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Robust algorithms applied in Acoustic Echo Cancellation systems present an excessive 

calculation load that has to be minimized. In the present paper, we propose two different 

low complexity fast least squares algorithms, called Partial Update Simplified Fast 

Transversal Filter (PU-SMFTF) algorithm and Reduced Partial Update Simplified Fast 

Transversal Filter (RPU-SMFTF) algorithm. The first algorithm reduces the computational 

complexity in both filtering and prediction parts using the M-Max method for coefficients 

selection. Moreover, the second algorithm applies the partial update technique on the 

filtering part, joined to the P-size forward predictor, to get more complexity reduction. The 

obtained results show a computational complexity reduction from (7L+8) to (L+6M+8) and 

from (7L+8) to (L+M+4P+17) for the PU-SMFTF algorithm and RPU-SMFTF algorithm, 

respectively compared to the original Simplified Fast Transversal Filter (SMFTF). 

Furthermore, experiments picked out in the context of acoustic echo cancellation, have 

demonstrated that the proposed algorithms provide better convergence speed, good tracking 

capability and steady-state performances than the NLMS and SMFTF algorithms. 
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1. INTRODUCTION

Several practical applications such as: acoustic echo 

cancellation (AEC) [1], noise cancellation [1], blind source 

separation (BSS) [2] and linear system identification [1, 3] use 

adaptive transversal filter. Stochastic gradient algorithms are 

extensively used due to their simplicity and low calculation 

complexity, such as the least mean square (LMS) algorithm 

and its Normalized version (NLMS). However, when the input 

signals are strongly correlated, these algorithms are penalized 

by low convergence rate, especially with large acoustic 

impulse responses. In particular video-conferencing rooms [4, 

5]. This problem is solved by the recursive least squares (RLS) 

algorithm, but this family of algorithms suffers from the high 

calculation load of O(L2) [6]. To solve this problem, several 

studies have been conducted to provide a fast convergence of 

the RLS algorithm (Fast RLS), with a lower complexity of 

O(L). We cite, the Fast Kalman (FK) algorithm with 10L 

complexity [7], the Fast a posteriori Error Sequential 

Technique (FAEST) algorithms [8], and the Fast Transversal 

Filter (FTF) [9, 10] with a complexity of order 7L. These fast 

versions are obtained by updating the Kalman gain vector, 

which itself is employed to update the adaptive filter through 

two backward and forward predictors. Another simplified 

version of fast algorithms named Fast Newton Transversal 

Filter (FNTF) [11, 12], brings forward an additional degree of 

freedom by updating a low order P of the forward and 

backward predictors. This technique reduces the 

computational cost from 7L to 2L+12P, then, generating 

algorithms with a complexity similar to the stochastic gradient 

algorithms with P<<L. Another simplified FTF (SMFTF) 

algorithm is developed for AEC application where the 

backward predictor variables, that are responsible for the 

numerical instability of FRLS algorithms are completely 

discarded, producing a numerically stable algorithm with 7L 

complexity [13]. Moreover, the complexity of the SMFTF 

algorithm can achieve 2L+4P when applying a forward 

predictor with order P much smaller than L [13, 14]. 

Furthermore, a more simplified SMFTF algorithm has been 

proposed without forward and backward predictors, called 

Fast NLMS (FNLMS). Its computational complexity is 2L and 

its performance is almost similar to that of the SMFTF 

algorithm [15]. Another method of reducing the computational 

complexity is to use of Partial Update (PU) technique on the 

adaptation of the filter coefficients. All PU algorithms are 

based on the principle of adapting, at each iteration, only a 

small part of size M among a total of L coefficients of the 

adaptive filter. The main difference of PU based algorithms 

lies in the way of selecting the set of coefficients to be updated 

during each sample [16, 17]. This approach can be applied to 

many algorithms like NLMS and RLS [18]. Recently, the 

partial update concept has been widely used in several 

applications of adaptive signal processing such as nonlinear 

acoustic echo cancellation and nonlinear active noise control 

[19-21], sparse system identification [22-24]. 

In this work, we propose to integrate the partial update 

approach on fast algorithms to obtain a lower computational 

complexity compared to the original SMFTF algorithm. The 

aim is to achieve a less computational complexity with similar 

or little better convergence speed, steady state filtering error 

and tracking capability better compared to those of the original 

SMFTF algorithm. This paper is organized as follows: Section 
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2 briefly presents a state of art from a simple NLMS to FRLS 

algorithms used in our simulations to validate the 

performances of the proposed algorithms. Section 3 describes 

the proposed SMFTF algorithm using the M-Max method to 

reduce the computational complexity more and more. In 

section 4, we present the simulation results and the 

computational complexity evaluation of PU-SMFTF, the 

RPU-SMFTF and the original SMFTF algorithms. Finally, 

section 5 concludes the paper. 

