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 Visual saliency detection aims to extract salient objects from the original image, making it 

less complicated to process the image. This paper combines an edge box algorithm with 

Bayesian theory to detect salient objects. The proposed saliency detection algorithm 

transforms the process of traditional detection method, and prioritizes the positioning of 

significant objects. Firstly, the Harris corners of the original image were calculated, and 

clustered by the improved clustering algorithm, yielding the number of salient objects in the 

image. Then, all possible positions of salient objects in the image were framed by the edge 

box algorithm, and the boxes were sorted in descending order of the score. According to the 

number N of clusters of the image corners, the N top-ranking boxes were selected to 

determine the salient regions. In this way, the position and number of salient objects were 

clarified. Based on the selected salient regions, the final saliency map was calculated by 

improved geodesic distance and Bayesian model. Experimental results show that our 

approach performed better than 11 existing algorithms in both simple and relatively complex 

scenes. In terms of objective performance, the accuracy and recall of our algorithm on 

MSRA10k, ECSSD, DUT-OMRON and SED2 datasets were higher than that of the other 

algorithms.  
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1. INTRODUCTION 

 

Visual saliency detection relies on the principle of human 

vision to quickly locate the areas with a high contrast against 

the surrounding areas. In the human visual system, the special 

ability of dynamic selection is known as the visual attention 

mechanism. Through information filtering, this mechanism 

can filter out the redundant information from the original 

image, while preserving the regions of interest (ROIs). The 

filtering enhances the efficiency of image processing, and 

avoids the waste of computing resources. As a result, more and 

more researchers start to explore the technology of visual 

saliency detection, trying to introduce the visual attention 

mechanism to computers. 

The technology of visual saliency detection has long been a 

key research direction of computer vision in the field of image 

processing. Among the existing models of visual saliency 

detection, the bottom-up (data-driven) models aim to extract 

the underlying features of the original image as salient features 

(such as color, edge, and corner), and highlight the extracted 

features by a specific algorithm, while the top-down (task 

driven) models intend to extract image features through 

computer learning of specific tasks. 

The mainstream visual saliency detection methods face two 

common problems: the unclear edges of the salient objects, 

and the difficulty in highlighting the objects uniformly. To 

overcome the problems, this paper presents a saliency 

detection method based on edge boxes and Bayesian theory. 

Firstly, unimportant details of the original images were 

smoothed through L0 gradient minimization, while preserving 

the edges of the foreground. The computing load was reduced 

by super-pixel segmentation. In addition, the Harris algorithm 

of color enhancement was called to identify the corner points 

in the image, and remove the edge corner points of non-salient 

objects. The number of clusters for the corners was calculated 

by the data clustering algorithm of density-based spatial 

clustering of applications with noise (DBSCAN), laying the 

basis for single object or multi-object saliency detection in the 

image. Furthermore, the edge box algorithm was employed to 

position each object.  

The number of boxes depends on the number of clusters 

obtained in the previous step. If the number of clusters is 1, 

there is one salient object in the image. Then, the box with the 

highest voting score was selected for visual saliency detection. 

If the number n of clusters is greater than 1, there are N salient 

objects in the image, corresponding to N boxes. The scores of 

the boxes were sorted in descending order, and the N top-

ranking boxes were selected. The images of these N boxes 

were spliced and normalized. Finally, the saliencies outside 

the box were set to 0, and the ultrametric contour map (UCM) 

value was taken as the edge weight of the super-pixel. Drawing 

on the concept of geodesic distance, the distance between the 

super-pixel inside the box and the background seed super-

pixel at the box edge was calculated as the prior probability. 

The color distribution in and out of the box was taken as the 

observation likelihood probability. Then, the Bayesian 

formula was used to derive the posterior probability, i.e., the 

final saliency map. The flow of our algorithm is shown in 

Figure 1. 

The remaining part of this paper is organized as follows: 

Section 2 reviews different approaches of visual saliency 

detection; Section 3 details the image preprocessing technique; 
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Section 4 introduces salient corner detection and lustering; 

Section 5 improves the edge box algorithm; Section 6 applies 

Bayesian theory in saliency detection; Section 7 illustrates the 

implementation procedure of our approach; Section 8 displays 

and evaluates the experimental results; Section 9 summarizes 

the advantages of our algorithm, and describes the future 

research directions. 

 

Input

Image preprocessing

Computing saliency  based 

on geodesic distance 

Prior probability value
Observation likelihood 

probability

Bayesian model for 

posterior probability map

Final saliency map

Calculating the number of 

clusters by DBSCAN from the 

corner of the image

Normalizing and splicing 

the N edge boxes

Whether the number of 

clusters is equal to 1

Getting object proposal 

from edge box theory

True

False

 
 

Figure 1. Flow of our algorithm 

 

 

2. LITERATURE REVIEW 

 

The ultimate goal of machine vision is to make computer 

have the ability of human vision system, which is a very 

challenging task. Thanks to the visual attention mechanism, it 

is easy for human to recognize the salient objects in the 

original image, filter out the uninterested information from the 

noisy background, and retain the ROIs. The core purpose of an 

image saliency detection algorithm is to reduce the complexity 

of image processing.  

