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 There is a huge demand for high-quality images, whether in human visual perception or 

image applications. The existing methods for image enhancement ignore the influence of 

incident light on real color images. As a result, the output images are often not effectively 

enhanced or not natural, and the enhancement effect is not ideal for multi-scale images. To 

solve the problem, this paper presents a multi-scale image enhancement algorithm based on 

deep learning and illumination compensation. Firstly, a compensation algorithm was 

developed for image illumination drift based on the Hodge decomposition model. Then, 

low-illumination multi-scale images were enhanced by a lightweight multi-scale Retinex 

network, and the architecture of that network was explained in details. After that, a new joint 

network loss function was designed for the input and output forms, corresponding to the 

proposed deep learning network, and the low-illumination multi-scale image enhancement. 

Experimental results demonstrate that the proposed model can effectively enhance multi-

scale images. 
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1. INTRODUCTION 

 

Image is the main carrier and primary way of expression for 

visual information [1-9]. When the illumination is insufficient 

or ununiform, or blocked by objects, the captured images often 

have visual problems like as low brightness, high noise, and 

low contrast [10-17]. High-quality images are always expected, 

whether in human visual perception or in image applications 

[18-25]. If a dark low-illumination image, which does not 

conform to the visual perception of the human eyes, can be 

easily converted into a normal light image, it would bring great 

convenience to our daily life. 

Low or uneven brightness reduces the contrast of near-

infrared and optical remote sensing images, making it 

challenging to analyze the image contents. Huang et al. [26] 

proposed a spatially adaptive method to enhance multi-scale 

images: the nonsubsampled contourlet transform is adopted to 

decompose each low-contrast image into multiple scales; 

based on improved histogram equalization, a spatially 

adaptive gamma correction strategy is presented to enhance 

the base layer, which serves as the guide layer. Zhou et al. [27] 

applied the style transfer of CycleGAN (generative adversarial 

network) to low-illumination image enhancement. During the 

network structural design, different convolution kernels were 

used to extract features from three paths, and a deep residual 

shrinkage network was developed to suppress the noise after 

convolution. Both visual effects and objective indices show 

that the CycleGAN, which is based on multi-scale deep 

residual shrinkage, performs excellently in low-illumination 

enhancement, detail restoration, and denoising. Zhou et al. [28] 

proposed a multi-scale Retinex-based adaptive grayscale 

transform approach for underwater image enhancement. Their 

approach consists of three steps: color correction, image 

denoising, and detail enhancement. For different degraded 

underwater images, simulated annealing optimization was 

introduced to implement adaptive grayscale transform, and 

enhance image details. Pan et al. [29] created a multi-scale 

fusion residual encoder-decoder approach for low-

illumination image enhancement. The approach directly learns 

the end-to-end mapping between the original light and dark 

images from the original sensor, and fully restores the details 

and colors of the original image, while effectively enhancing 

the image brightness. To improve the quality of image textures, 

Yuan et al. [30] put forward a multi-scale fusion enhancement 

method. Two new fusion inputs were obtained by different 

color methods. One input was utilized in the red-green-blue 

(RGB) model to improve image resolution before de-stacking, 

through the contrast-based dark channel. The other input was 

adopted for color compensation, based on multiple 

morphological operations and the opponent colors in the CIE 

1976 L*a*b* color model. 

The existing methods need to be improved in terms of detail 

processing and noise reduction. None of them fully consider 

the effects of nonuniform light intensity. Besides, these 

methods ignore the influence of incident light on real color 

images. As a result, the output images are often not effectively 

enhanced or not natural, and the enhancement effect is not 

ideal for multi-scale images. To solve the problem, this paper 

presents a multi-scale image enhancement algorithm based on 

deep learning and illumination compensation. Section 2 

develops a compensation algorithm for image illumination 

drift based on the Hodge decomposition model. Section 3 

enhances low-illumination multi-scale images by a 

lightweight multi-scale Retinex network, details the 

architecture of that network, and designs a new joint network 

loss function for the input and output forms, corresponding to 
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the proposed deep learning network, and the low-illumination 

multi-scale image enhancement. Experimental results 

demonstrate the effectiveness of the proposed model. 