 

 

2. CLASSICAL ADAPTIVE ALGORITHMS 

 

In the context of acoustic echo cancellation (AEC), the 

identification of unknown hL systems is very important (Figure 

1). This system, according to the linear acoustic theory, is a 

finite impulse response (FIR) model of L taps. The estimated 

echo signal is described by the following convolution sum: 

 

𝑦̂(𝑛) =  𝐡̂𝐿
𝑇

(𝑛 − 1)𝐱𝑳(𝑛)  (1) 

 

where, 𝐱𝑳(𝑛) = [𝑥(𝑛), 𝑥(𝑛 − 1), … , 𝑥(𝑛 − 𝐿 + 1)]𝑇  is the 

input signal vector that summarizes the L past samples of the 

input signal x(n) and 𝐡̂𝐿(𝑛) = [ℎ̂0(𝑛), ℎ̂1(𝑛), … , ℎ̂𝐿−1(𝑛)] is 

an estimate of the unknown impulse response hL at time n. 

The a priori filtering error 𝜀(̅𝑛) is given by: 

 

𝜀(̅𝑛) = 𝑦(𝑛) − 𝑦̂(𝑛) + 𝑏(𝑛) (2) 

 

where, y(n) and b(n) are the desired signal and the additive 

noise, respectively. 

The general form of the adaptive filter update equation can 

be written as [25, 26]: 

 

𝐡̂𝐿(𝑛) =  𝐡̂𝐿(𝑛 − 1) − 𝐠𝐿(𝑛)𝜀(̅𝑛)  (3) 

 

where, the vector gL(n) is called the adaptation gain. 

 

 
 

Figure 1. Basic adaptive filter scheme 

 

2.1 The normalized LMS algorithm 

 

The normalized least mean square (NLMS) algorithm is a 

variant of the LMS algorithm whose adaptation gain is 

normalized by a quantity proportional to the energy of the 

input signal xL(n) [25, 27]. 

 

𝐠𝐿(𝑛) = −
𝜇

𝐱𝐿
𝑻(𝑛)𝐱𝐿(𝑛)+𝛿

𝐱𝐿(𝑛)  (4) 

 

where, μ is the adaptation step size bounded between 0 and 2 

which is independent of the input signal power, but the choice 

of the step-size affects directly the convergence speed, the 

steady state error and the tracking ability of the algorithm. The 

regularization parameter δ is a small constant used to avoid 

division by zero, this parameter can be chosen proportional to 

the power of the input signal: 𝛿 = 𝛽𝜎𝑥2  with β a positive 

constant [27, 28]. The quantity 𝐱𝐿
𝑻(𝑛)𝐱𝐿(𝑛) can be estimated, 

with less operations, by the following formula: 

 

𝜋x(𝑛) = 𝛽𝜋x(𝑛 − 1) + (1 − 𝛽)𝐿𝑥2(𝑛) (5) 

 

where, β is a forgetting factor. 

 

2.2 The simplified FTF algorithm 

 

The RLS algorithms are based on the minimization, in 

relation to the vector 𝐡̂𝐿(𝑛), of a deterministic criterion given 

by the following weighted sum of squared filtering errors [3]: 

 

𝑗(𝑛) = ∑ 𝜆𝑛−𝑖[𝑦(𝑖) −  𝐡̂𝐿
𝑇

(𝑛)𝐱𝐿(𝑖)]2𝑛
𝑖=1   (6) 

 

where, λ denotes an exponential forgetting factor 0<λ<1. 

These parameter values directly affect the convergence speed, 

the steady-state error and tracking ability of the algorithm. 

The minimization of this last criterion leads to an adaptation 

gain, called Kalman gain CL(n), defined by: 

 

𝐠𝐿(𝑛) = 𝑪𝐿(𝑛) = [𝐶(𝑛), 𝐶(𝑛 − 1), , , , 𝐶(𝑛 − 𝐿
+ 1)]𝑇 = − 𝑹𝐿

−𝟏(𝒏)𝐱𝐿(𝑛) 
(7) 

 

where, RL(n) is the short-term autocorrelation matrix. 

The FTF version of FRLS algorithms propagates two 

forward and backward predictors to update the dual Kalman 

gain 𝑪̃𝐿(𝑛) instead of CL(n): 

 

𝑪𝐿(𝑛) = 𝛾(𝑛)𝑪̃𝐿(𝑛)  (8) 

 

where, γ(n) is called the likelihood variable and defined by: 

 

𝛾(𝑛) =
1

1−𝑪̃𝑳
𝑻

(𝒏)𝐱𝑳(𝒏)
  (9) 

 

Then, the adaptive filter is updated by: 

 

𝐡̂𝐿(𝑛) = 𝐡̂𝐿(𝑛 − 1) − 𝜀(̅𝑛)𝛾(𝑛)𝑪̃𝐿(𝑛)  (10) 

 

The update equation required for a dual Kalman gain can be 

defined in a recursive form as follows [13]: 

 

[𝑪̃𝐿(𝑛)
0

] = [
0

𝑪̃𝐿(𝑛 − 1)
] +

𝑟(𝑛)

𝜆𝛽(𝑛−1)
[
−𝒃𝐿(𝑛 − 1)

1
] −

𝑒(𝑛)

 𝜆𝛼(𝑛−1)
[

1
−𝒂𝐿(𝑛 − 1)

]  
(11) 

 

where, α(n) and β(n) denote, respectively, forward and 

backward prediction error variances. 