The past two decades have witnessed great progress in 

visual saliency detection. Many algorithms are developed for 

various fields, such as cognitive psychology, neuroscience and 

computer vision. In 1998, Itti et al. [1] put forward the classic 

bottom-up saliency detection model. Itti’s model tries to detect 

salient objects by the principle of center-surrounding contrast. 

The contast is mainly computed around the center, and the 

saliency is defined based on the low-level features on different 

scales of the image. This model lays a solid foundation for 

subsequent visual saliency detection algorithms. In 2007, Hou 

et al. [2] generated a saliency model by the spectral residual 

(SR) method. Their model divides image information into a 

frequent change part and a prior knowledge part. The human 

visual system pays more attention to the changing scarce 

information in a scene, and ignores the repeated information.  

In 2010, Goferman et al. [3] developed a context-aware 

(CA) saliency detection algorithm, based on local and global 

color contrasts. The basic idea of the algorithm is as follows: 

a highly salient region must be unique. The spatial positions of 

pixels as considered in the algorithm. Zhu et al. [4] presented 

a robust background measurement method to measure spatial 

layout and edge. The method assesses background 

connectivity to separate the salient objects. Firstly, the 

connectivity is proposed to calculate the regional contrast, and 

used to compute the background probability, before derving 

the background contrast weight. This background 

measurement method describes the regional background and 

salient objects well.  

Background priori plays a crucial role in salient object 

detection. Wei et al. [5] designed two background priors, 

namely, edge priori and continuity priori, and computes the 

shortest path length from the edge priori to the virtual 

background node, drawing on the concept of geodesic distance. 

The shorest path length represents the saliency of image super-

pixel. Their attempt alleviates the dependence on the 

background priori, and prevents the one-dimensional (1D) 

saliency of image edge solution. Considering global contrast, 

Cheng et al. created an algorithm based on histogram contrast 

(HC) and region contrast (RC) [6].  

The salient objects can be detected excellently, when the 

signals are depicted by the sparse theory. Therefore, image 

saliency detection based on sparse representation has gain 

popularity. In 2017, Zeng et al. [7] proposed a novel saliency 

detection algorithm under unsupervised game theory. Firstly, 

saliency detection is regarded as a non-cooperative game 

problem, and the revenue function is constructed based on 

multiple clues and complementary features. Further, the 

complementary relationship between color and depth features 

is discussed, and an iterative random walk algorithm is 

proposed. Finally, the saliency map is generated in the Nash 

equilibrium of the salient game. 

In recent years, more attention has been attracted to image 

saliency detection based on deep learning. Convolution neural 

networks (CNNs) are good at processing images with complex 

background and significant contrast. In 2017, Zhang et al. [8] 

presented an accurate saliency detection algorithm with 

convolution features and uncertain learning depth. In 2018, 

Liu and Han [9] introduced a recursive convolutional network 

of deep space context to saliency detection. This paper sums 

up the strengths and weaknesses of the literature, and presents 

a saliency detection approach based on the edge box and 

Bayesian theory. 

 

 

3. IMAGE PREPROCESSING 

 

3.1 L0 gradient minimization 

 

Proposed by Xu et al. [10], L0 gradient minimization model 

can remove the background texture, and highlight the 

important edges of the original image. The main feature of the 

model is the adoption of a new enhancement strategy for edge 

features. In mathematics, the model essentially optimizes the 

L0 norm of information sparsity. Traditionally, brushing off 

image details inevitably weakens the salient edges of the 

image. L0 norm smoothing, as a global smoothing filter based 
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on sparse strategy, magnifies the gradient between the object 

and the background, highlighting the important edges. In the 

meantime, the texture and other unimportant details in the 

background are filtered out. The L0 gradient minimization 

basically eliminates the local features of the image, takes the 

global edge feature as the key object, and then enhances the 

target edge. 

The L0 norm serves as a regularization term that directly 

measures the sparsity of image gradients. It is capable of 

protecting the image edges. The gradient of pixels at any point 

in the image can be expressed as: 

 

𝛻𝑈𝑃 = (𝜕𝑥𝑈𝑃 , 𝜕𝑦𝑈𝑃)
𝑇
  (1) 

 

where, f is the input image; U is the smoothed image; 𝜕𝑥𝑈𝑃 

and 𝜕𝑦𝑈𝑃 are the partial derivatives of the processed image in 

the X and Y directions at P, respectively. The L0 norm of image 

gradient can be measured by: 

 

𝐸(𝑈) = # {𝑝 ||𝜕𝑥𝑈𝑃| + |𝜕𝑦𝑈𝑃|| ≠ 0}  (2) 

 

where, #{} is to the number of pixels in the image with non-

zero gradient; E(U) is a regularization term combined with a 

general constraint, and also known as a fidelity term. This term 

controls the structural similarity between the smoothed image 

u and the input image. Then, the energy of L0 gradient 

minimization model can be expressed as: 

 

𝑚𝑖𝑛
𝑈

{∑ (𝑈𝑃 − 𝑓𝑃)
2 + 𝜆 ∙ 𝐸(𝑈)𝑃 }  (3) 

 

where, λ controls the weight of the smoothing term. 

