 0.5 61.7 0 0 0 0 0 1.4 

5 2 9.4 4.2 15.9 92.3 0 11.9 2.6 3.7 6.8 

6 12.3 13.3 1.4 4.5 1.5 100 3.8 3.1 18.9 21.6 

7 3.3 8.8 2.3 7.5 1.5 0 70.4 1.3 4.4 4.1 

8 0.4 1.2 0 0.3 0 0 0.6 82.8 1 1.4 

9 3.7 4.5 0.5 1.3 1.5 0 0.6 2.2 54.9 0.7 

10 7 9.1 2.3 2.9 3.1 0 8.2 3.5 11.8 54.7   

1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

1
0
 

 

Table 5. Confusion matrix for ResNet-50 with MFCC 

 
1 81.3 3.9 0 0.5 0.9 2.9 0 0 1 0 

2 1.4 59.2 0 0.5 3.2 0.6 0 0.5 1.5 0 

3 0 0.3 95.7 0 0 0 0.7 0 0 0 

4 1.4 0.3 0 95.6 0 0 0 0 0 0 

5 1.9 1.3 1 0 84.4 1 0 0 1.5 0 

6 0.9 1.9 0.5 0 0.5 59.7 0 0 3 0 

7 2.3 6.5 1.4 2.4 5 5.8 99.3 0 1 0 

8 0.9 4.2 0 0 0 0 0 98.9 0.5 0 

9 1.4 4.9 0 0.5 1.4 4.5 0 0 82.8 0 

10 8.4 17.5 1.4 0.5 4.6 25.3 0 0.5 8.6 100   

1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

1
0
 

 

On the other hand, Table 4 shows the confusion matrix for 

MobileNetV1 with STFT feature extraction. In this case, there 

are only two blocks with a significantly dark shade, which are 

classes 5 and 6, where class 5 is 92.3%, and class 6 is perfectly 

100%. The blocks with lighter shades are classes 3 and 8 with 

an accuracy between 80-89%, and the other classes have grey 

shades. 

Lastly, Table 5 shows the confusion matrix MobileNetV1 

with MFCC feature extraction. In this case, we can see some 

classes have the darker blocks that mean high accuracy, which 

is above 90% such as 3, 4, 7 and 10, but the lighter blocks such 

as 1 and 9 classes have the accuracy between (80-89) %, and 

the other classes have the much lighter colour. The confused 

block in both low complexity models is seen as greater than 

the high complexity model, but they are still under the 30% 

accuracy. 

 

3.3 Summary of results 

 

Accuracy is a quality measurement of the proposed model, 

which also translate into how well it could make a new 

prediction based on the data it has never seen before. The time 

is how long the testing progress will take to be finished. Table 

6 illustrates the accuracy and time to load the trained model 

and response time after recording. 

The accuracy is calculated using the formula as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
  (3) 

 

From Table 6, the high complexity model, which is ResNet-

50, is observed to have higher accuracy, but requires a longer 

time to make a prediction, compared to the low complexity 

model. This is due to a large number of operations, which is 

25.6 million. The high complexity model is also bigger at 96 

MB. On the other hand, the low complexity model, which is 

MobileNetV2 has a smaller number of operations that results 

in a shorter testing time. Besides, it is also smaller in size, but 

we can observe that it has slightly lower accuracy. This result 

comes as expected, where a high complexity model would 

advantage more on the accuracy, but suffers in terms of size 

and time. In contrast, the low complexity model has sufficient 

accuracy without need to compromise the model size and 

testing time. 

To be more specific the performance measures used in this 

study (see Tables 7-10) are the most widely used metrics 

shown below in Eqns. (4), (5), (6) and (7) are sensitivity, 

specificity, accuracy, and precision [19] which are given as: 

 

Sensitivity =
𝑇 𝑃

𝑇 𝑃 +  𝐹 𝑁
 (4) 

 

Specificity =
𝑇 𝑁

𝑇 𝑁 +  𝐹 𝑃
 (5) 

 

Precision =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6) 

 

F_Measure =  
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
  (7) 

 

Table 6. Summary of results 

 
Type of model #Operations 

[million] 

Size 

[MB] 

Time 

(min) 

Accuracy 

ResNet-50 

(STFT) 

25.6 96 941 90.40 

ResNet-50 

(MFCC) 

523 90.56 

MobileNet-v1 

(STFT) 

4.2 16.9 160 71.57 

MobileNet-v1 

(MFCC) 

