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In the complex environment of greenhouses, it is important to provide the picking robot with 

accurate information. For this purpose, this paper improves the recognition and detection 

method based on you only look once v5 (YOLO v5). Firstly, adding data enhancement 

boosts the network generalizability. On the input end, the k-means clustering (KMC) was 

utilized to obtain more suitable anchors, aiming to increase detection accuracy. Secondly, it 

enhanced multi-scale feature extraction by improving the spatial pyramid pooling (SPP). 

Finally, non-maximum suppression (NMS) was optimized to improve the accuracy of the 

network. Experimental results show that the improved YOLO v5 achieved a mean average 

precision (mAP) of 97.3%, a recall of 90.5%, and an F1-score of 92.0%, while the original 

YOLO v5 had a mAP of 95.9% and a recall of 85.6%; the improved YOLO v5 took 57ms 

to identify and detect each image. The recognition accuracy and speed of the improved 

YOLOv5 are much better than those of faster region-based convolutional neural network 

(Faster R-CNN) and YOLO v3. After that, the improved network was applied to identify 

and detect images take in unstructured environments with different illumination, 

branch/leave occlusions, and overlapping fruits. The results show that the improved network 

has a good robustness, providing stable and reliable information for the operation of tomato 

picking robots. 
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1. INTRODUCTION

China is the largest producer and consumer of tomatoes. 

Greenhouse grown tomatoes have been developing rapidly 

across the country. These tomatoes are mainly picked 

manually. The manual picking takes up around 50% of the 

total workload of growing tomato in greenhouses, and the 

labor cost reaches 50% to 70% of the income of the harvest. 

Moreover, the efficiency of manual picking is rather low. As 

the Chinese population ages, there is a growing shortage of 

agricultural labor for the high-labor intensity operation of 

picking greenhouse grown tomatoes [1]. In some cases, it is 

impossible to pick the tomatoes in time, resulting in loss of 

agricultural production. To realize modern, mechanized, and 

intelligent agriculture, the research and development of 

agricultural robots provides a solution to the above problem 

[2]. Replacing manual operators with tomato picking robots 

can reduce labor cost, adapt to the needs of the high-intensity 

operation, and improve labor productivity. 

The difficulty of picking robot design lies in identifying and 

detecting tomato targets. The accuracy of recognition and 

detection bears on the work efficiency of picking robots [3]. In 

the natural environment, tomato fruits vary in pose, size, 

sparsity, and light condition, and might overlap each other. In 

many cases, the fruits are severely occluded by branches and 

leaves. All these factors bring difficulty to the recognition and 

positioning by picking robots. Many domestic and foreign 

scholars have explored the recognition and detection of 

tomatoes. However, most research and development results 

remain in the lab phase, rather enter the actual production. The 

recognition and detection techniques are not sufficiently stable 

or generalizable. Therefore, it is urgent to solve the technical 

problem of rapid and precise recognition and detection of 

tomato fruits in complex environments. 

2. LITERATURE REVIEW

Computer vision-based object detection has been widely 

used to harvest robots across the world. In recent years, many 

detection methods are developed by scholars. Li et al. [4] 

captured images with a red-green-blue-depth (RGB-D) 

camera, preprocessed the images to obtain the fruit contours, 

separated the contours of overlapping fruits, and fitted them 

into circles. The k-means clustering (KMC) was combined 

with self-organizing map (SOM) neural network algorithm for 

tomato recognition. Experimental results show that their 

approach correctly recognized 87.2% of tomatoes. However, 

the contour extraction is affected by the illumination. Xiang et 

al. adopted iterative Otsu’s method to segment the clustered 

regions, computed the depth difference between the front and 

rear regions, and treated them as overlapping regions if the 

different is greater than the threshold [5, 6]. Next, edge 

curvature analysis was caried out to identify the overlapping 

tomatoes. When the branch occlusion was less than 25%, their 

method could correctly recognize 87.9% of tomatoes. Yu et al. 

