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 Since the end of 2019, a COVID-19 outbreak has put healthcare systems worldwide on edge. 

In rural areas, where traditional testing is unfeasible, innovative computer-aided diagnostic 

approaches must deliver speedy and cost-effective screenings. Conducting a full scoping 

review is essential for academics despite several studies on the use of Deep Learning (DL) 

to combat COVID-19. This review examines the application of DL techniques in CT and 

ULS images for the early detection of COVID-19. In this review, the PRISMA literature 

review approach was followed. All studies are retrieved from IEEE, ACM, Medline, and 

Science Direct. Performance metrics were highlighted for each study to measure the 

proposed solutions' performance and conceptualization; A set of publicly available datasets 

were appointed; DL architectures based on more than one image modality such as CT and 

ULS are explored. Out of 32 studies, the combined U-Net segmentation and 3D 

classification VGG19 network had the best F1 score (98%) on ultrasound images, while 

ResNet-101 had the best accuracy (99.51%) on CT images for COVID-19 detection. Hence, 

data augmentation techniques such as rotation, flipping, and shifting were frequently used. 

Grad-CAM was used in eight studies to identify anomalies on the lung surface. Our research 

found that transfer learning outperformed all other AI-based prediction approaches. Using a 

UNET with a predefined backbone, like VGG19, a practical computer-assisted COVID-19 

screening approach can be developed. More collaboration is required from healthcare 

professionals and the computer science community to provide an efficient deep learning 

framework for the early detection of COVID-19. 
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1. INTRODUCTION 

 

1.1 Background 

 

According to the World Health Organization, the first case 

of infection of the novel coronavirus was reported in 

December 2019, and metagenomic next-generation 

sequencing was used to identify the virus [1]. Since then, 

people’s lives have been profoundly altered by the virus, 

which spread rapidly and triggered an unprecedented public 

health crisis. COVID-19 has a wide range of symptoms, 

including fatigue, dry cough, and fever as well as less common 

symptoms such as skin rashes, headaches, loss of smell or taste, 

sore throat, and aches and pains [2]. Situation reports were 

published to monitor the spread of COVID-19 for a specific 

period, such as [3]. The case fatality rate of COVID-19 is 

between 8% and 15%, and elderly individuals are deemed to 

be high risk [4]. To combat COVID-19, scientists and 

researchers have explored and deployed a wide range of new 

technologies to stop the spread of the virus. 

Researchers are currently exploring the potential 

application of cutting-edge technologies such as artificial 

intelligence (AI), big data, and the Internet of things (IoT) [5]. 

The IoT is an IT network of devices, from the smartphone on 

your desk to machines and buildings. Such items are 

connected and comprise the IoT. Such devices are fitted with 

sensors that collect huge amounts of data each minute or each 

period of time [6]. Meanwhile, big data are the information 

gathered by linked devices over time. Organizations are 

struggling to realize the potential of big data and how they can 

improve their business owing to the vast amount of data 

involved. Data must be analyzed to be useful, which precisely 

describes the function of AI, which uses algorithms to analyze 

the data created by the devices in the IoT. As this study focuses 

on the analysis of data rather than on the limitations of IoT 

communication or big data, it also focuses on AI. 

AI is currently under development. In the fight against 

emerging diseases [7, 8], some technologies can make 

predictions and projections before a virus reaches its full 

potential. For decades, academics have focused on AI owing 

to its potential to revolutionize healthcare [9]. AI can be used 

in a variety of ways to accomplish a wide range of activities 

and is considered as a general-purpose technology. In the 

healthcare industry, AI is extremely beneficial, as it can enable 

rapid decision making and response procedures, which are two 

of the most critical aspects of any system created for the 

industry [10]. AI can play a major role in decreasing and 

alleviating the burden on clinics and hospitals from the large 

number of infected patients [11]. 

Machine learning (ML) is a branch of AI that focuses on 
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methods that allow computers to infer complicated 

correlations or patterns from empirical data without needing to 

be programmed explicitly. ML is utilized in a variety of 

applications in the healthcare domain, including medical 

imaging diagnostics, illness diagnoses, smart health records, 

remote health monitoring, and clinical trials and research. 