The forward αL(n) and backward bL(n) predictors are 

obtained from the dual Kalman gain using the following 

recursive equations: 

 

𝒂𝐿(𝑛) = 𝒂𝐿(𝑛 − 1) − 𝛾(𝑛 − 1)𝑪̃𝐿(𝑛 − 1)𝑒(𝑛) (12.a) 

 

𝒃𝐿(𝑛) = 𝒃𝐿(𝑛 − 1) − 𝛾(𝑛)𝑪̃𝐿(𝑛)𝑟(𝑛) (12.b) 

 

where, e(n) and r(n) refer respectively to forward and 

backward prediction errors, which are given by [10,13]: 
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𝑒(𝑛) = 𝑥(𝑛) − 𝒂𝐿
𝑻(𝑛 − 1)𝐱𝐿(𝑛 − 1) (13.a) 

 

𝑟(𝑛) = 𝑥(𝑛 − 𝐿) − 𝒃𝐿
𝑻(𝑛 − 1)𝐱𝐿(𝑛) (13.b) 

 

In practice, the error accumulation makes the original FTF 

algorithms numerically unstable due to finite-precision 

arithmetic operations. In this context, the analysis of the 

propagation of numerical errors generates stabilization 

methods without degradation of performance [29, 30].  

The theoretical study of error propagation has been carried 

out in [30] confirming that the source of numerical instability 

in these algorithms is due to recursive calculations of 

backward prediction variables. For this reason, backward 

prediction variables have been completely discarded in 

SMFTF algorithm in which a dual Kalman gain equation is 

updated by [13]: 
 

[𝑪̃𝐿(𝑛)
∗

] = [
0

𝑪̃𝐿(𝑛 − 1)
] −

𝑒(𝑛)

𝜆𝛼(𝑛−1)+𝑐
[

1
−𝒂𝐿(𝑛 − 1)

]  (14) 

 

where, c is a small regularization constant, * is an unused 

component and α(n) is a forward prediction error variance 

given by: 
 

𝛼(𝑛) = 𝜆𝛼(𝑛 − 1) + 𝛾(𝑛 − 1)𝑒2(𝑛) (15) 
 

The forward prediction vector is adjusted by:  
 

𝒂𝐿(𝑛) = 𝜂[𝒂𝐿(𝑛 − 1) − 𝑒(𝑛)𝛾(𝑛 − 1)𝑪̃𝐿(𝑛 − 1)] (16) 
 

where, 𝜂 is a leakage factor close to 1. 
 

 

3. PARTIAL UP-DATE SMFTF TYPE ALGORITHMS 

 

3.1 The proposed PU-SMFTF algorithm 

 

In this section, we propose a new FTF-type algorithm with 

reduced computational complexity by employing the partial 

update principle. It has been proven that the classical FTF 

algorithm and their simplified versions decrease only the 

complexity of the prediction part [31, 32]. However, in the 

proposed PU-SMFTF algorithm the complexity of the 

prediction part and the filtering part are reduced using the M-

Max method, which selects the most significant coefficients at 

each iteration. A sub-selected tap-input signal vector has been 

defined by: 

 

 𝐱 ̂𝑳+𝟏(𝑛) = 𝐐𝐿+1(𝑛)𝐱𝐿+1(𝑛) (17) 

 

where, the matrix QL+1(n) is defined by: 

 

𝐐𝐿+1(𝑛) =
𝑑𝑖𝑎𝑔{1, 𝑞0(𝑛), 𝑞1(𝑛), 𝑞2(𝑛), … 𝑞𝐿−1(𝑛)} =

[

1
0

0
𝑞0(𝑛)

…
⋱

0
⋮

⋮
0

⋱
⋯

⋱
0

0
𝑞𝐿−1(𝑛)

]

(𝐿+1)×(𝐿+1)

  
(18) 

 

The ql(n) terms are given by the M-Max method:  

 

𝑞𝑙(𝑛) = {

1, 𝑖𝑓  | 𝑥(𝑛 − 𝑙)| ∈ {𝑀 𝑚𝑎𝑥𝑖𝑚𝑎

𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑜𝑓𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡          

𝑣𝑒𝑐𝑡𝑜𝑟  |𝐱𝐿(𝑛)|}                             

0, 𝑒𝑙𝑠𝑒

  (19) 

For index l=0, 1, …, L-1. 

The method for selecting ql(n) coefficients is part of a 

technique used in fast sorting algorithms [33, 34]. The 

complexity of this type of algorithm can be seen in terms of 

number of additions only, which in fact does not affect the 

number of multiplications of the complexity of the proposed 

algorithm. We note that after sorting and selecting, the vector 

𝐱̂𝐿+1(𝑛) contains only M non-zero components. 

To compute the new dual Kalman gain update equation, we 

use the following inversion lemma of a partitioned matrix [35]:  

 

𝑹𝐿+1
−𝟏 (𝑛) = [

0 0
0 𝑹𝐿

−𝟏(𝑛 − 1)] +

[
1

−𝒂𝐿(𝑛)
] [1 −𝒂𝐿

𝑻(𝑛)]
1

𝛼(𝑛)
  

(20.a) 

 

𝑹𝐿+1
−𝟏 (𝑛) = [𝑹𝐿

−𝟏(𝑛 − 1) 0
0 𝟎

] +

[
−𝒃𝐿(𝑛)

1
] [−𝒃𝐿(𝑛) 1]

1

𝛽(𝑛)
  

(20.b) 

 