developed a machine vision deep learning algorithm called 

Mask-RCNN [7]. With ResNet50 as the backbone network, 

their algorithm selects the candidate boxes through region 

proposal network (RPN), and realizes automatic detection of 

Traitement du Signal 
Vol. 39, No. 1, February, 2022, pp. 291-298 

Journal homepage: http://iieta.org/journals/ts 

291

https://crossmark.crossref.org/dialog/?doi=10.18280/ts.390130&domain=pdf


 

strawberries. Their report indicates that Mask-RCNN 

achieved an average precision of 95.78% and a recall of 

95.41% under different illumination and fruit occlusion. Each 

strawberry was identified by processing an average of 8 

frames. Despite the high stability, their approach needs to be 

further improved in real-time performance. Through wavelet 

fusion analysis, Zhao et al. [8, 9] extracted the a*-component 

image and I-component feature map from the L*a*b and luma-

in-phase-quadrature (YIQ) color space models, carried out 

pixel fusion of these images, and recognized tomatoes through 

optimal threshold segmentation. Experimental results show 

that their strategy can correctly segment and recognize 93% of 

tomatoes, and reduce the influence of illumination and 

branch/leave occlusion over segmentation in unstructured 

environments. To realize the automatic recognition of 

tomatoes, Yamamoto et al. [10] captured images with a 

traditional RGB camera, established a classification model 

based on the colors, shapes, textures, and sizes of the images, 

and automatically determined the optimal number of clusters 

through KMC. The experimental report suggests that their 

method achieved a recall of 80%, a precision of 0.88, and a 

recognition rate of 100%, 80% and 78% on mature, immature, 

and young fruits, respectively. Muhammad Hammad Malik et 

al. adopted the improved hue-saturation-value (HSV) color 

space algorithm to detect red tomatoes, and separated the 

tomatoes from the unevenly lighted and complex background, 

using the improved watershed segmentation algorithm. 

Experimental results show that their method recognized 81.6% 

of red tomatoes [11]. Hu et al. [12] segmented the tomato 

regions from the background with the H and S Gaussian 

density functions of the HSV color space, identified the edges 

of tomatoes through adaptive threshold intuitive fuzzy set 

(IFS), and improved the recognition of overlapping tomatoes 

with faster region-based convolutional neural network (Faster 

R-CNN). Experimental results show that the mean relative 

error (MRE) of horizontal and vertical displacements were 

0.261% and 1.179%, respectively, indicating that their 

approach improves the detection accuracy of tomatoes. Liu et 

al. (2020) extended you only look once v3 (YOLO v3) into a 

YOLO-tomato model to solve problems of occlusion, 

overlapping, and illumination. Their algorithm introduces the 

densely connected network to optimize YOLOv3, and predict 

and position tomatoes with C-box. Experimental results show 

that their method recognized 94.58% of tomatoes under slight 

occlusion [13]. Using the relationship between fruit color 

difference components, Ma et al. employed the Otsu’s method 

to obtain the complete binary image of each fruit, and marked 

the split lines of the binary image by an algorithm coupling 

improved ultimate corrosion and marker-controlled watershed 

segmentation. Experimental results show that their approach 

can correctly segment 96.5% of overlapping apples [14]. 

Taking images collected by stereo cameras as a dataset, 

Magalhaes S.A. et al. proposed deep learning models like sing-

shot detector (SSD) and YOLO, and conducted training and 

benchmark testing of five deep learning models. The results 

show that SSD MobileNet v2 achieved the best performance 

with a mean average precision (mAP of 51.46% and an F1-

score of 66.15. But the network performance should be further 

improved under branch occlusion [15]. Chen et al. captured 

lychee images with a binocular camera, and improved YOLO 

v3 into YOLO-DenseNet34 for detecting lychee strings. The 

lychee strings were matched under the constraint of sequential 

consistency in the same row. The mean precision and detection 

speed of their approach reached 94.3% and 22.11 frames per 

second (fps), respectively [16]. 

To sum up, there is a significant progress in tomato 

recognition and detection at home and abroad. Nevertheless, 

the accuracy and real-time performance need to be further 

improved. The traditional algorithm has great influence on 

light and occlusion, and can not recognize tomato accurately. 

With the rapid development of artificial intelligence, the deep 

learning approach of convolutional neural networks (CNNs) 

demonstrate better performance than traditional machine 

vision strategies [17-20]. For example, Faster-RCNN, a 

detector based on region proposal generation, boasts a low 

false recognition rate and a low false negative rate. However, 

this detector is too slow to meet actual demand. The weight 

parameters obtained by training are also larger. As a 

regression-based detector, the YOLO supports fast and real-

time recognition, and its accuracy meets the requirements of 

field applications. Therefore, this paper proposes an improved 

YOLO v5 tomato recognition and detection algorithm, which 

overcomes the poor recognition accuracy, timeliness, and 

robustness of tomato fruits under overlapping fruits, branch 

occlusion, and uneven illumination in the complex natural 

environment of agricultural greenhouses. 