Deep learning (DL) is a derivative of ML, which is the focus 

of this study. A specific healthcare application task can be 

accomplished using enormous historical data created by a vast 

neural network supplied and performed by DL. DL is 

extremely useful when utilizing computed tomography (CT) 

and ultrasound (ULS), as it can help in the segmentation of 

regions of interest, which is helpful in detecting COVID-19 

[12]. Preventing such the spread of virus can be accomplished 

through having precise knowledge of host response and 

dynamics [13], which is the first step in the creation of an 

effective DL approach. Learning from existing and simple 

representations to solve complex problems is one of the most 

important features of DL [14]. DL allows learning in a deep 

manner using deep neural networks and has the ability to 

identify correct representations to present accurate results. 

This aspect is important, because it can help predict future 

COVID-19 patterns [15].  

 

1.2 Research problem and aim 

 

As COVID-19 manifests as a wide range of clinical 

symptoms, the testing procedure for diagnosing an infection 

should be able to distinguish the virus from a variety of other 

viruses that manifest similar symptoms. Polymer chain 

reaction (PCR) and antibody testing are the two most common 

procedures used worldwide to screen patients for COVID-19 

infection, though both approaches have a set of limitations 

[16]. The PCR approach is prone to yielding a high number of 

false negatives and requires a lengthy testing period, whereas 

the antibody testing method yields a substantial number of 

false positives. Thus, scientists were compelled to find 

alternative means for accurate and fast detection as well as an 

automated procedure requiring minimum human intervention, 

with the goal of shortening testing time and enhancing 

accuracy. CT scans, chest radiograph images, and other 

clinical methods are also used in the assessment of the severity 

of a COVID-19 infection. As a result, hospitals admit only and 

provide necessary treatment, such as oxygen and ventilator 

support, to critically ill individuals [17]. 

Numerous approaches using AI to combat COVID-19 and 

clinical healthcare applications are discussed in the studies 

[18-21]. For additional information on AI applications and DL, 

refer to the studies [22-25]. Various AI data systems can be 

managed to obtain accurate forecasts that can benefit the 

healthcare environment and other public health stakeholders. 

Moreover, patient data can be analyzed, segmented, 

augmented, scaled, normalized, sampled, aggregated, and 

sifted in various stages. 

Recently, the speed of DL research accelerated in response 

to the COVID-19 pandemic. Hybrid AI models are effective 

in detecting COVID-19, as demonstrated by the model 

developed in the study [26]. The effectiveness of AI 

applications in the medical imaging domain was demonstrated 

in a variety of studies aiming to diagnose various diseases, 

including brain tumors from MR images [27], different types 

of Parkinson’s disease from EEG and medical images [28], 

breast cancer from mammography exams [29, 30], and 

pneumonic diseases such as Covid-19 from X-rays and CT 

scans [31]. Recently, DL altered expectations on many AI 

image-processing applications by matching human-level 

precision [32] in a variety of tasks, such as classification, 

segmentation, and object recognition [33]. 

 Conducting a full scoping review is important for 

academics despite the publication of several studies on the use 

of DL to combat COVID-19. In this study, a scoping review is 

conducted on studies published between April 2020 and 

December 2020 to examine the application of DL techniques 

in CT and ULS images for the early detection of COVID-19. 

Several studies focused on COVID-19 detection; however, the 

majority focused on X-ray detection procedures [34-38]. 

Owing to their promising results, this scoping review focuses 

on DL methods for CT and ULS images for detecting COVID-

19. 

As shown in Figure 1, the DL classification process is 

divided into three main steps: the preprocessing and 

enhancement of each input sample, the extraction of input 

features, and classification. DL enables the processing of large 

amounts of data while minimizing the need for human 

intervention and produces accurate conclusions. Transfer 

learning and convolutional neural networks (CNNs) are the 

two main elements used in DL to detect COVID-19. Transfer 

learning is the process of applying knowledge from one 

training session to another. Similar to human brain neurons, 

CNNs can be defined as multilayer artificial neural networks, 

with each layer consisting of multiple neurons. In other words, 

CNNs are similar to neural networks in the human brain. 

To produce a complete and unique review, CNNs, transfer 

learning, datasets, and segmentation, augmentation, 

visualization, and assessment techniques are examined in this 

study. Rather than identifying only current research 

implications, the aforementioned techniques should 

concentrate on real-world assessments based on large-scale 

deployment to highlight the limits of AI and DL. As a starting 

point, this work examines the use of DL for COVID-19 

detection. 

The paper is organized as follows: Section 2 explains the 

methods used in this paper; sources, search terms, eligibility, 

data synthesis and extraction, and the selection process. 

Section 3 discusses the primary information for all papers 

followed by datasets characteristics, data segmentation, 

augmentation, visualization, evaluation metrics, and 

validation methods. Section 4 describes the principal results, 

future work, research implications, strengths, and limitations 

of this review. Section 5 highlights the research agenda and 

the conclusion is presented in Section 6. 