Because L0 norm is not differentiable, the global 

optimization problem is non-deterministic polynomial-time 

hard (NP-hard). Thus, variable splitting is introduced to relax 

the problem into two quadratic programming problems, each 

of which has its closed form (for the quadratic function can be 

derived to get its minimum). To solve the problem, alternative 

minimization is adopted, and two auxiliary variables h and v 

are introduced. Then, the final objective function can be 

expressed as: 

 

min
𝑈,h,v

{∑ (𝑈𝑃 − 𝑓𝑃)
2 + 𝜆 ∙ E(h, v) + 𝛽 ((𝜕𝑥𝑈𝑃 −𝑃

ℎ𝑃)
2 + (𝜕𝑦𝑈𝑃 − 𝑣𝑃)

2
)
2

}  
(4) 

 

The complexity and noisy background of some input images 

hinder the subsequent detection of salient corners. Through L0 

norm minimization, the low-frequency information can be 

filtered out, and the significant edges can be enhanced, without 

sacrificing image quality. As a result, the main edge 

information, i.e., the natural edges, of the original image is 

well preserved, while the background edges are largely 

weakened.  

In formula (4), adaptive variables h and v are introduced to 

the energy function of gradient minimization, trying to solve 

the L0 norm. The two variables are obtained from the image 

gradient with L0 norm constraint. However, the image 

gradient may be wrong, owing to the noise or impurity of the 

image. In this case, h and v would deviate from the correct 

values. To solve the problem, this paper proposes an edge 

preserving filter to preprocess the image gradient. L1 norm is 

more robust than L2 for outliers. After L1 fidelity term is 

introduced into the model and adaptive variable w is 

incorporated to represent the difference between U and f, we 

have: 

 

min
𝑈,h,v,W

{∑ 𝛼(𝑈𝑃 − 𝑓𝑃 −𝑊𝑃)
2 + |𝑊𝑃| + 𝜆 ∙𝑃

E(h, v) + 𝛽 ((𝜕𝑥𝑈𝑃 − ℎ𝑃)
2 + (𝜕𝑦𝑈𝑃 − 𝑣𝑃)

2
)
2

}  
(5) 

 

The adaptive variables are introduced to calculate ∇M and 

∇N through alternative minimization. Formula (5) can be 

decomposed into three problems. Then, the alternative 

solutions W, (h, V) and u are searched for. The flow of the L0 

gradient minimization model is shown in Figure 2. 
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Figure 2. Flow of the L0 gradient minimization model 

 

3.2 Simple linear iterative clustering (SLIC) 

 

 

 
 

Figure 3. Image processed by L0 smoothing vs. image 

processed by SLIC segmentation  

 

To detect the salient objects in the original image, SLIC [11] 

is adopted to segment the image into N super-pixels. This 

approach can divide pixels with similar features into neat and 

compact regions. It requires fewer parameters, runs faster, and 
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preserves the edges better than the other super-pixel 

segmentation algorithms. Therefore, most super-pixel-based 

saliency detection algorithms use SLIC for image 

segmentation. After L0 smoothing, super-pixel segmentation 

helps to retain image edges, and ensue the uniformity of super-

pixel size and distribution (Figure 3). 

 

 

4. SALIENT CORNER DETECTION AND NUMBER OF 

CLUSTERS 

 

Traditional saliency detectors mostly consider image 

brightness, and completely ignore image colors. Hence, they 

are highly sensitive to the background noise of natural images. 

Weijer et al. [12] integrated the theory of color enhancement 

saliency into the Harris algorithm, yielding the Color-Harris 

model. The model can obtain salient corners with richer 

information than the brightness-based Harris corner detector. 

This section employs the color-enhanced Harris algorithm 

to detect the corners of the salient regions in the original 

natural image, and eliminate the interference from near-edge 

salient corners. Since the image contains multiple salient 

objects, the salient corners are clustered on the salient regions, 

making it possible to preliminarily locate the salient regions. 

As shown in Figure 4, the salient corners generally cluster on 

the edges of the salient region. The number of salient objects 

can be calculated through automatic clustering. Note that the 

final saliency map is not affected by the scattered salient 

corners originating from background noise. 

 

 
 

Figure 4. Color enhanced Harris corners after image 

smoothing 

 

Because the image has multiple salient objects, the 

DBSCAN clustering algorithm [13] is introduced to cluster the 

salient corners. This density-based clustering algorithm 

assumes that the clustering effect depends on the compactness 

of sample distribution, for the samples in the same class are 

closely connected with each other. The clustering results can 

be obtained by dividing all closely connected samples into 

different classes.  

The number of clusters need to be considered before 

detecting a single or multiple salient objects in the image. 

Since most background texture is filtered out by L0 gradient 

minimization, the corners from unsmoothed textures and tiny 

edges appear scattered in the image. During clustering, these 

corners must be differentiated from the corners of the salient 

objects. Therefore, the number of clusters is defined as the 

number of salient objects in the image. 

 

5. IMPROVED EDGE BOX ALGORITHM 

 

The candidate region-based object detection algorithms 

assume that all objects of interest share some visual features, 

which make objects stand out from the background. Such an 

algorithm usually extracts some candidate regions from the 

image, i.e., the regions that may contain object(s). The 

candidate regions are further analyzed to detect the objects. 