 

 

3. MATERIALS AND METHODS 

 

3.1 Image dataset  

 

Our dataset comes from Yujiawu Tomato Greenhouse Base, 

Tongzhou District, Beijing. The images were collected by a 

binocular stereo camera (Sony IMX307). According to the 

structural layout of the greenhouse, the images were captured 

at 50-100cm. After segmentation, the left and right images 

each has 640*480 pixels, with black marginal areas. All 

images were calibrated by the binocular camera, and used for 

robotic picking. Figure 1 shows a collected image. 

 

 
 

Figure 1. An image collected by the binocular camera 

 

 
 

Figure 2. Tomato dataset under natural environment 
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The images were shot in the natural environment of 

greenhouses. The complexity of tomato growth is well 

reflected in these images, e.g., the difference in size and 

illumination, the occlusion between tomatoes, and the 

occlusion by branches. A total of 1,000 tomato images were 

captured randomly under conditions like cloudy day, sunny 

day, sidelight, backlight, shade, etc. Some images are about a 

single tomato, and some are about a cluster of tomatoes. In 

some images, the tomatoes are occluded by other fruits and 

branches. In some other images, the tomatoes are directly 

under the sunlight. Figure 2 shows the established dataset of 

tomatoes.   

 

3.2 Data enhancement 

 

In the complicated natural environment of greenhouses, the 

light intensity and angle of natural daylight vary significantly. 

The learning ability and generalizability of the training models 

for deep learning neural networks depend on the training 

dataset [21]. This puts a high requirement on the dataset for 

model training: the dataset must be diverse and complete at the 

same time. To improve the universality of the deep network 

model, the collected images were enhanced through flipping, 

illuminance balance, and rotation. Specifically, flipping and 

rotation enhance the detection ability and stability of the 

network model, while illuminance balance prevents the model 

performance from being affected by sensor difference and 

ambient light variation [22, 23]. Finally, a total of 2,000 

tomato images were obtained, and divided into a training set 

(1,600), a validation set (200), and a test set (200). 

 

3.3 Improvement of YOLO v5 

 

In 2015, Joseph Redmon and Ali Farhadi put forward the 

YOLO, a target detection system based on a single neural 

network. As a one-stage end-to-end deep learning network 

detector [24-27], the YOLO regards object detection as the 

solution to a regression problem, and combines region 

proposal and classification into one network, such that the 

position, class, and corresponding confidence probability of 

every object in the input image can be determined through 

only one inference [28, 29]. In this way, the YOLO greatly 

improves the detection efficiency of objects. In 2020, YOLO 

v5 was released, and hailed for its precision and speed. 

According to the depth_multiple and width_multiple of 

parameters, YOLO v5 can be divided into four versions: 

YOLO v51, YOLO v5m, YOLO v5x, and YOLO v5s. Among 

them, YOLO v5s boasts the fastest detection and the fewest 

parameters. Figure 3 shows the structure of YOLO v5s. 

Tomato recognition is mainly adopted for robotic picking, 

calling for a ultralightweight and real-time recognition model. 

Our model was derived by improving the structure of YOLO 

v5s in the following aspects. 

 

3.3.1 Improvement of spatial pyramid pooling (SPP) 

The SPP involves three pooling operations [30]. While 

expanding the receptive field, max pooling would lower the 

resolution and sacrifice some details, resulting in the loss of 

local information. Drawing on the idea of atrous SPP (ASPP) 

[31], two dilated convolutional layers (Conv2D1 and 

Conv2D2) were added, each with three 3x3 kernels and three 

3x3, 5x5, and 7x7 kernels. Without losing the sampled data, 

the dilated convolutional layers (Conv2D) can effectively 

capture multiscale global information under different 

sampling rates, thereby expanding the solution space and 

improving the detection accuracy of the model. Figure 4 shows 

the structure of the improved SPP. 

 

 
 

Figure 3. Structure of YOLO v5s 

 

 
 

Figure 4. Structure of the improved SPP 
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Figure 5. Structure of transformer encoder 

 

3.3.2 Addition of transformer module 

In the improved YOLO v5, module C3 after the SPP module 

of the backbone network is replaced by the transformer 

encoder module. Relying on the autonomous attention 

mechanism, the transformer encoder module directly 

compares the features of all spatiotemporal positions, and 

captures local features as well as global information. Facing 

static tomato images, the additive module can fit a stronger 

network model with the same computing resources, and thus 

speed up the inference. Figure 5 shows the structure of the 

transformer encoder [32]. 