By taking Eqns. (20) at time n-1 and right multiplying by 
1

𝜆𝑃𝑈
𝐱̂𝐿+1(𝑛) , we obtain the new dual Kalman gain update 

equations of order L+1: 

 

𝑪̃𝐿+1(𝑛) = [
0

𝑪̃𝐿(𝑛 − 1)
] −

𝑒𝑃𝑈(𝑛)

𝜆𝑃𝑈 𝛼𝑃𝑈(𝑛−1)+𝑐
[

1
−𝒂𝐿(𝑛 − 1)𝐐𝐿(𝑛)

]  
(21.a) 

 

𝑪̃𝐿+1(𝑛) = [𝑪̃𝐿(𝑛)
0

] +

𝑟(𝑛)

𝜆𝑃𝑈𝛽(𝑛−1)
[
−𝒃𝐿(𝑛 − 1)𝐐𝐿(𝑛)

1
]  

(21.b) 

 

By merging the two equations Eq. (21.a) and Eq. (21.b) and 

discarding the backward prediction variables, we get the 

update equation of the dual Kalman gain for the proposed 

algorithm: 

 

[𝑪̃𝐿(𝑛)
∗

] = [
0

𝑪̃𝐿(𝑛 − 1)
] −

  
𝑒𝑃𝑈(𝑛)

𝜆𝑃𝑈  𝛼𝑃𝑈(𝑛−1)+𝑐
[

1
−𝒂𝐿(𝑛 − 1)𝐐𝐿(𝑛)

]  
(22) 

 

with: 
 

𝑒𝑃𝑈(𝑛) = 𝑥(𝑛) − 𝒂𝐿
𝑻(𝑛 − 1)𝐱̂𝐿(𝑛 − 1) (22.a) 

 

𝛼𝑃𝑈(𝑛) = 𝜆𝑃𝑈  𝛼𝑃𝑈(𝑛 − 1) + 𝛾𝑃𝑈(𝑛 − 1)𝑒2
𝑃𝑈(𝑛) (22.b) 

 

𝒂𝐿(𝑛) = 𝜂[𝒂𝐿(𝑛 − 1)𝐐𝐿(𝑛) − 𝑒𝑃𝑈(𝑛)𝛾𝑃𝑈(𝑛 −

1)𝑪̃𝐿(𝑛 − 1) 𝐐𝐿(𝑛)]  
(22.c) 

 

And  
 

𝛾𝑃𝑈(𝑛) =
1

1−𝑪̃𝐿
𝑇

(𝑛)  𝐱 ̂𝑳(𝑛)
  (22.d) 

 

The computational complexity of this prediction part of the 

proposed PU-SMFTF algorithm becomes 5M+7 

multiplications per iteration. 

The new update equation for 𝐡̂𝐿(𝑛) becomes: 

 

 𝐡̂𝐿(𝑛) =  𝐡̂𝐿(𝑛 − 1) − 𝜀(̅𝑛)𝛾𝑃𝑈(𝑛)𝐐𝐿(𝑛)𝑪̃𝐿(𝑛) (23) 
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This last equation and the filtering error formula need 

L+M+1 multiplications. Thus, the total arithmetic operations 

of the proposed algorithm are L+6M+8 multiplications. This 

complexity becomes lower than that of the NLMS algorithm 

for 𝑀 ≤
𝐿−2

6
. The proposed PU-SMFTF is summarized in 

Table 1. 

 

Table 1. The proposed PU-SMFTF algorithm 

 

Initialization 

𝒂𝐿(0) = 𝟎, 𝑪̃𝐿(0) = 𝟎, 𝐡̂𝐿(0) = 𝟎, 

 𝛾𝑃𝑈(0) = 1,𝛼𝑃𝑈(0) = 𝐸0𝜆𝑝𝑢
𝐿  with 𝐸0 initial value. 

Adaptation for n=1;2;.. 

Choice of the selection matrix  

    𝐐𝐿(𝑛) = 𝑑𝑖𝑎𝑔{𝑞0(𝑛), 𝑞1(𝑛), 𝑞2(𝑛), … 𝑞𝐿−1(𝑛)} 

    𝑞𝑙(𝑛) =

{
1, 𝑖𝑓  | 𝑥(𝑛 − 𝑙)| ∈ {𝑀 𝑚𝑎𝑥𝑖𝑚𝑎 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

  𝑜𝑓𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟  |𝐱𝐿(𝑛)|}
0, 𝑒𝑙𝑠𝑒

 

                  For index  𝑙 = 0,1, . . , 𝐿 − 1. 

Prediction part - Forward prediction error 

  𝐱 ̂𝐿(𝑛 − 1) = 𝐐𝐿(𝑛)𝐱𝐿(𝑛 − 1),   𝐱 ̂𝐿(𝑛) = 𝐐𝐿(𝑛)𝐱𝐿(𝑛) 

 𝑒𝑃𝑈(𝑛) = 𝑥(𝑛) − 𝒂𝐿
𝑻(𝑛 − 1)  𝐱 ̂𝐿(𝑛 − 1) 

  𝛼𝑃𝑈(𝑛) = 𝜆𝑃𝑈  𝛼𝑃𝑈(𝑛 − 1) + 𝛾𝑃𝑈(𝑛 − 1)𝑒2
𝑃𝑈(𝑛) 