 

 
 

Figure 1. Deep learning vs machine learning 

 

 

2. METHODS 

 

This scoping review is performed according to the standards 
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of PRISMA Extension for scoping reviews to guarantee its 

openness and reliability (PRISMA-ScR) [39]. PRISMA-SCR 

is the most popular and thorough scoping guidelines strongly 

endorsed by Cocrane and the Joanna Briggs Institute (JBI) [40]. 

The following sections describe the procedure in this review. 

 

2.1 Search strategy through sources and terms 

 

In this review, MEDLINE, IEEE Xplore, Science Direct 

and ACM Digital library are used as the main databases for 

this research since there is a very low number of papers 

discussing ultrasonography. The research is mainly focused on 

the computer science database and due to the limitation of this 

research we included MEDLINE as medical database. 

Specified search keywords were utilized to differentiate 

between related and unrelated research on the target databases. 

These keywords have been selected are "artificial intelligence, 

AI, machine learning, ML, deep learning, DL," that targeting 

"COVID-19, Coronavirus" as illness. Total studies are listed 

in (Appendix A). 

 

2.2 Study eligibility criteria 

 

Numerous articles were obtained for this review, including 

related and unrelated studies. The unrelated studies were 

excluded from the review procedure. The idea of this review 

was to collect different publications for each method to create 

comprehensive research; however, the number of papers on 

CT and ULS seemed sufficient for one review. Thus, the main 

focus of this review is the use of CT and ULS images for the 

purpose of detection of COVID-19 in the early stages. Only 

articles published between April 2020 and December 2020 

were included, because most studies were published during 

this period, as shown in the bibliometrics in Figure 2. However, 

two retrieved papers were accepted in late 2020 but published 

in January 2021, which were also included in this review. The 

detailed basic information of the publications is described in 

the succeeding sections. Peer-reviewed articles and 

conference proceedings were included; however, reviews, 

conference abstracts, proposals, and preprinted studies were 

excluded. The validation and evaluation methods were 

described to determine the efficiency of each proposed model. 

An Excel sheet was used to manage the data synthesis and 

describe the dataset source used (e.g., public or private). This 

review focused on DL regardless of whether the model was 

built from scratch or involved transfer learning. This study 

answering the following questions: 

 

1. How much has the use of AI, ML, and DL improved the 

regular diagnostic procedures of COVID-19? 

2. What modalities may be utilized in conjunction with DL 

to assist in detecting and diagnosing COVID-19? 

3. Were DL able to address the weaknesses of diagnostic 

methods? 

4. How is the diagnosis of COVID-19 compared to each 

other effectively promoted by the various kinds of DL and 

their architectures? 

 

2.3 Data extraction and data synthesis 

 

The data extraction form is presented in Appendix B. The 

following information was extracted from the retrieved studies: 

1) model type, 2) datasets for model training and testing, and 

the 3) DL model validation and evaluation. The narrative 

method was used to synthesize the structured data. The DL 

models in the retrieved studies were classified and defined 

according to their utilized imaging technique (i.e., CT or ULS), 

DL branch (e.g., CNN or VGG), and dataset source (e.g., 

public or private). In addition, the procedures for validating 

and evaluating each model were provided in order to establish 

its effectiveness. The data synthesis was managed using an 

Excel sheet. 

 

 
 

Figure 2. Bibliometrics figure of the scope review 

 

 

3. RESULTS 

 

3.1 Search results 

 

A total of 457 papers were collected from the 

aforementioned databases. After the duplicates and studies 

with irrelevant sample populations, designs, and publication 

type were removed, 110 papers remained. Other papers were 

excluded after the full screening of the abstracts. The final 

number of articles after the full-text screening was 32. The 

process is described in Figure 3. 