 

3.3.3 Anchor box of KMC 

Figure 6 shows the distribution of the image dataset. The 

widths of the targets are basically linearly correlated with their 

heights, the aspect ratios of the targets are generally stable, and 

the targets scatter across the entire image, i.e., the sample data 

are evenly distributed. 

 

 
 

Figure 6. Distribution of the image dataset 

 

To improve the detection accuracy of tomatoes, the anchor 

box should be similar to the target in size. For this purpose, the 

labeled boxes of the tomato dataset were clustered by the 

KMC [33]. All the images were shot by a binocular camera, 

and are of the same size. During the box clustering, the box 

width and height were taken as the only features. The 

intersection over union (IoU) between anchor and box was 

emphasized over the box size. Hence, the IoU was selected as 

the metric: 

 

d(𝑔𝑡, 𝑎𝑛𝑐ℎ𝑜𝑟) = 1 − 𝐼𝑂𝑈(𝑔𝑡, 𝑎𝑛𝑐ℎ𝑜𝑟) (1) 

𝐼𝑂𝑈(𝑔𝑡, 𝑎𝑛𝑐ℎ𝑜𝑟) = 𝐴∩(𝑔𝑡, 𝑎𝑛𝑐ℎ𝑜𝑟)/𝐴∪(𝑔𝑡, 𝑎𝑛𝑐ℎ𝑜𝑟) (2) 

 

where, d is the metric; 𝑔𝑡 is the ground truth box of the dataset; 

𝑎𝑛𝑐ℎ𝑜𝑟  is the anchor box; 𝐴∩  and 𝐴∪  are the areas of the 

intersection and the union, respectively. The clustering process 

is as follows: 

Step 1. Randomly select 9 gt boxes as the initial anchors. 

Step 2. Assign the closet anchor to each gt box by formulas 

(1) and (2). 

Step 3. Compute the mean width and height of each gt box 

in each class, and update the anchor. 

Step 4. Repeat Steps 2-3 until the anchor changes no more. 

The clustering results of our dataset were (19, 20) (22, 28) 

(27, 24) (33, 31) (40, 40) (52, 48) (65, 63) (85, 83) and (115, 

107); the avr_IoU precision was 82.5%,13.9% higher than the 

default anchor (68.6%) of the YOLO. The new anchor 

obtained through clustering was taken as three feature maps, 

80*80, 40*40, and 20*20, producing the prior box. 

 

3.3.4 Improvement of non-maximum suppression (NMS)  

The NMS is a technique for target detection algorithms to 

filter out redundant boxes. Traditionally, the NMS measures 

positioning precision with the IoU, computes the IoU between 

the detection box with the highest score and every other box, 

and deletes all the boxes with an IoU surpassing the threshold. 

Relying on the IoU alone, the NMS often incorrectly deletes 

the occluded objects. Apart from the IoU, the NMS with 

Distance IoU (DIoU) (DIoU-NMS) considers the distance 

between the centers of two boxes [34]. When two distant boxes 

have a large IoU, it means two objects have been detected, and 

the boxes should not be deleted. The DIoU-NMS can be 

defined as follows: 

 

𝑆𝑖 = {
𝑆𝑖 , 𝐼𝑂𝑈 − 𝑅𝐷𝐼𝑂𝑈(𝑀, 𝐵𝑖) < 𝑁𝑡  

0, 𝐼𝑂𝑈 − 𝑅𝐷𝐼𝑂𝑈(𝑀, 𝐵𝑖) ≥ 𝑁𝑡  
 (3) 

 

where, 𝑆𝑖 is the confidence score of the current class; M is the 

box with the highest confidence; 𝐵𝑖  is all the contrastive boxes 

in the current class; 𝑅𝐷𝐼𝑂𝑈  is the penalty term of DIoU loss 

function; 𝑁𝑡 is a preset threshold. The distance 𝑅𝐷𝐼𝑂𝑈 between 

the centers of the two boxes can be expressed as: 

 

𝑅𝐷𝐼𝑂𝑈 =
𝜌2(𝑏, 𝑏𝑔𝑡)

𝑐2
 (4) 

 

where, ρ(·) is the Euclidean distance; 𝑏 and 𝑏𝑔𝑡 are the center 

coordinates of the two boxes, respectively; 𝑐  is the length 

(number of pixels) of the diagonal of the smallest box 

containing the two boxes. Length of the diagonal of the 

smallest box containing the two boxes shown in Figure 7, d =
𝜌(𝑏, 𝑏𝑔𝑡) is the distance between the centers of the two boxes. 