The edge box algorithm is an excellent object detector based 

on candidate regions. This paper relies on the edge box 

algorithm [14] to position the objects in the original image. 

The edge information of an object covers both color and 

gradient, and helps to measure the relationship between 

adjacent pixels accurately. With the aid of the edge 

information, it is possible to extract complete and significant 

objects, and easier to derive the saliency map from image edge 

intensity. 

The edge box algorithm computes the score of each sliding 

window, according to the edge weight of the window. Firstly, 

the image edges are extracted by a structured edge detector, 

which is faster and more effective than traditional edge 

detectors. To count the number of edges completely contained 

in the sliding window, the algorithm aggregates the edges, and 

computes the similarity between two edges. Next, the sliding 

window is slid across the image, and a weight is assigned to 

each edge within the window. The weight reflects how much 

an edge is contained in the window. Finally, the weights of all 

edges in the window are added up, and normalized into the 

score of the sliding window. The score indicates the possibility 

that the sliding window contains objects. 

 

5.1 Edge acquisition 

 

The edge box algorithm relies on a structured edge detector 

[15] to extract the edges from the original image effectively 

and efficiently. Then, the peak edge value is obtained through 

non-maximum suppression. Any pixel whose edge modulus 

MP is greater than 0.1 is regarded as an edge point. However, 

the edge points may be misidentified or missed, if the 

threshold is fixed in the edge search process. To overcome the 

defect, the Otsu’s method can be used to adaptively calculate 

the segmentation threshold of edge modulus. Here, the edge 

moduli of image pixels are converted into gray values, forming 

a gray image. Then, Otsu’s image segmentation algorithm is 

called to optimize the segmentation threshold adaptively. 

Every pixel with an edge modulus larger than the adaptive 

threshold is defined as an edge point. The adaptive processing 

improves the detection accuracy of edges. 

 

5.2 Edge grouping and similarity computing 

 

Straight edges have a higher affinity than curved edges. 

Hence, the edges close to a straight line are gathered into an 

edge group: If the sum of the direction angle differences 

between every two points among eight connected edge points 

is greater than 𝜋/2, these edge points are allocated to the same 

edge group. After obtaining multiple edge groups, the 

similarity between two edge groups can be calculated by: 

 

a(𝑠𝑖 , 𝑠𝑗) = |cos(𝜃𝑖 − 𝜃𝑖𝑗) cos(𝜃𝑗 − 𝜃𝑖𝑗)|
𝛾
  (6) 

 

If the mean angle between two edge groups is close to the 

direction of groups, there is a high affinity between the two 

groups. 
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5.3 Weights between edge groups 

 

Each edge group is assigned a weight. The edge groups with 

weights of 1 are part of the inner edges of the box. The edge 

groups with weights of 0 are beyond or part of the outside 

edges of the box. The mathematical formula is as follows: 

 

w𝑏(𝑠𝑖) = 1 − max
𝑇

∏ 𝑎(𝑡𝑗,𝑡𝑗+1)
|𝑇|−1
𝑗   (7) 

 

where, T is the series of edge group from the edge of box to 𝑠𝑖. 
Formula (7) intends to find the most similar path to derive the 

edges. 

 

5.4 Score of sliding window  

 

The edge box algorithm searches for candidate regions, 

using sliding windows with different positions, sizes, and 

aspect ratios. In the sliding search strategy, the total number of 

edges of the sliding window is counted according to the edge 

weights. After obtaining the score of each sliding window, the 

set of candidate regions can be obtained by ranking the regions 

in descending order of the score of sliding window: 

 

ℎ𝑏 =
∑ w𝑏(s𝑖)m𝑖𝑖

2(b𝑤+bℎ)
𝑘   (8) 

 

𝑚𝑖 = ∑ 𝑚𝑝𝑝∈𝑠𝑖
  (9) 

 

The flow of the edge box algorithm is summarized in Figure 

5. 
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Figure 5. Flow of edge box algorithm 

 

5.5 Rough positioning of salient regions 

 

To locate the salient regions in the image, a smooth window 

search is performed to traverse the candidate edge boxes at 

different positions, scales, and aspect ratios. The traversal 

would produce a voting score.  

Note that the translation step α, scale, and aspect ratio are 

fixed at 0.65. If the α value is smaller than 0.5, most of the 

bounding boxes contain non-salient objects. If the α value is 

greater than 0.8, many bounding boxes will be generated near 

the salient objects in the image, making the visualization 

confusing. After testing, the α value is set between 0.6 and 0.7, 

which ensures the positioning accuracy. Therefore, the α value 

is set to 0.65. 

After smooth window search, the greedy iterative search 

strategy is adopted, aiming to find the largest h_b for different 

positions, scales, and aspect ratios. The search step is halved 

after each iteration. Once the translation step falls below 2 

pixels, the search would be terminated.  

The voting score represents the possibility of a box to 

contain object(s). After sorting the boxes in descending order 

of the voting score, the number of salient objects is obtained 

according to the calculated number of clusters. If the number 

of clusters is 1, there is a salient object in the image, and the 

box with the highest voting score is selected for saliency 

detection. If the number of clusters greater than 1, there are N 

salient objects in the image. In this case, the top-ranking N 

boxes, which contain the image information, are chosen, 

normalized, and spliced. 