 

 

2. MULTI-SCALE IMAGE ILLUMINATION 

COMPENSATION 

 

For the same image, the uneven illumination in different 

areas is often related to the optical path design for imaging. 

This problem can be solved by properly designing the optical 

paths. However, the optical path design needs to modify the 

hardware, and cannot overcome illumination drift. Based on 

the Hodge decomposition model, this paper compensates for 

the illumination of the image to be enhanced. This approach 

can effectively solve the uneven illumination within or strong 

illumination drift of the image. 

In this paper, the image decomposition model is introduced 

into a simplified form of Hodge decomposition, which realizes 

the decomposition of the low-frequency harmonic function 

and the high-frequency random disturbance term, that is, the 

decomposition of the smooth illumination component and the 

high-frequency texture component. 

For a given image g(a0,b0), the Hodge decomposition can 

be defined as:  

 

( ) ( ) ( ) ( )0 0 0 0 0 0 0 0, , , , ,g a b v a b u a b a b= +    (1) 

 

Pose component v(a0,b0) is a harmonic function, and u(a0,b0) 

is locally square integrable, with a zero mean. Let φ(a,b|a0,b0) 

be the low-pass filter. Then, we have: 

 

( ) ( ) ( )
0 0

0 0,
, , | , 0

M a b
u a b a b a b dadb


 =   (2) 

 

Let component u(a0,b0) denote the texture of image g(a0,b0). 

Formula (2) shows that: u(a0,b0) as a texture feature should be 

a high-frequency signal. Under ideal conditions, the 

convolution of u(a0,b0) and φ(a,b|a0,b0) is equal to 0. Besides, 

the assumption that u(a0,b0) is locally square integrable, with 

a zero mean, can be assured by substituting the following 

Hodge decomposition formula into formula (2): 

 

( ) ( ) ( ), , ,u a b g a b v a b= −  (3) 

 

Since component u(a0,b0)is square integrable, the variance 

Ω(u(a0,b0)) can be used to estimate the regression variance for 

linear drift. 

In the field of illumination compensation, a hot topic is the 

intrinsic image decomposition based on Renitex theory. By the 

intrinsic image decomposition model, image g(a0,b0) can be 

decomposed into two components, namely, reflectivity 

S(a0,b0), and illuminance gain v(a0,b0). The intrinsic image 

decomposition formula for g(a0,b0) can be expressed as: 

 

( ) ( ) ( )0 0 0 0 0 0, , ,g a b S a b v a b=   (4) 

 

If the image has a uniform texture, the reflectivity of its 

surface is basically constant. According to the Renitex theory, 

S(a0,b0)=D and ∀(a0,b0)Γ. Thus, g(a0,b0)= D·v(a0,b0). 

The basic idea of our multi-scale image illumination 

compensation approach is to replace the illumination 

component of image Hodge decomposition with a constant, 

thereby eliminating the influence of illumination changes. 

Figure 1 shows the flow of the proposed illumination 

compensation algorithm. 
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Figure 1. Flow of the proposed illumination compensation 

algorithm 

 

To realize the Hodge decomposition of a given grayscale 

image, the first step is to acquire the texture component of the 

image by solving the partial differential equation. Through 

Laplacian second-order differential operation on both sides of 

the equation for the Hodge decomposition of the given image 

g(a0,b0), we have: 

 

( ) ( ) ( )2 2 2

0 0 0 0 0 0, , ,g a b v a b u a b = +  (5) 

 

Considering the harmony of v(a0,b0), i.e., ∇2v(a0,b0) is 0, we 

have: 

 

( ) ( )2 2

0 0 0 0, ,g a b u a b =  (6) 

 

The texture component of g(a0,b0) can be obtained by 

solving formula (6). After calculating the component u(a0,b0), 

the Hodge component v(a0,b0) can be obtained by 

v(a0,b0)=g(a0,b0)-u(a0,b0). Given the deviation z>0, the 

illuminance component v(a0,b0) in the Hodge decomposition 

is replaced by z to obtain the compensated image g*(a0,b0): 

 

( ) ( )*

0 0 0 0, ,g a b z u a b= +  (7) 

 

Let PD be the public deviation in the entire database. Then, 

the Gabor filter response for g*(a0,b0) can be expressed as: 

 

( ) ( )*

0 0 0 0, , , , , ,G a b PD U a b   = +  (8) 

 

According to the above formula, the Gabor filter response 

is independent of the illuminance v(a0,b0), i.e., the influence of 

the illuminance on the image texture feature is eliminated. 