 

 
 

Figure 7. Length of the diagonal of the smallest box 

containing the two boxes 
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The DIoU-NMS was realized as follows: According to the 

demand of our project, the threshold was set to 0.5. Firstly, the 

boxes were ranked by confidence. Then, the box with the 

highest score was selected, and the DIoU between the box and 

every other box was computed. If the DIoU was greater than 

the threshold, the contrastive box was set to 0 and removed; 

otherwise, the contrastive box was retained. After that, the box 

with the second highest score was selected, and the DIoU 

between the box and every other remaining box was computed. 

If the DIoU was greater than the threshold, the contrastive box 

was set to 0 and removed; otherwise, the contrastive box was 

retained. The above steps were executed repeated. 

 

 

4. EXPERIMENTS AND RESULTS ANALYSIS 

 

4.1 Training and testing flow 

 

To obtain a network model satisfying our project demand, 

the following steps were gone through: dataset generation, 

model training, model prediction, and model testing (Figure 8). 

 

 
 

Figure 8. Training and testing flow of our model 

 

4.2 Experimental platform 

 

Our experiments were conducted on the following platform: 

Intel i5-9400F processor, Nvidia GeForce RTX 1650 graphics 

card, Windows 10, 8GB memory, PyTorch application 

framework, and image resolution of 640*640. 

 

4.3 Evaluation metrics 

 

The test performance was evaluated by mAP, precision, and 

recall. The closer the mAP is to 1, the better the overall 

performance of the network model. Since our research focuses 

on single-class detection, mAP equals average precision (AP), 

i.e., the area under the precision-recall (PR) curve: 

 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5) 

 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

 

mAP = ∫ 𝑃𝑟(𝑑𝑟)
1

0

 (7) 

4.4 Experimental results 

 

Figure 9 shows the training loss curve on the validation set. 

It can be observed that the loss converged quickly at the 

beginning of network training, the descent slowed down after 

100 iterations, and stabilized at the 300th iteration. 

Figure 10 shows the mAP on the training set. It can be 

observed that the curve approximated the peak after 100 

iterations, and tended to be stable after 300 iterations. The 

process is relatively smooth, and the training is very stable, 

without overfitting. The results on the validation set indicates 

that the improved model is stable and reliable. 

 

 
 

Figure 9. Loss curve of the improved model 

 
 

Figure 10. mAP curve of the improved model 

 

 
 

Figure 11. P-R curves of original and improved YOLO v5s 
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Figure 12. P-R curves at different resolutions 

 

 
 

Figure 13. P-R curves at different illumination 

. 

 
 

Figure 14. Recognition and detection results (a)Stem/leave 

occlusions; (b)Overlapping fruits; (c)Marginal areas 

 

As shown in Figure 11, the improved YOLO v5 achieved a 

mAP of 97.3%, 1.4% higher than that of the original YOLO 

v5. Hence, our model improves the accuracy of tomato 

recognition, and supports the precise detection of tomatoes 

during picking. 

The tomato recognition and detection model should be 

robust in the face of images of different resolutions. Our model 

was trained by images of three different resolutions 416*416, 

448*448, and 640*640. Figure 12 presents the P-R curves at 

different resolutions, and Table 1 lists the performance data at 

different resolutions. The mAPs of the models trained at the 

three different resolutions were all above 96%. The higher the 

resolution, the larger the mAP. The inference time was 

positively correlated with the resolution. None of the three 

models exceeded 60ms. Thus, the inference time satisfies the 

demand of tomato picking. Overall, the improved model is 

relatively stable, with a strong generalization ability. 

Considering the different illumination in greenhouses, the 

improved model was adopted to compute the data on three 

periods in a week. The P-R curves are displayed in Figure 13. 

Table 2 lists the result index of different illumination of the 

model. 

The highest mAP (98%) was achieved in the afternoon, 

when the illumination was 4,650lux-8,862lux. The mAP 

(93%) was the lowest at noon, when the illumination was 

11,330lux-35,940lux. The experimental results show that, 

with the growth of illumination, the precision fell slightly. The 

slight variation of precision is normal, as the collected images 

are inevitably different in angle and background. The overall 

precision (>90%) is enough to detect all the tomatoes, when 

the picking range is normal. Hence, the improved model is 

stable under different illumination. 