Adaptation gain vector 

 [𝑪̃𝐿(𝑛)
∗

] = [
0

𝑪̃𝐿(𝑛 − 1)
] −

𝑒𝑃𝑈(𝑛)

𝜆𝑃𝑈 𝛼𝑃𝑈(𝑛−1)+𝑐
[

1
−𝒂𝐿(𝑛 − 1)𝐐𝐿(𝑛)

] 

Forward predictor 

 𝒂𝐿(𝑛) = 𝜂[𝒂𝐿(𝑛 − 1)𝐐𝐿(𝑛) − 𝑒𝑃𝑈(𝑛)𝛾𝑃𝑈(𝑛 −

1)𝑪̃𝐿(𝑛 − 1)𝐐𝐿(𝑛)] 
Likelihood variable  

   𝛾𝑃𝑈(𝑛) =
1

1−𝑪̃𝐿
𝑇

(𝑛)  𝐱 ̂𝐿(𝑛)
 

Filtering part  

  𝜀(̅𝑛) = 𝑦(𝑛) − 𝐡̂𝐿
𝑇

(𝑛 − 1)𝐱𝐿(𝑛) 

 𝐡̂𝐿(𝑛) =  𝐡̂𝐿(𝑛 − 1) − 𝜀(̅𝑛)𝛾𝑃𝑈(𝑛)𝐐𝐿(𝑛)𝑪̃𝐿(𝑛) 

 

3.2 The proposed RPU-SMFTF algorithm 

 

The idea of a reduced size predictor was successfully used 

in the SMFTF algorithm [13]. Here, we propose to further 

reduce the computation complexity by incorporating the 

technique of partial update in the PU-SMFTF algorithm with 

a forward predictor for a smaller size 𝑃 compared to the size 

𝐿 of the adaptive filter. The extension of this idea to the PU-

SMFTF algorithm requires the following steps: 

Step 1: 

We limit the size of the forward predictor vector to a 

reduced size P≤L, with 𝒂𝑷(𝑛) = [𝑎(𝑛), 𝑎(𝑛 − 1), … , 𝑎(𝑛 −
𝑃 + 1)], so the forward prediction error is written as: 

 

𝑒𝑃(𝑛) = 𝑥(𝑛) − 𝒂𝑷
𝑻(𝑛 − 1)𝐱𝑷(𝑛 − 1) (24) 

 

Step 2: 

We will use an extrapolation method to calculate the dual 

Kalman gain and the likelihood variable of order 𝐿 . The 

forward predictor and dual Kalman gain are given respectively 

by: 

 

𝒂𝐿(𝑛 − 1) = [
𝒂𝑷(𝑛 − 1)

𝟎𝐿−𝑃
] (25) 

[
𝑪̃𝐿(𝑛)

𝑐𝐿+1(𝑛)
] = [

0
𝑪̃𝐿(𝑛 − 1)

] −

𝑒𝑃(𝑛)

𝜆𝑅𝑃𝑈  𝛼𝑃(𝑛−1)+𝑐
[

1
−𝒂𝐿(𝑛 − 1)

]  

(26) 

 

where, 0L-P is a zero vector of order (L-P). We note cL+1(n) the 

unused component and cP+1(n) the (P+1)th component of 

𝑪̃𝐿(𝑛). 

The new update information of dual Kalman gain is located 

in the (P+1) first components and the last values are offset 

versions of the (P+1)th component of 𝑪̃𝐿(𝑛) [12]. In order to 

reduce the computational complexity much more, for this 

algorithm, we considered two likelihood variables [36]. The 

first one, γP(n), is used to update the forward prediction 

variables: 

 

𝛾𝑃(𝑛) =
𝛾𝑃(𝑛−1)

1+𝛾𝑃(𝑛−1)𝜗𝑃(𝑛)
  (27) 

 

where, 

 

𝜗𝑃(𝑛) =
𝑒𝑃

2(𝑛)

𝜆𝑅𝑃𝑈   𝛼𝑃(𝑛−1)+𝑐
+ 𝑐𝑃+1(𝑛)𝑥(𝑛 − 𝑃)  (28) 

 

The second likelihood variable γL(n) is used to update the 

adaptive filter 𝐡̂𝐿(𝑛): 

 

𝛾𝐿(𝑛) =
𝛾𝐿(𝑛−1)

1+𝛾𝐿(𝑛−1)𝜗𝐿(𝑛)
  (29) 

 

𝜗𝐿(𝑛) =
𝑒𝑃

2(𝑛)

𝜆𝑅𝑃𝑈  𝛼𝑃(𝑛−1)+𝑐
+ 𝑐𝐿+1(𝑛)𝑥(𝑛 − 𝐿)  (30) 

 

Step 3: 

We will choose the 𝑀  coefficients of the dual Kalman 

vector 𝑪̃𝐿(𝑛),  which are the most significant in amplitudes 

using the diagonal selection matrix QL(n), and then we update 

the adaptive filter weights by: 

 

𝐡̂𝐿(𝑛) = 𝐡̂𝐿(𝑛 − 1) − 𝜀(̅𝑛)𝛾𝐿(𝑛)𝐐𝐿(𝑛)𝑪̃𝐿(𝑛) (31) 

 

A summary of the proposed algorithm is given in Table 2. 