In our improved edge box algorithm, the voting score of 

boxes containing some objects is much lower than the score of 

boxes containing salient objects. Thus, the boxes are sorted in 

descending order of the score, and the top-ranking N boxes are 

selected, with N equal to the number of clusters. In this way, 

the boxes containing the salient objects can be determined. 

Figure 6 illustrates the rough positioning of salient regions. 

 

 

 
 

Figure 6. Rough positioning of salient regions 

 

 

6. SALIENCY CALCULATION 

 

The edge box algorithm resorts to structured forests [16] to 

find object edges. Using the BSDS 500 dataset, the image 

blocks and their real edge labels are taken as the training set 

for the random forest. Next, the principal component analysis 

(PCA) is performed to optimize the splitting function for each 

node in the forest, and adjust the number of training samples. 

In addition, the classification results of multiple trees are 

combined by an ensemble strategy. The corresponding edge 

labels are obtained by classifying the target image blocks with 

the trained random forest. Through second-order mapping, the 

similarity of label y is mapped to discrete label C. Finally, the 

edge probability map (BP) is plotted for each pixel. Based on 

the edge probability, super-pixels are generated, and the edge 

weight is recalculated to get the value of UCM. 

Drawing on the super-pixel map generated previously, it is 

possible to construct a weighted undirected map 𝐺 = {𝑣, 𝑒}, 
where each vertex 𝑣 ∈ 𝑉 represents a super-pixel block R ∈ I, 
and each edge connects two adjacent super-pixel blocks. The 

UCM value between 𝑅𝑢𝑖and 𝑅𝑢𝑗 is assigned as the weight of 

edge 𝑒(𝑖, 𝑗) ∈ 𝐸. 

The spatial distance between pixels is measured by 
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Euclidean distance, which reflects the consistency of the local 

region. But Euclidean distance may lead to misclassification 

based on color features. To avoid the misclassification, 

geodesic distance is adopted instead of Euclidean distance. 

The geodesic distance between two vertices vi  and vj 

represents the cumulative weight of the shortest path on the 

map: 
 

𝑑(𝑣𝑖 , 𝑣𝑗) = 𝑚𝑖𝑛𝐵1=𝑣𝑖,𝐵2,…,𝐵𝑛=𝑣𝑗 ∑ 𝑒(𝐵𝑘 , 𝐵𝑘+1)
𝑛−1
𝑘=1   (10) 

 

The saliency can be derived from the edge information: 

 

𝑆𝐸(𝑖, 𝑗) = 𝑒𝑥𝑝⁡(−𝑑2(𝑣𝑖 , 𝑣𝑗)/𝜎1)  (11) 

 

The Euclidean distance can be calculated by: 

 

𝑑𝑋𝑌(i, j) = √(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
  (12) 

 

Similarly, the standard Gaussian kernel function is used to 

map D﹣XY to the similarity space, producing the saliency of 

the spatial distance between pixels: 

 

S𝑋𝑌(i, j) = exp⁡(−𝑑𝑋𝑌
2(𝑣𝑖 , 𝑣𝑗)/σ2) (13) 

 

The super-pixel on the box edges is regarded as a virtual 

background node. Then, a weight factor is introduced to adjust 

the ratio of edge information to space distance. The saliency 

of super-pixel P can be defined as: 

 

𝑆(𝑃) = 𝜆1S𝐸(𝑃, 𝐵) + 𝜆2𝑆𝑋𝑌(𝑃, 𝐵) (14) 

 

where, p is the super-pixel in the box; B is the virtual 

background node. 

In general, the Bayesian model can greatly suppress the 

background information, without significantly inhibiting the 

object information. This paper treats the saliency 𝑆(𝑃)⁡ as a 

prior probability, and obtains the value by integrating edge 

information and spatial position. This computing method 

ensures the uniformity of the foreground, and reduces the 

smear effect. 

 

 

7. BAYESIAN-BASED SALIENCY DETECTION 

 

The Bayesian model is a simple mathematical tool to deduce 

the posterior probability from the known prior probability and 

independent probability distribution. The independent 

probability distribution is usually identified through maximum 

likelihood estimation. This paper mainly relies on the 

Bayesian model proposed by Xie [17] for saliency detection, 

and regards saliency detection as a Bayesian reasoning 

problem. The posterior probability of each pixel in the image 

can be estimated by: 

𝑝(𝑠𝑎𝑙|𝑧) =
𝑝(𝑠𝑎𝑙)𝑝(𝑧|𝑠𝑎𝑙)

𝑝(𝑠𝑎𝑙)𝑝(𝑧|𝑠𝑎𝑙)+(1−𝑝(𝑠𝑎𝑙))𝑝(𝑧|𝑏𝑘)
  (15) 

 

where, 𝑝(𝑠𝑎𝑙|𝑧) is the predictor of the probability for a pixel 

to be salient; 𝑝(𝑠𝑎𝑙) is the prior probability for the pixel to be 

salient; 1 − 𝑝(𝑠𝑎𝑙)  is the prior probability for the pixel to 

belong to the background; 𝑝(𝑧|𝑠𝑎𝑙)  and 𝑝(𝑧|𝑏𝑘)  are the 

observed likelihoods. The goal of this research is to estimate 

the probability for each pixel to be salient, and then derive the 

saliency map. 