If the image is a color image, the illumination compensation 

needs to first convert the original image from the RGB color 

space to the Lab color space, before implementing 

illumination compensation on the grayscale image g(a0,b0) of 

the L channel in the Lab color space. In this way, it is possible 

to obtain a compensated L-channel color image g*(a0,b0). 
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Formula (6) is a second-order elliptic partial differential 

equation, which can be calculated numerically by the finite 

difference method. Let matrices Up and Q be the discretization 

of functions u(a,b) and ∇2g(a,b), respectively. Then, the 

iterative equation of the finite difference method can be 

expressed as: 

 

( )1

, 1, 1, , 1 , 1 ,

1

4

p p p p p

t w t w t w t w t w t wU U U U U Q+

− + − += + + + −  (9) 

 

Formula (9) can be realized through image filtering. Let 

matrix G be the discretization of the original multiscale color 

image g(a,b). Formula (9) can be initialized by: 

 
0

, ,t w t wU G=  (10) 

 

Different form formula (9), the boundary condition of the 

color image filter should be set to the Neumann boundary 

condition of formula (6), in order to realize the real algorithm. 

Let ∂u/∂m be the directional derivative of function u(a,b) 

along the normal direction of the boundary. We have: 

 

0
u

m 

 
=  

 (11) 

 

 

3. DEEP LEARNING-BASED MULTI-SCALE IMAGE 

ENHANCEMENT 
 

If a low-illumination image enhancement algorithm boasts 

a good enhancement effect and a low time complexity, then 

the corresponding visual system will perform excellently. 

Both accuracy and real-timeliness are two key parameters of a 

good image enhancement algorithm. Otherwise, the algorithm 

would be unsuitable for wide application. Traditionally, low-

illumination image enhancement methods are mostly based on 

physical models. Despite their good robustness and 

generalization ability, these methods cannot achieve ideal 

enhancement effect, when the external illumination is very 

complex. The deep learning-based image enhancement 

algorithms can realize the enhancement requirements of the 

visual system. In multi-scene and low-illumination conditions, 

the traditional deep learning models have a limited 

generalization ability, which does not apply to low-

illumination images in a complex background. Besides, their 

algorithms consume too much time, failing to meet the real-

time visual needs. Therefore, this paper chooses the 

lightweight multi-scale Retinex network to enhance low-

illumination multi-scale images. The selected network can 

fully satisfy the actual needs, for its good performance and 

simple structure.  

Figure 2 shows the architecture of lightweight multi-scale 

Retinex network, which encompasses four modules. To mine 

the image features of multiple scales, the Gaussian pyramid 

module performs multi-scale decomposition of the low-

illumination images. To obtain the initial illumination, the 

illumination extraction module estimates and extracts the 

illumination information in multi-scale images. To obtain 

fused illumination, the illumination fusion module merges the 

extracted deep features and cross-scale features of multi-scale 

lights. To get fine illumination, the recovery module integrates 

and adjusts the fusion of multi-scale lights. Finally, the 

enhanced multi-scale image is obtained by Retinex transform. 

Figure 3 presents the multi-layer structure of the illumination 

extraction module.  

 

Multi-scale 

low-

illuminatio

n images

Gaussian 

pyramid

Extraction 

model

Fusion 

module

Recovery 

module

Fine 

illumination

Retinex 

transformEnhanced 

image
Labeled image

Loss 

calculation

Multi-scale 

image output

 
 

Figure 2. Architecture of lightweight multi-scale Retinex network 

 

Convolutional 

layer

Batch normalization 

layer

Activation 

function
Convolutional 

layer

Convolutional 

layer

Batch normalization 

layer
Batch 

normalization layer

Activation 

function

Activation 

function

 
 