 

 
 

Figure 3. Study selection process chart 
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Table 1. Primary information for all papers 

 
Ref 

No. 
Type Name of Publisher Month Country Used Model 

Computed Tomography (CT) 

[41] Journal IEEE Transactions on Medical Imaging August China DeCoVNet 

[42] Journal IEEE Access June China Modified VGG 

[43] Journal IEEE Transactions on Medical Imaging August China AD3D-MIL 

[44] Journal 
IEEE Journal of Biomedical and health 

Informatics 
October China 3D ResNet-18 

[45] Journal 
IEEE Journal of Biomedical and health 

Informatics 
September China COVID-Net Redesi 

[46]  Conference 
IEEE International Conference on 

Systems, Man, and Cybernetics (SMC) 
October  Australia 

Deep bayesian ensembling framework based 

on three bayesian ensembling classifiers 

[47] Journal ELSEVIER - Engineering October China 
location-attention mechanism Classical 

ResNet with location-attention mechanism 

[48] Journal Neural Computing and Applications October Egypt 
classical data augmentation techniques along 

with CGAN 

[49] Journal IEEE Access November Canada 
Two-Dimensional Sparse Matrix Profile 

DenseNet 

[50]  Journal 
IEEE Journal of Biomedical and health 

Informatics 
August China AFS-DF 

[51] Conference 

IEEE International Conference on 

Intelligent Computer Communication 

and Processing (ICCP) 

September Romania AGL 

[52] Journal Computers in Biology and Medicine June Iran CAD approach 

[53]  Journal Chaos, Solitons & Fractals November China Neural Network with MSCNN Multi-Scale C 

[54] Journal 
IEEE Journal of Biomedical and health 

Informatics 
December China 

features, DL scores, and multivariable 

logistic regression Merged model based on 

significant radiomic features, DL scores, and 

multivariable logistic regression 

[55] Conference 

2020 International Conference on 

Computer, Information and 

Telecommunication Systems (CITS) 

October China ResNet-18 

[56] Journal Informatics in Medicine Unlocked September Brazil Voting-based approach (EfficientNet-B0) 

[57] Conference 

2020 4th International Symposium on 

Multidisciplinary Studies and Innovative 

Technologies (ISMSIT) 

November Turkey 
CNN algorithm with VGG-16, ResNet, 

GoogleNet 

[58] Conference 

2020 International Conference on 

Information Science, Parallel and 

Distributed Systems (ISPDS) 

November China 
Cross-layer connection neural network based 

on high-dimensional tensor 

[59] Conference 

2020 4th International Symposium on 

Multidisciplinary Studies and Innovative 

Technologies (ISMSIT) 

November Turkey 
Using deep learning to lessen these diagnosis 

difficulties 

[60] Journal Scientific Reports November China Identification of viral pneumonia model 

[61] Conference 
2020 IEEE Symposium on Computers 

and Communications (ISCC) 
October Brazil CNN and XGBoost 

[62] Conference 

2020 4th International Symposium on 

Multidisciplinary Studies and Innovative 

Technologies (ISMSIT) 

November 
Turkey 

 

Several deep learning methods: AlexNet, 

ResNet-18, ResNet-50, VGG, SqueezeNet, 

and MobileNet-v2 

[63] Journal IEEE Transactions on Medical Imaging May China Dual-sampling attention network Novel onli 

[64] Conference 

2020 5th International Conference on 

Communication, Image and Signal 

Processing (CCISP) 

December China AlexNet network 

[65] Journal Computers in Biology and Medicine November France New multitask deep learning model 

[66]  Journal Applied Soft Computing Journal January China Ensemble deep learning model 

Ultrasound (ULS) 

[67] Journal IEEE Transactions on Medical Imaging April Italy Reg-STN 

[68] Journal IEEE Access August Australia VGG19 

[69] Journal 
Computer Vision and Pattern 

Recognition 
September Switzerland Frame-based models & Video-based model 

[70] Conference 

2020 5th International Conference on 

Communication, Image and Signal 

Processing (CCISP) 

December Singapore EfficientNet 

[71] Conference 
2020 IEEE International Ultrasonics 

Symposium (IUS) 
December Spain MobileNet 

[72] Journal Image and Video Processing May Switzerland POCOVID-Net 

 

3.2 Description of the included studies 

 

As shown in Figure 4, 21 (65.62%) papers were published 

in different journals [41-45, 47-50, 52-54, 56, 60, 63, 65-69, 

72], whereas the remaining 11 (34.38%) were published in 

conferences [46, 51, 55, 57-59, 61, 62, 64, 70, 71]. Most of the 
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papers, that is, 15, were published in China [41-45, 47, 50, 53-

55, 58, 60, 63, 64, 66], and the other papers were published in 

different countries such as Australia, Canada, Turkey, Brazil, 

and so on. Each paper used a different model to design an 

effective approach, such as DeCoVNet [41], a modified VGG 

[42], AD3D-MIL [43], and 3D ResNet-18 [44]. However, 

some of the studies redesigned or improved a previous design, 

such as a redesigned COVID-Net [45]. Table 1 presents the 

detailed basic information of each paper. 