 

Table 2. The proposed RPU-SMFTF algorithm 

 

Initialization 

𝒂𝐿(0) = 𝟎, 𝑪̃𝐿(0) = 𝟎, 𝐡̂𝐿(0) = 𝟎, 

 𝛾𝐿(0) =  𝛾𝑃(0) = 1 , 𝛼𝑝(0) = 𝐸0𝜆𝑅𝑃𝑈
𝑃  with 𝐸0  initial 

value. 

Adaptation for n=1;2;.. 

Choice of the selection matrix  

    𝐐𝐿(𝑛) = 𝑑𝑖𝑎𝑔{𝑞0(𝑛), 𝑞1(𝑛), 𝑞2(𝑛), … 𝑞𝐿−1(𝑛)} 

    𝑞𝑙(𝑛) =

{
1, 𝑖𝑓| 𝑥(𝑛 − 𝑙)| ∈ {𝑀 𝑚𝑎𝑥𝑖𝑚𝑎 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

  𝑜𝑓𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟  |𝐱𝐿(𝑛)|}
0, 𝑒𝑙𝑠𝑒

 

                  For index  𝑙 = 0,1, . . , 𝐿 − 1. 

Prediction part - Forward prediction error 

   𝑒𝑃(𝑛) = 𝑥(𝑛) − 𝒂𝑷
𝑻(𝒏 − 𝟏)𝐱𝑷(𝒏 − 𝟏) 

   𝛼𝑃(𝑛) = 𝜆𝑅𝑃𝑈𝛼𝑃(𝑛 − 1) + 𝛾𝑃(𝑛 − 1)𝑒2
𝑃(𝑛) 

Adaptation gain vector 

𝒂𝐿(𝑛 − 1) = [
𝒂𝑷(𝑛 − 1)

𝟎𝑁−𝑃
] 
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  [
𝑪̃𝐿(𝑛)

𝑐𝐿+1(𝑛)
] = [

0
𝑪̃𝐿(𝑛 − 1)

] −

𝑒𝑃(𝑛)

𝜆𝑅𝑃𝑈  𝛼𝑃(𝑛−1)+𝑐
[

1
−𝒂𝐿(𝑛 − 1)

] 

Forward predictor 

𝒂𝑷(𝒏) = 𝜂[𝒂𝑷(𝒏 − 𝟏) − 𝑒𝑃(𝑛)𝛾𝑃(𝑛 − 1)𝑪̃𝑷(𝒏 − 𝟏)] 
Likelihood variables  

 𝜗𝑃(𝑛) =
𝑒𝑃

2(𝑛)

𝜆𝑅𝑃𝑈  𝛼𝑃(𝑛−1)+𝑐
+ 𝑐𝑃+1(𝑛)𝑥(𝑛 − 𝑃),  

𝛾𝑃(𝑛) =
𝛾𝑃(𝑛−1)

1+𝛾𝑃(𝑛−1)𝜗𝑃(𝑛)
   

 𝜗𝐿(𝑛) =
𝑒𝑃

2(𝑛)

𝜆𝑅𝑃𝑈 𝛼𝑃(𝑛−1)+𝑐
+ 𝑐𝐿+1(𝑛)𝑥(𝑛 − 𝐿), 

𝛾𝐿(𝑛) =
𝛾𝐿(𝑛 − 1)

1 + 𝛾𝐿(𝑛 − 1)𝜗𝐿(𝑛)
 

Filtering part  

  𝜀(̅𝑛) = 𝑦(𝑛) − 𝐡̂𝐿
𝑇

(𝑛 − 1)𝐱𝐿(𝑛) 

 𝐡̂𝐿(𝑛) = 𝐡̂𝐿(𝑛 − 1) − 𝜀(̅𝑛)𝛾𝐿(𝑛)𝐐𝐿(𝑛)𝑪̃𝐿(𝑛) 

 

 

4. SIMULATION RESULTS 

 

In this section, we compare the performances of PU-

SMFTF and  RPU-SMFTF algorithms with the classical 

SMFTF, NLMS and PU-NLMS algorithms [31]. Series of 

experiments are carried out with stationary and non-stationary 

signals and systems to validate the superiority of the proposed 

algorithms in terms of complexity reduction and the ability of 

tracking changes in input signals and impulse responses. The 

performances are evaluated using an estimate of the change 

over time of the mean square error (MSE) defined by: 

 

𝑀𝑆𝐸𝑑𝐵(𝑛) = 10 log10( 〈𝜀(̅𝑛)2〉) (32) 

 

where, 〈. 〉  is a short-time average over a small number of 

samples. 

 

4.1 Simulation parameters 

 

4.1.1 Description of signals and systems 

In order to show the convergence speed and the behavior of 

the proposed algorithms in case of acoustic channel variation, 

a common stationary noise called USASI (USA Standards 

Institute) is used as input signal. This latter has a normal 

probability distribution, a variance equals 𝜎𝑥
2 = 0.32  and a 

dynamic range of the frequency spectrum of about 29 dB. 

In a real time, acoustic echo situation, we tested the 

algorithms with a non-stationary real speech signal (Figure 2) 

of spectral dynamics of about 40 dB. The power of this speech 

signal is 𝜎𝑥
2 = 0.17 . Desired signals are obtained by 

convolution of a real acoustic impulse response with the input 

signals, and then truncated to 256 points (Figure 3). An 

additive white Gaussian noise is added to echo signal with a 

given signal-to-noise ratio, to show the performances of the 

proposed algorithms in case of noisy environments. All these 

signals are sampled with a frequency of 16 kHz. 