7.1 Calculation of prior probability 
 

Under the current Bayesian optimization framework, some 

super-pixels in the foreground with similar color and 

background may be suppressed. Here, the prior probability is 

improved to generate the saliency map. Even if the color of 

these super-pixels is similar to that of the background, the 

super-pixels in the box are assigned a large weight, while the 

region outside the box is set to zero. If more than 80% of the 

pixels in a super-pixel are within the box, the super-pixel must 

fall in the box: 
 

𝑝(𝑠𝑎𝑙) = {
𝑝𝑤 ∙ 𝑆(𝑃)⁡⁡⁡⁡𝐵𝑖𝜖𝑏𝑜𝑥
0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐵𝑖 ∉ 𝑏𝑜𝑥

  (16) 

 

where, S(P) is the saliency of the super-pixel in the box;⁡𝑝𝑤 =
𝑆(𝑃)

∑ 𝑆(𝑃)𝑝𝜖𝑏𝑜𝑥
 is the mean saliency in the box. 

 

7.2 Calculation of observation likelihood probability 

 

The box divides the image into two parts. The region O in 

the box is more likely to be salient, and the region B outside 

the box is more likely to be the background. Then, the color 

histograms of O and B regions are calculated respectively. The 

observation likelihood probability of each pixel refers to the 

similarity between the pixel’s color histogram and the regional 

color histogram. The feature of each pixel in CIELab color can 

be expressed as 𝐺(𝑧) = {𝐿(𝑧), 𝑎(𝑧), 𝑏(𝑧)}: 
 

𝑝(𝑧|𝑠𝑎𝑙) = ∏
𝑁𝑂(𝑔(𝑧))

𝑁𝑆𝑂
𝑔∈{𝑙,𝑎,𝑏}   (17) 

 

𝑝(𝑧|𝑏𝑘) = ∏
𝑁𝐵(𝑔(𝑧))

𝑁𝑆𝐵
𝑔∈{𝑙,𝑎,𝑏}   (18) 

 

where, 𝑁𝑆𝑂,𝑁𝑆𝐵 are the number of pixels inside and outside the 

box, respectively; ⁡𝑁𝐼(𝑔(𝑧))⁡  is the observation likelihood 

probability; 𝑁𝑂(𝑔(𝑧)) is the corresponding value of pixel Z of 

region O in the color histogram; 𝑁𝐵(𝑔(𝑧))  is the 

corresponding value of pixel Z of region B in the color 

histogram. 
 

7.3 Calculation of the posterior probability 
 

𝑝(𝑠𝑎𝑙|𝑧) =
𝑝(𝑠𝑎𝑙)𝑝(𝑧|𝑠𝑎𝑙)

𝑝(𝑠𝑎𝑙)𝑝(𝑧|𝑠𝑎𝑙)+(1−𝑝(𝑠𝑎𝑙))𝑝(𝑧|𝑏𝑘)
  (19) 

 

where, the prior probability p(sal) is the probability for a 

super-pixel to belong to the salient region; 1 − 𝑝(𝑠𝑎𝑙) is the 

probability for the super-pixel to belong to the background. 
 

 

8. EXPERIMENTS AND RESULTS ANALYSIS 

 

The experiments use four datasets: MSRA10k [18], ECSSD 

[19], DUT-OMROM [20], and SED2 [21]. MSRA10k 

contains 10,000 random ground truth images of pixel level 

dimensions from the MSRA dataset. Compared with those of 

MSRA10k images, the objects and background of ECSSD 

images are not easily distinguishable. In DUT-OMROM, the 

images have relatively complex background regions, making 

it difficult to detect salient objects. SED2 covers 100 test 

images, each of which contains two objects. Despite the small 

scale, the objects in SED2 images are not easy to detect. The 

four datasets were adopted to fully demonstrate model 
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performance in different scenarios and environments. All 

datasets contain manually labeled truth maps. Our model (12) 

was compared with 11 mainstream methods in the 

environment of Windows 7, Intel Core TM i7-37705 3.1 GHz 

CPU and 8GB RAM: (1) Itti’s model [1]; (2) spectral residual 

(SR) approach [22]; (3) Context-aware (CA) saliency detector 

[3]; (4) saliency filer (SF) [23]; (5) geodesic saliency (GS) 

detector [5]; (6) hierarchical saliency (HS) detector [24]; (7) 

graph-based manifold ranking (GMR) saliency detector [18]; 

(8) robust background detection (RBD) saliency optimizer 

[25]; (9) extended minimum barrier distance (MB+) transform 

[26]; (10) minimum spanning tree (MST) [27]; (11) saliency 

detector based on reversion correction and regularized random 

walk ranking (RCRR) [28]. 
 