 

 
 

Figure 4. Publication type 

 

3.3 Characteristics of used datasets for training and testing 

of DL models 

 

Three types of datasets were used in the retrieved papers, 

that is, public, private, and combined datasets. As shown in 

Figure 5, 53.12% of the papers used a public dataset [42, 45, 

46, 48-52, 55-57, 59, 61, 62, 68, 71, 72], 37.5% used a private 

dataset [41, 43, 44, 47, 53, 54, 58, 60, 63, 67, 69, 70], 6.25% 

used a combined dataset (i.e., public and private [65, 66]), and 

3.13% (one paper) did not include information on the dataset 

[64]. The private datasets included a personal collection of 

private data from various hospitals and the organization of data 

is based on a unique design. The public datasets were from 

data, belong to papers, published on websites such as GitHub 

and hospitals that allowed the sharing of medical data for 

research purposes. Most of the data collected from the public 

and private datasets originated from China, as the country 

stored data during the early phases of the outbreak. AI uses 

such datasets for training and testing to detect and recognize 

different types of infection. Specifically, data are stored, 

labelled, and arranged hierarchically based on the type of 

fungus, bacteria, or virus. Works based on public datasets 

typically require a long processing time and high capabilities 

owing to the size of the data. Studies using private datasets 

have certain limitations, as they cannot be evaluated or 

improved by other researchers. Detailed information of the 

datasets used in the retrieved studies is presented in Table 2. 

 

 
 

Figure 5. Dataset Source 

 

Table 2. Characteristics of the used datasets 

 

Ref 

No. 

Dataset 

Source 

(Public or 

private) 

Dataset Type Training Dataset Testing Dataset 

  Computed Tomography (CT)   

[41] Private Local hospital, Union Hospital, Tongji Medical College 499 133 

[42] Public The Cancer Imaging, Archive (TCIA) Public Access [73] 40 20 

[43] Private Designated COVID-19, hospitals in Shandong 276 184 

[44] Private 10 medical centers China 2028 518 

[45] Public SARS-CoV-2 (Kaggle). [74, 75] N/A N/A 

[46] Public Obtained from [75] 752 188 

[47] Private 618 transverse-section CT samples from three hospitals 10161 1710 

[48] Public Collected from bioRxiv and medRxiv 19050 796 

[49] Public Two publicly available COVID-19, lung CT image datasets Dataset 1: 329 Dataset 2: 11185 Dataset 1: 69 Dataset 2: 1398 

[50] Public Five hospitals and Shanghai Public Health Clinical Center 2018/2016 subjects 504/506 subjects 

[51] Public Obtained from Ref: [75, 76, 74, 77, 78] 

For each input: COVID-CT-

349a: 425, HCC-Parenchyma- 

68: 4074 

For each input: COVID-CT-

349a: 203, HCC-Parenchyma- 

68: 1180 

[52] Public ImageNet dataset [68] 816 102 

[53] Private 

Xiangyang Central Hospital, Xiangyang No.1 People’s 

Hospital 16296 CP slices 3816 CP slices 

[54] Private 

Renmin Hospital of Wuhan University, Henan Provincial 

People’s Hospital, First Affiliated Hospital of Anhui 

Medical University 174 43 

[55] Public 

SARS-CoV-2 CT-scan dataset [74], COVID-CT dataset 

[75] 2904 323 

[56] Public 

SARS-CoV-2 CT-scan dataset [74], COVID-CT dataset 

[75] 2635 659 

[57] Public 

Database of chest X-ray images and Viral Pneumonia 

images by a research team from Qatar, Bangladesh, Only the total number of images is mentioned: 2905 
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Pakistan, Malaysia 

[58] Private N/A 9722 7822 

[59] Public 

A set of chest CT data sets from multi-centre hospitals 

included five categories [79] 250 75 

[60] Private Renmin Hospital of Wuhan University 

35,355 images were selected and split into training and 

retrospectively testing datasets 

[61] Public 

CT images developed by [75] collected from medRxiv, 

bioRxiv, NEJM, JAMA and Lancet 708 CT images 

[62] Public 

A set of chest CT data sets from multi-centre hospitals 

included five categories [79] 927 112 

[63] Private Seven Hospitals and Shanghai Public Health Clinical Center 2186 2796 

[64] N/A N/A N/A N/A 

[65] 

Public and 

private 

Three datasets from different hospitals: 

[75, 80] and Henri Becquerel Cancer 

Center (HBCC) in Rouen city of France 1069 150 

[66] 