 

4.1.2 Choice of algorithm parameters 

The key parameters must be set properly for a fair 

comparison of the tested algorithms. For the NLMS and PU-

NLMS algorithms, the value of the adaptation step that gives 

us the best convergence speed is set to μ=1 with no output 

noise and slightly lower than one for a noisy desired signal [27, 

37]. The regularization constants, for all tested algorithms, are 

fixed to a value proportional to the average energy of the input 

signal: δ= c =1 (β≈ 3 for USASI signal and β≈6 for Speech). 

 

 
 

Figure 2. Speech signal 

 
 

Figure 3. Real acoustic impulse response measured in car 

cabin (size of 256 samples) 

 

The initial value of the forward prediction error variance 𝐸0 

must be chosen to ensure the initial start of the algorithm. This 

constant is set to one for a normalized input signal x(n). The 

typical value of forgetting factor λ that provides good 

performances of the original SMFTF was set to λ=0.9989. In 

addition, forgetting factors of the proposed algorithms must be 

well chosen to ensure good convergence speed and tracking 

ability. We set λPU=0.997 for the first proposed algorithm and 

λRPU=0.85 for the second proposed algorithm in the coming 

experiments. For proper working of the forward predictor, in 

particular in speech silence intervals, the leakage factor is set 

to η=0.985 for SMFTF and PU-SMFTF, and to η=0.992 for 

the proposed RPU-SMFTF. 

 

4.2 Case of a stationary input signal 

 

In this part of simulation, we used the USASI noise as input 

and 𝐿 = 256 for the size of the unknown system (Figure 3). 

The number 𝑀 of coefficients to be selected has been chosen 

so that a best convergence speed and a lower arithmetic 

operation are ensured for the proposed algorithm. To attain 

this solution, we put 𝑀 =
𝐿

2
.  

Figures 4 and 5 illustrate the comparison of the proposed 

PU-SMFTF algorithm with the conventional  NLMS, PU-
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NLMS and SMFTF algorithms with two signal-to-noise ratio 

(SNR) values of 50 dB and 30 dB, respectively. These results 

show a superiority of convergence speed of the proposed 

algorithm compared to other tested algorithms. The proposed 

PU-SMFTF algorithm provides similar performance in terms 

of final MSE compared with the other classical algorithms, but 

with a lower complexity. 

 

 
 

Figure 4. The MSE evolution of PU-SMFTF, SMFTF, 

NLMS and PU-NLMS algorithms for stationary USASI 

noise, 𝐿 = 256 and Output noise with SNR=50 dB 

 

 
 

Figure 5. Learning curves of PU-SMFTF, SMFTF, NLMS 

and PU-NLMS algorithms for stationary USASI noise, 𝐿 =
256 and SNR=30 dB 

 

 
 

Figure 6. MSE evolution of RPU-SMFTF, NLMS and PU-

NLMS algorithm for stationary USASI noise, RPU-SMFTF 

(𝜆𝑅𝑃𝑈=0.85), SNR=30 

 

Figure 6 shows the MSE of the proposed RPU-SMFTF 

algorithm in comparison with NLMS  and PU-NLMS 

algorithms. The order of the reduced predictor is 𝑃 = 8 and 

the number of coefficients to be adapted by iteration in this 

case is fixed at 𝑀 =
𝐿

2
. From this figure, it can be seen that the 

proposed algorithms give much better convergence speed than 

NLMS and PU-NLMS algorithms. 

 

4.3 Case of non-stationary system 

 

In this experiment, we compare the performances in terms 

of convergence rate and tracking ability of the proposed 

algorithms with the classical NLMS and SMFTF algorithms. 

For this purpose, a continuous variation of the unknown 

system is made by introducing an artificial linear gain in the 

echo path. This is generated by multiplying the echo signal 

𝑦(𝑛) by a triangular gain function of amplitude between 1 and 

2.5 (Figure 7). The gain variation starts at iteration 50000 and 

ends at iteration 80000. 

Figure 8 shows that the proposed algorithms converge faster 

and track better the variations of the impulse response than the 

SMFTF algorithm, with the same steady-state MSE. It is worth 

noting that the proposed PU-type algorithm achieves gains of 

approximately 8 dB compared to SMFTF and about 12 dB 

compared to NLMS during echo path variation period. 

 

 
 

Figure 7. Artificial gain variation for the experiment of 

testing the tracking performance 

 

 
 

Figure 8. Comparison of tracking capability of various 

adaptive algorithms with an stationary input signal (USASI), 

Output with SNR=70dB, 𝐿 = 256 and 𝑃 = 8 

 

4.4 The effect of the size M 

 

Figure 9 depicts the MSE learning curves for 𝑀 = 128, 

𝑀 = 64 and 𝑀 = 45 coefficients in the partial update based 

algorithms. In this experiment, we create a sudden change in 

the echo path by multiplying the desired signal by 1.5 at the 

iteration 𝑛 = 50000. These results show slight degradations 

on the MSE when 𝑀 decreases to 128, 64 and 45 coefficients 

compared to the SMFTF algorithm with 256 coefficients. We 

also note that these performances remain better than those of 

the NLMS algorithm with 𝐿 = 256. 
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Figure 9. Effects of the size 𝑀 on the PU-SMFTF algorithm 

for 𝐿 = 256 and Output with SNR = 50 dB 

 

4.5 Effects of the P-size forward predictor  

 

Figure 10 shows the effect of decreasing predictor order 𝑃 

on the behaviour of RPU-SMFTF algorithm for a stationary 

input signal and a filter size 𝐿 = 256. This experiment shows 

that the proposed RPU-SMFTF has the best performance in 

terms of convergence, re-convergence rate than the other 

classical-type tested algorithms, for the three different order 

size 𝑃. 