Figure 14 shows the recognition and detection results. As 

shown in Figure 14(a), the tomatoes could be recognized 

correctly, even if over 70% were occluded by stems and 

leaves. As shown in Figure 14(b), the recognition effect was 

good, when the fruits seriously overlapped each other. As 

shown in Figure 14(c), the fruits in marginal areas were well 

detected. These fruits appear in the intersection between 

views, which is inevitable during tomato picking. The above 

results show that the improved model can work effectively on 

fruits occluded by stems/leaves, overlapped by other fruits, 

and in marginal areas. 

Tomato picking raises a high requirement on the precision 

of identifying the center of tomatoes. Formulas (8)-(10) derive 

the positioning error by computing the distance from the 

predicted center to the actual center of tomatoes. Through the 

calculation of 200 tomatoes, the mean squared error (MSE) 

was obtained as 0.06. The sample data were all normalized 

data ∈(0, 1). That is, the positioning error was 0.06mm, when 

the detection precision was 1mm. The positioning precision 

fully meets the requirements of picking robots.  

 

𝑑𝑖 = √(𝑋𝑖
𝑃 − 𝑋𝑖

𝐺)2 + (𝑌𝑖
𝑃 − 𝑌𝑖

𝐺)2
2

 (8) 

 

𝑑̅ =
1

𝑁
∑ 𝑑𝑖

𝑁

𝑖=1

 (9) 

 

𝜎 =
1

𝑁
∑(𝑑𝑖 − 𝑑̅)

2
𝑁

𝑖=1

 (10) 

 

To better evaluate the tomato recognition performance, the 

improved model was compared further with other detection 

models (Table 3). 
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Table 1. Performance data at different resolutions 

 
Models mAP (%) Inference time per image (ms) 

Improve-yolov5-416 96.6 53ms 

Improve-yolov5-448 97.0 55ms 

Improve-yolov5-640 97.3 57ms 

 

Table 2. The result index of different illumination 

 
Period Peak illumination (lux) Lowest illumination (lux) P (%) R (%) F1 (%) mAP (%) 

11: 00-12: 00 23250 10000 86.5 90.2 88 94.6 

13: 00-14: 00 35940 11330 83.7 87.5 86 92.7 

15: 00-16: 00 8862 4650 92.6 94.1 93 98.1 

 

Table 3. Performance indices of different models 

 
Model P (%) R (%) mAP50 (%) F1(%) Inference time per image (ms) Model size 

Faster-RCNN 82.9 58.4 66.2 69 426 98M 

YOLO v3 93.1 67.3 87.2 78 189 78M 

YOLO v5 94.5 85.6 95.9 90 38 14M 

Improve-YOLO v5 93.9 90.5 97.3 92 57 29M 

As shown in Table 3, our improved YOLO v5 model 

achieved the highest mAP, which was 31.1%, 10.1%, and 

1.4% higher than that of Faster-RCNN, YOLO v3, and YOLO 

v5, respectively. It took 57ms for our improved model to infer 

on each image, which is 19ms longer than YOLO v5, the most 

time efficient model. In terms of size, the improved YOLO v5 

is 29MB, which is 15M larger than YOLO v5, the smallest 

model, and 69MB smaller than Faster-RCNN, the largest 

model. The time cost and size of our model can satisfy the 

needs of tomato picking robots. In general, our improved 

YOLO v5 is the best algorithm for tomato picking robots. 

 

 

5. CONCLUSIONS 

 

This paper introduces deep learning to improve YOLO v5. 

Specifically, data enhancement was added to the original 

network, the SPP was improved, and NMS was optimized. 

These improvements enhance the ability to extract features at 

multiple resolutions, to fuse multiscale features, and to detect 

objects precisely. The improved model achieved a mAP of 

97.3%, a precision of 93.9%, a recall of 90.5%, and an F1-

score of 92%. Experimental results show that our model can 

excellently identify and detect tomatoes under different 

illumination, branch/leave occlusions, and fruit overlapping in 

the complex environment of greenhouses. The detection 

results of our model fully satisfy the operational requirements 

of tomato picking robots. The future work will probe into the 

recognition and detection of tomatoes at night, aiming to 

realize 24/7 operations of tomato picking robots. 
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