8.1 Evaluation criteria 

 

The detection accuracy was measured by precision, which 

refers to the proportion of the correctly detected objects in the 

entire object set of the saliency map: 

 

Precision =
∑𝑆𝑧∙𝐵𝑧

∑𝑆𝑧
  (20) 

 

The detection comprehensiveness was measured by recall, 

which refers to the proportion of the correctly detected objects 

in the manually detected real objects: 
 

Recall =
∑𝑆𝑧∙𝐵𝑧

∑𝐵𝑧
  (21) 

 

The precision and recall were measured at 256 different 

thresholds T = (0, 255) to reveal the robustness of each 

detection model. Then, a precision-recall (P-R) curve was 

drawn with recall as the abscissa and precision as the ordinate. 

The curve measures the consistency between the ground truth 

and the estimated saliency map. If the precision is high, then 

most of the detected salient regions are real salient images; if 

the recall is high, then the detected salient regions are complete.  

The F-measure was adopted to reflect the overall effect of 

precision and recall. The greater the F-measure, the better the 

detection effect, and the closer the estimated saliency map is 

to the ground truth: 

 

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
(1+𝛽2)×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝛽2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
  (22) 

 

where,⁡𝛽2 is usually set to 0.3. 

The mean absolute error (MAE) was adopted to measure the 

quality of the obtained saliency map. It refers to the difference 

between the ground truth and the estimated saliency map: 

 

MAE =
1

𝑀×𝑁
∑ ∑ |𝑆(𝑥, 𝑦) − 𝐺𝑇(𝑥, 𝑦)|𝑁

𝑦=1
𝑀
x=1   (23) 

 

A small MEA means the estimated saliency map is close to 

the ground truth, and the detection model achieves a good 

effect. 

 

8.2 Objective evaluation 

 

 
(a)                (b)                   (c)                      (d)                   (e)                (f)                 (g) 

 
(h)                   (i)                  (g)                  (k)                  (l)                 (m)                   (n) 

 
(a)                (b)                   (c)                      (d)                   (e)                (f)                 (g) 

 
(h)                   (i)                  (g)                  (k)                  (l)                 (m)                   (n) 

 

Figure 7. Detection results on MSRA10k (a) Original image (b) Itti’s model (c) SR (d) CA (e) SF (f) GS (g) HS (h) GMR (i) 

RBD (g) MB+ (k) MST (l) RCRR (m) Ground truth (n) Our model 

 

 
(a)                (b)                   (c)                      (d)                   (e)                (f)                 (g) 
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(h)                   (i)                  (g)                  (k)                  (l)                 (m)                   (n) 

 
(a)                (b)                   (c)                      (d)                   (e)                (f)                 (g)  

 
(h)                   (i)                  (g)                  (k)                  (l)                 (m)                   (n) 

 

Figure 8. Detection results on ECSSD (a) Original image (b) Itti’s model (c) SR (d) CA (e) SF (f) GS (g) HS (h) GMR (i) RBD 

(g) MB+ (k) MST (l) RCRR (m) Ground truth (n) Our model 

 

 
(a)                (b)                   (c)                      (d)                   (e)                (f)                 (g) 

 
(h)                   (i)                  (g)                  (k)                  (l)                 (m)                   (n) 

 
(a)                (b)                   (c)                      (d)                   (e)                (f)                 (g) 

 
(h)                   (i)                  (g)                  (k)                  (l)                 (m)                   (n) 

 

Figure 9. Detection results on DUT-OMRON (a) Original image (b) Itti’s model (c) SR (d) CA (e) SF (f) GS (g) HS (h) GMR (i) 

RBD (g) MB+ (k) MST (l) RCRR (m) Ground truth (n) Our model 

 

Our model considers both edge feature and spatial feature, 

and derives image saliency by Bayesian principle. It can 

effectively suppress the background, and highlight the salient 

objects uniformly. Our model was compared with 11 

contrastive methods on each of the five experimental datasets. 

The results of each model on each dataset are displayed in 

Figures 7-10. The detection performance of all methods is 

presented in Figures 11-14. 

On MASR10K, the saliency map derived by our model was 

closer to the ground truth than that derived by another method, 

because of the strong color difference between objects and 

background, and the high color consistency between them; On 

ECSSD and DUT-OMRON, our model achieved the best 

effect on background suppression and salient object 

highlighting, for the complexity of the background, and the 

small color difference between objects and background; On 

SED2, our model outperformed the other methods by detecting 

multiple salient objects, and generating a high-quality saliency 

map. 

The superior performance of our model comes from the 

integration of edge boxes, edge information, and Bayesian 

theory into the optimization process of saliency detection. That 

is how our model can detect objects accurately, suppress the 

background information, and ensure the uniformity of salient 

regions. 
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(a)                (b)                   (c)                      (d)                   (e)                (f)                 (g) 

 
(h)                   (i)                  (g)                  (k)                  (l)                 (m)                   (n) 

 
(a)                (b)                   (c)                      (d)                   (e)                (f)                 (g) 

 
(h)                   (i)                  (g)                  (k)                  (l)                 (m)                   (n) 

 

Figure 10. Detection results on SED2 (a) Original image (b) Itti’s model (c) SR (d) CA (e) SF (f) GS (g) HS (h) GMR (i) RBD 

(g) MB+ (k) MST (l) RCRR (m) Ground truth (n) Our model 
 

      
(a)                                                                           (b) 

 

Figure 11. Detection performance on MSRA10k (a) P-R curve; (b) Precision, recall, and F-measure at different thresholds 
 

       
(a)                                                                           (b) 