Figure 3. Structure of the illumination extraction module 

The single-scale Retinex algorithm is difficult to determine 

the scale parameter τ. This limitation can be overcome by the 

MSR-Net, a deep learning network based on the multi-scale 

Retinex algorithm. The key processing steps of the network 

can be expressed as:  

 

( ) ( ) ( ), , ,QU a b S a b K a b=   (12) 

 
𝑠(𝑎, 𝑏) = 𝑙𝑜𝑔(𝑆(𝑎, 𝑏)) = 𝑙𝑜𝑔(𝑄𝑈(𝑎, 𝑏)) − 𝑙𝑜𝑔(𝐾(𝑎, 𝑏)) (13) 

 

( ) ( )( ) ( ) ( )( ), , , ,s a b log QU a b log G a b QU a b= −   (14) 
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=
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(15) 

 

In deep learning models, the loss function guides the 

network training, exerting a huge impact on the mapping 

ability of the original input to the actual results. This paper 

designs a new joint network loss function for the input and 

output forms, corresponding to the proposed deep learning 

network, and the low-illumination multi-scale image 

enhancement. The function involves seven loss terms: trend 

consistency loss KTC, color consistency loss KCC, local loss KLO, 

exposure control loss KEC, mean squared error loss function 

KJF, structural similarity loss function KJG, and smoothing loss 

function KPH. The weights of the corresponding loss terms in 

the joint loss function are represented by qs, qx, qn, qrr, and qr, 

respectively. The joint network loss function can be given by: 

 

TC LO s EC x CC n JF rr JG r PHK K K q K q K q K q K q K= + + + + + +  (16) 

 

Each loss term is detailed below. Firstly, the trend graph 

was calculated based on the traditional calculation of image 

gradient graph. Let ∇cg(a,b) be the first-order gradient a 

certain direction c of the image g(a,b); f and q be the vertical 

and horizontal directions of direction c, respectively; p be a 

random integer. Then, the trend value of g(a,b) in a certain 

direction can be calculated by: 

 

( )

( )

( )

( )

 

  , 0

, 0  , 0 , ,

  , 0

c

c c

c

p g a b

g a b g a b c f q

p g a b

  
 

 =  =  
 
−   

 (17) 

 

Let ∇*Ṙ be the trend graph of the enhanced image Ṙ; ∇*R be 

the mean of the trend graph of the original image R; ∇*Ṙij be 

the mean trend value of the neighborhoods of the same size in 

any area in Ṙ; ∇*Rij be the mean trend value of the local area 

corresponding to the same area in Ṙ. The value of μ1 is 

determined through multiple tests. The trend consistency loss 

KTC can be calculated by: 

 
9

1

1 1

1 N

TC ij ij

i j

K R R R R
N

   

= =

=  − +   −  (18) 

 

The local computations are carried out in any number of 

areas to overcome the lack of representativeness of global 

operations in local areas. Let L be the number of randomly 

selected local areas; M(i) be the set of the four neighborhoods 

of the i-th local area; ∇*Ṙi and ∇*Ri be the mean gradients in 

the same local area of Ṙ and R, respectively; Ṙj be the mean 

gradient of the j-th neighborhood in the i-th local area of Ṙ. 

The specific loss function can be established as: 

 

( ) ( )( )
( )

2

2
1

1

1 ˆ ˆ ˆ
L

LO i j i j

i j M i

K R R R R R R
L


= 

=  − −  − +   −   
(19) 

 

Let M be the number of randomly selected non-overlapping 

local areas; Bl be the mean pixel value of the l-th local area; O 

be the exposure level. Then, the exposure control loss function 

can be expressed as: 

 

1

1 M

EC l

l

K B O
M =

= −  (20) 

To prevent color distortion in the enhanced image, it is 

necessary to ensure that the ratio of the mean pixel values B of 

different channels in the enhanced image is consistent to that 

of the original low-illumination image. Suppose t and w 

belong to one of the three channels in the RGB color space. 