 

 
 

Figure 10. Effects of the size 𝑃 value on the RPU-SMFTF 

algorithm for 𝐿 = 256 and 𝑀 =
𝐿

2
 

 

4.6 Case of non-stationary input 

 

 
 

Figure 11. Comparison with speech signal, PU-SMFTF 

(𝜆𝑃𝑈 = 0.9985), SMFTF (𝜆 = 0.9989), RPU-SMFTF 
(𝜆𝑅𝑃𝑈 = 0.985), 𝜂 = 0.98, 𝑐 = 0.1 and SNR=50dB 

 

Figure 11 depicts the MSE performance curves of the 

NLMS, SMFTF, PU-SMFTF and RPU-SMFTF algorithms 

with a speech as input under impulse response of length 𝐿= 

256. The forward predictor order is fixed to 𝑃 = 15. The 

leakage factor for all algorithms is taken 𝜂 = 0.98. Parameters 

of the NLMS algorithm remain unchanged from the previous 

simulations. This experiment demonstrates that the NLMS 

algorithm has difficulties to identify the unknown system. 

These difficulties are caused by the high degree of correlation 

of the speech signal. In addition, it can be seen from Figure 11 

that the PU-SMFTF and RPU-SMFTF outperform the other 

tested algorithms in the transient and the steady-state phases, 

with lower computational cost. 

 

4.7 Computational complexity evaluation 

 

In this subsection, we have evaluated the computational 

complexities, based on the number of arithmetic 

multiplications only, of the proposed PU-SMFTF and RPU-

SMFTF algorithms compared to the classical SMFTF and 

NLMS algorithms.  

Table 3 summarizes the complexities for the considered 

algorithms. Figure 12 presents numerical example for different 

values of 𝑀 and with fixed L=256 and P=8. It has been found 

that, the computational complexities of the proposed 

algorithms are lower than the complexity of the NLMS 

algorithm with performances better than both NLMS and 

SMFTF algorithms. 

 

Table 3. Comparison of computational complexities 

 
Complexity in multiplications per iteration 

Algorithms 
Prediction 

part 

Filtering 

part 
Full complexity 

NLMS 0 2L+6 2L+6 

SMFTF [13] 5L+7 2L+1 7L+8 

PU-SMFTF 5M+7 L+M+1 L+6M+8 

RPU-SMFTF 4P+16 L+M+1 L+M++4P+17 

 

 
 

Figure 12. Numerical comparison of the computational 

complexities 

 

 

5. CONCLUSION 

 

In this paper, we have proposed two new adaptive filtering 

algorithms derived from the SMFTF algorithm by 

incorporating the partial update technique in both filtering and 

prediction parts, in order to get a reduced complexity and a 

higher convergence speed. We have compared the 

performances of the proposed algorithms with those of the 

SMFTF and NLMS algorithms under different scenarios, such 
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as variable acoustic channel and noisy environments. Based on 

the results, it can be concluded that the proposed algorithms 

present better performances in terms of convergence and re-

convergence speed than the NLMS and the SMFTF algorithms.  

In addition, these interesting performances are obtained 

with a complexity much lower than other tested algorithms for 

small values of 𝑀. The computational complexity has been 

reduced from 7𝐿 + 8 to 𝐿 +  6𝑀 + 8 (with 𝑀 << 𝐿) for the 

proposed PU-SMFTF algorithm and becomes 𝐿 +  𝑀 +
 4𝑃 + 17 for the RPU-SMFTF algorithm of 𝑃-size forward 

predictor (with 𝑃 ≪ 𝑀 ≪ 𝐿). Also, it has been shown that the 

proposed algorithms have better capability to track the 

variations of the unknown system. 
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NOMENCLATURE 

 

AEC Acoustic Echo Cancellation 

FIR Finite Impulse Response 

FK Fast Kalman 

FAEST Fast a posteriori Error Sequential Technique 

FNLMS Fast NLMS 

FNFTF Fast Newton Transversal Filter 

FTF Fast Transversal Filter 

MSE Mean Square Error 

NLMS Normalized Least Mean Square 

PU Partial Update 

RLS RLS Recursive Least Square 

RPU Reduced Partiel Update 

SMFTF Simplified FTF 

SNR Signal to Noise Ratio 

USASI USA Standards Institute (ANSI) 

 

Greek symbols 

 

(n) Forward Error Variance 

(n) Backward Error Variance 

(n) Likelihood Variable 

µ Step-size 

ƛ Forgetting Factor 

 

Subscripts 

 

P Size of the reduced Predictor 

L Size of the Adaptive Filter 
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