187 85.73 
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Table 7. Evaluation metrics result using ResNet-50 (STFT) 
 

NAME OF CLASS Ac. Sen. Spe. Pre. F-measure 

MARPEN 0.98 0.89 0.99 0.95 0.92 

TURMIG 0.97 0.84 0.99 0.88 0.86 

ALAARV 1.00 1.00 1.00 0.97 0.99 

CYACAE 0.99 0.97 0.99 0.94 0.95 

ZENASI 0.98 0.99 0.98 0.81 0.89 

LANCRI 0.97 0.97 1.00 0.94 0.86 

VANVAN 0.99 97 1.00 0.96 0.97 

PHALON 1.00 0.99 1.00 0.98 0.98 

COLUOE 0.97 0.84 0.99 0.92 0.88 

TERPVI 0.95 0.79 0.96 0.69 0.74 

 

Table 8. Result of all evaluation metrics usingResNet-50 

(MFCC) 
 

NAME OF CLASS Ac. Sen. Spe. Pre. F-measure 

MARPEN 0.98 0.99 0.94 0.50 0.92 

TURMIG 0.94 0.93 0.65 0.50 0.65 

ALAARV 1.00 0.99 1.00 1.00 0.99 

CYACAE 0.99 0.94 1.00 0.99 0.96 

ZENASI 0.99 0.95 0.99 0.96 0.95 

LANCRI 0.97 0.91 0.98 0.83 0.87 

VANVAN 0.99 0.92 1.00 0.98 0.95 

PHALON 0.99 0.95 1.00 0.99 0.97 

COLUOE 0.98 0.87 0.99 0.94 0.90 

TERPVI 0.96 0.74 0.99 0.94 0.84 

 

Table 9. Result of all evaluation metrics by using 

MobileNet-v1 (STFT) 
 

NAME OF CLASS Ac. Sen. Spe. Pre. F-measure 

MARPEN 0.98 0.85 0.99 0.93 0.89 

TURMIG 0.96 0.75 0.98 0.80 0.98 

ALAARV 1.00 1.00 1.00 0.97 0.89 

CYACAE 0.99 0.95 0.99 0.90 0.93 

ZENASI 0.94 0.79 0.97 0.83 0.81 

LANCRI 0.99 0.99 0.99 0.95 0.97 

VANVAN 0.99 0.96 0.99 0.95 0.96 

PHALON 1.00 0.99 1.00 0.97 0.98 

COLUOE 0.97 0.76 0.99 0.87 0.81 

TERPVI 0.94 0.75 0.96 0.64 0.54 

 

Table 10. Result of all evaluation metrics by using 

MobileNet-v1 (MFCC) 
 

NAME OF CLASS Ac. Sen. Spe. Pre. F-measure 

MARPEN 0.98 0.88 0.99 0.94 0.91 

TURMIG 0.97 0.78 0.98 0.83 0.80 

ALAARV 1.00 1.00 1.00 0.97 0.99 

CYACAE 99 0.97 0.99 0.94 0.95 

ZENASI 0.95 0.78 0.98 0.82 0.80 

LANCRI 0.99 0.99 0.99 0.91 0.95 

VANVAN 0.99 0.97 0.99 0.96 0.97 

PHALON 1.00 0.99 1.00 0.98 0.98 

COLUOE 0.97 0.82 0.99 0.91 0.87 

TERPVI 0.95 0.85 0.96 0.76 0.80 

 

True Positive (TP): Number of correctly labelled positive 

samples. False Positive (FP): Number of negative samples 

incorrectly labelled as positive. True Negative (TN): Number 

of correctly labelled negative samples. False Negative (FN): 

Number of positive samples incorrectly labelled as negative. 

 

 

4. CONCLUSION 
 

Low complexity CNN-based bird call classifier is proposed 

where the MobileNetV1 model is employed. Audio samples of 

ten bird species from the Xeno-Canto website are used as the 

dataset. Each audio sample is spliced into short 1-second clips 

and the noise is removed using VAD. Besides, augmentation 

of the short clips is performed to vary the samples up to 1,000 

sound clips per species. Then, the sound clips are converted 

into spectrogram images using STFT and MFCC conversion 

for feature extraction and resized to 224 224 to fit the CNN 

input. The output layer is also modified into ten layers. Finally, 

the work is benchmarked with a high-complexity CNN model, 

ResNet-50. From the results, the proposed classifier has 

sufficient accuracy without need to compromise the model 

size and testing time. 
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