Then, the color consistency loss can be calculated by: 

 

( ) ( ) ( ) ( )( ) 
2

,
, , , , ,t w

CC t w
K B B S H S Y Y H





= − =  (21) 

 

The mean squared error loss can be calculated by:  

 

( )( )
2

1

1 M

JF i i

i

K b f a
M


=

= −  (22) 

 

When humans compare the similarity of two images, they 

are inclined to focused on the similarity of the spatial 

structures of the two images. Let λa and λb be the mean 

brightness of images a and b, respectively; ηA and ηB be the 

contrasts of images a and b, respectively; τ1 and τ2 be two 

constants used to prevent the denominator from being zero; D 

be an extremely small value; δ be the range of pixel values. 

Then, we have: 

 

( )
( )( )

( )( )
1 2

2 2 2 2

1 2

2 2
,

a b a b

JG

a b a b

K a b
     

     

+ +
=

+ +
 (23) 

 

( )
2

1 1

1 1
,

1 1

M M

a i a i a

i

a a
M M

  
=

= = −
− −
   (24) 

 

( ) ( )
2 2

1 1 2 2,D D   = =  (25) 

 

Let a and d be the number of pixels, and number of channels 

of the image, respectively; ∇a and ∇b be the horizontal and 

vertical gradients, respectively; θt
a,d and θt

b,d be the weights of 

the horizontal and vertical gradients, respectively. Based on 

prior knowledge, this paper designs a smooth loss function: 

 

( ) ( )
2 2

, ,

o o

PH a d a o b d b oc d
o d

K R R =  +   (26) 

 

 

4. EXPERIMENTS AND RESULTS ANALYSIS 

 

Table 1 provides the linear regression coefficients of low-

illumination image database before and after illumination 

compensation. To minimize the effect of illuminance on image 

texture, the element values in Table 1 must be minimal. 

Moreover, the regression variance of the compensated images 

in Table 1 must be consistent with that of the original images, 

in order to minimize the influence of illuminance 

compensation on the texture of the original image. Among all 

contrastive methods, the proposed illuminance compensation 

algorithm had the smallest linear regression coefficient, and its 

regression coefficient was the closest to that of the original 

image. Hence, our algorithm has the best illuminance 

compensation effect. 

Table 2 compares the image retrieval correctness of low-

illumination image database before and after illumination 

compensation. The contrastive algorithms include the 

GrayWorld algorithm, the reference white pixel-based 

algorithm, and self-quotient image (SQI). Based on Hodge 
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decomposition, our illumination compensation algorithm 

achieved the best image retrieval correctness among all 

methods, surpassing the other methods by 1-2% in mean 

accuracy. The experimental results show that the Hodge 

decomposition-based illumination compensation can 

effectively enhance the accuracy of image identification and 

retrieval. 

Figure 4 shows how the image query correctness of our 

model changes with the number of iterations. The different 

curves represent the correctness of traditional deep learning 

model, traditional deep learning model + Hodge, lightweight 

multi-scale Retinex network, and our model. It can be seen that, 

the correctness of our model was 9%, 8%, and 6% higher than 

that of traditional deep learning model, traditional deep 

learning model + Hodge, lightweight multi-scale Retinex 

network, respectively. This means our image enhancement 

method can significantly boost the correctness of image 

retrieval. 

Next, different enhancement methods were tested and 

objectively evaluated on multiple images with weak natural 

lights. Table 3 compares the different models on different low-

illumination image datasets. Under different low illumination 

conditions, our model achieved the smallest structural 

similarity, peak signal-to-noise ratio, and natural image quality 

score. Hence, the combination between lightweight multi-

scale Retinex network and Hodge can output images with rich 

details and bright colors, which are in line with human visual 

perception and aesthetics. 

In the preceding section, this paper proposes a new joint loss 

function, which involves seven loss terms: trend consistency 

loss KTC, color consistency loss KCC, local loss KLO, exposure 

control loss KEC, mean squared error loss function KJF, 

structural similarity loss function KJG, and smoothing loss 

function KPH. To verify the effectiveness of each loss term, an 

ablation test was carried out. The test results (Table 4) show 

that the growing number of loss terms improved the test effect. 

The joint use of all seven terms led to the optimal effect. 