 

Figure 12. Detection performance on ECSSD (a) P-R curve; (b) Precision, recall, and F-measure at different thresholds 
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(a)                                                                           (b) 

 

Figure 13. Detection performance on DUT-OMRON (a) P-R curve; (b) Precision, recall, and F-measure at different thresholds 

 

        
(a)                                                                           (b) 

 

Figure 14. Detection performance on SED2 (a) P-R curve; (b) Precision, recall, and F-measure at different thresholds 

 

Table 1. MAEs of different methods 

 

Dataset  Itti’s 

model 
SR CA SF GS 

GM

R 
RBD HS MB+ MST 

RCR

R 

Our 

model 

MSRA10k 
MA

E 
0.212 

0.23

1 

0.23

6 

0.17

4 

0.14

3 
0.113 

0.10

7 

0.14

8 
0.13 

0.12

1 
0.116 0.105 

ECSSD 
MA

E 
0.274 

0.26

5 

0.31

1 

0.23

1 

0.21

6 
0.184 

0.17

4 

0.22

9 

0.19

3 

0.17

2 
0.221 0.158 

DUT-

OMRON 

MA

E 
0.198 

0.18

1 

0.25

4 

0.18

3 
0.18 0.152 

0.14

4 

0.22

7 

0.19

2 

0.16

7 
0.172 0.132 

SED2 
MA

E 
0.245 

0.21

2 

0.22

2 

0.18

2 

0.12

4 
0.131 

0.12

8 

0.16

5 

0.11

7 

0.11

2 
0.149 0.109 

 

As shown in Figures 11-14, the P-R curve of our model was 

higher than that of any other method. That is, the detection 

results of our model were closer to the ground truth than those 

of the other methods. Taking ECSSD for example, the recall 

of our model was low in the range of [0.9, 1], due to the impact 

of threshold on detection accuracy. With the decrease of recall 

and growth of threshold, the detection precision of most 

methods was on the rise. Our model achieved the fastest rise 

of the precision. After the recall fell below 0.6, our model 

reached the peak precision. In addition, our model realized the 

greatest F-measure among all methods. Although some 

methods achieved comparable precision and recall, our model 

boasted the best overall detection performance on all four 

datasets. 

Table 1 shows the MAEs of the 12 methods on the four 

datasets. The best results are marked in red. It can be observed 

that our model achieved the lowest MAEs on all four datasets. 

The results show that our model outshined the other methods 

on every dataset. 

Our model was further contrasted with the cascaded partial 

decoder (CPD) [17], a deep learning tool, on ECSSD and 

SED2. The results in Table 2 show that the recall of CPD was 

higher than that of our model, while the F-measure and 

precision of CPD were lower than those of our model. Overall, 

the metrics of our model were relatively close to the saliency 

detection results of deep learning, indicating the effectiveness 

of our model in saliency detection. 
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In addition, the mean running time of our model was 

compared with that of SR, FT, RC, GS, and GMBR. This is to 

measure the complexity of different methods. The results in 

Table 3 suggest that the frequency domain-based FT had a 

shorter running time than our model. However, this frequency 

domain algorithm cannot retain enough high-frequency 

information, or obtain salient regions with clear edges. Besides, 

our algorithm consumed a shorter running time than GS and 

GBMR, and better performance metrics than them. In general, 

our model had obvious advantages over the contrastive 

methods, whether by visual saliency results or performance 

metrics. Hence, our model is an effective saliency detector. 

The time efficiency of our model is attributable to the 

following facts: 

The model involves two phases: positioning salient objects 

in the original image; computing the object position within 

selected salient regions. In each selected region, the 

calculation process is not much interfered by the background. 

Besides, our model reduces the computational area, while the 

other methods take all image pixels as one calculation unit. 

 

Table 2. Effectiveness of our model vs. that of CPD 

 
Metrics Precision Recall F-Measure 

Datasets ECSSD SED2 ECSSD SED2 ECSSD SED2 

Our model 0.7637 0.6971 0.6618 0.4975 0.7394 0.6213 

CPD 0.7136 0.8635 0.6835 0.6482 0.6965 0.8017 

 

Table 3. Mean running time of different methods 

 

Methods 
Our 

method 
SR FT RC GS GBMR 

Mean running 

time (s) 
1.265 0.249 0.967 0.186 3.438 1.577 

 

 

9. CONCLUSIONS 

 

This paper relies on the clustering algorithm to get the 

number of image corners, and employs the edge box algorithm 

to select the candidate regions of salient objects. According to 

the number of clusters, single- and multi-object saliency of the 

original image are handled separately. The saliency computed 

by geodesic distance was taken as a prior probability, while 

the color distribution of the inner and outer regions of the 

bounding box was adopted as the observation likelihood 

probability. Finally, a clear and smooth saliency map was 

obtained by the Bayesian formula. The effectiveness of the 

proposed saliency detection model was confirmed by the 

expeirmental results on four benchmark datasets. Comparative 

analysis shows that our model is superior to the existing salient 

object detection methods, as evidenced by multiple metrics. 

Our model has a significant advantage over images strong 

edge information and multiple salient objects. In future, our 

model will be applied to dynamic videos, and three-

dimensional (3D) images. 
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