 

 
 

Figure 4. Correctness vs. number of iterations 

 

Table 1. Linear regression coefficients of low-illumination image database before and after illumination compensation 

 
Compensation algorithm Original image Reference algorithm 1 Reference algorithm 2 Reference algorithm 3 Our algorithm 

ω=0 
Regression coefficient 0.0625 0.1248 0.0741 0.0008 0.0002 

Regression variance 0.1623 9.1624 2.6251 7.6237 0.1529 

ω=π/8 
Regression coefficient 0.0846 0.1329 0.0658 0.0002 0.0008 

Regression variance 0.0395 5.2957 1.8429 2.6195 0.5219 

ω=π/4 
Regression coefficient 0.0418 0.1625 0.0842 0.0036 -0.0007 

Regression variance 0.1362 7.4158 2.6153 4.1625 0.1162 

 

Table 2. Image retrieval correctness of low-illumination image database before and after illumination compensation 
 

Image type I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 Mean 

Original image 62.53 66.18 67.27 50.15 75.16 71.19 50.07 50.11 50.32 50.01 63.48 

Reference algorithm 1 60.17 65.42 52.64 52.19 75.42 74.24 55.62 50.13 55.97 58.36 62.15 

Reference algorithm 2 58.92 69.34 73.31 51.35 75.28 73.62 50.12 52.74 50.62 51.63 61.08 

Reference algorithm 3 56.41 69.27 66.15 50.13 74.62 72.59 50.03 51.11 53.06 50.02 59.84 

Our algorithm 62.17 55.81 72.63 50.29 81.24 73.60 70.15 73.62 55.47 50.02 63.17 

 

Table 3. Comparison of different models on different low-illumination image datasets 

 
Model Reference model 1 Reference model 2 Reference model 3 Our algorithm 

Structural similarity 3.628 3.914 3.305 3.451 

Peak signal-to-noise ratio 3.174 3.368 3.415 3.164 

Natural image quality score 3.185 3.792 3.641 2.926 

Mean 3.419 3.628 3.115 2.984 

 

Table 4. Ablation test results of loss terms 

 
Model Reference model 1 Reference model 2 Reference model 3 Our algorithm 

KTC √ √ × √ 

KCC √ × √ × 

KLO √ × × × 

KEC √ √ × √ 

KJF √ × √ × 

KJG √ × × × 

KPH × √ √ × 

PSNR 19.152 18.473 18.026 21.306 

SSIM 0.485 0.625 0.748 0.921 
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Figure 5. Image enhancement results at different scales 

 

Finally, the image enhancement effects were discussed at 

different scales. Without changing the other network structural 

parameters, multiple scales of Gaussian pyramid were adopted 

to train and test the network. Figure 5 shows the test results. 

With the growing scale, the image enhancement effect 

continued to improve, and peaked at the scale of 3. 

 

 

5. CONCLUSIONS 

 

Based on deep learning and illumination compensation, this 

paper attempts to develop an effective a multi-scale image 

enhancement algorithm. Firstly, a compensation algorithm 

was developed for image illumination drift based on the Hodge 

decomposition model. Then, the lightweight multi-scale 

Retinex network was selected to enhance low-illumination 

multi-scale images, and the network architecture was 

presented clearly. In addition, a new joint network loss 

function was designed for the input and output forms, 

corresponding to the proposed deep learning network, and the 

low-illumination multi-scale image enhancement. Through 

experiments, the authors summarized the linear regression 

coefficients of low-illumination image database before and 

after illumination compensation, revealing that our algorithm 

has the best illuminance compensation effect. The authors also 

compared the image retrieval correctness of low-illumination 

image database before and after illumination compensation, 

and demonstrated that Hodge decomposition-based 

illumination compensation can effectively enhance the 

accuracy of image identification and retrieval. Moreover, the 

change curve of image query correctness with the number of 

iterations was obtained, and multiple models were 

quantitatively compared on different low-illumination image 

datasets. The comparison shows that the combination between 

lightweight multi-scale Retinex network and Hodge can 

output images with rich details and bright colors, which are in 

line with human visual perception and aesthetics. Furthermore, 

the results of the ablation test shows that the joint use of all 

seven loss terms led to the optimal effect. Finally, the image 

enhancement effects were discussed at different scales. The 

results show that our algorithm has the best image 

enhancement effect at the scale of 3. 
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