Public and 

private 

Previous publications, authoritative 

media reports, and public databases 6000 1500 

  Ultrasound (ULS)   

[67] Private 

5 Local Italian hospital COVID-19 Lung Ultrasound 

Database (ICLUS-DB). Extended and fully-annotated 

version of [81] 1005 426 

[68] Public POCOVID (GitHub) [82] N/A N/A 

[69] Private Designed by the authors 139 66 

[70] Private Self-made LUS datasets 2608 288 

[71] Public 

GrepMed The POCUS Atlas Butterfly iQ EMCrit project 

Twitter 9539 3179 

[72] Public Github (Covid19_ultrasound) [83] 1103 Image 64 Video 

 

Table 3. Segmentation, augmentation, and visualization methods used 

 
Ref 

No. 
Data Segmentation Data Augmentation 

CAM, Grad-CAM 

Visualization 

 Computed Tomography (CT)  

[41] Unet Random affine, color jittering CAM 

[42] Unet Cropping, Rotation, Reflection, Adjust contrast CAM 

[43] N/A Random affine, color jittering CAM 

[44] N/A Not Specified N/A 

[45] N/A Cropping, Flipping Grad-CAM 

[46] N/A Cropping, padding and horizontal flipping and other minor alterations N/A 

[47] Three- dimensional (3D) CNN 

Generic data-expansion mechanisms: 

random clipping, left-right flipping, up-down flipping, and mirroring 

operation 

N/A 

[48] N/A Rotation, shifting, flipping, zooming, transformation, add noise N/A 

[49] N/A N/A N/A 

[50] VB-Net N/A N/A 

[51] N/A N/A Grad-CAM 

[52] N/A N/A N/A 

[53] N/A Rotation, cropping, shifting, flipping, zooming N/A 

[54] Automated segmentation algorithm N/A Grad-CAM 

[55] N/A Cropping, horizontal flipping CAM 

[56] N/A Rotation, horizontal flip, and scaling N/A 

[57] N/A N/A N/A 

[58] N/A N/A N/A 

[59] N/A Rotation, cropping N/A 

[60] Unet N/A N/A 

[61] N/A Tree augmentation algorithm N/A 

[62] N/A Rotation, cropping N/A 

[63] VB-Net N/A Grad-CAM 

[64] N/A N/A N/A 

[65] Automatic classification segmentation tool Translation and rotation N/A 

[66] N/A N/A N/A 

  Ultrasound (ULS)  

[67] Ensemble model Sampling, rotation scaling, shearing blurring, flipping additive noise Grad-Cam 

[68] 
Combined U-Net segmentation and 3D 

classification CNN 
Rotation, Flipping, Shifting N/A 

[69] 
Pre-trained segmentation models (Segment-

Enc) 

Horizontal and vertical flips, rotations up to 10 degrees and 

translations of up to 10% 
CAM 

[70] N/A Random cropping, horizontal flipping N/A 

[71] 
CT dataset with fine-grained pixel-level 

annotations 
N/A N/A 

[72] N/A Keras ImageDataGenerator (in-place augmentation) N/A 
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Table 4. Evaluation and validation methods 

 

 Methods Definition 
Number of 

studies 

Evaluation 

Accuracy (TN+ TP)/(TN + TP + FN + FP) N=30 

Precision TP/(TP + FP) N= 18 

Recall / 

Sensitivity 
TP/(TP+ FN) N=30 

F1 score 2(Precision * Recall)/(Precision + Recall) N=18 

Specificity TN/(TN + FP) N=20 

Cohen’s kappa (p0 - pe)/(1 + pe) N=2 

Validation 
Folds-cross 

validation 

To identify how many folds the dataset is going to be splitted. Every fold gets 

chance to appears N=5 during training where (k-1) 
N=13 

Abbreviations 

TP: True Positive; TF: True Negative; 

FP: False Positive; FN: False Negative; 

p0: Observed agreement; 

pe: Expected agreement 

N: Number of Studies 

 

3.4 Data segmentation, augmentation, and visualization 

 

Data segmentation is an important step for achieving high 

accuracy and prediction and describes the process of 

partitioning a single image into multiple segments to improve 

analysis and recognition precision for infected parts. The 

segmentation techniques employed in the retrieved papers 

included U-Net [41, 42, 60, 68], VB-Net [50, 63], and other 

methods such as Segment-Enc, automatic classification 

segmentation tools, automated segmentation algorithms, and 

so on. However, 62.5% of the papers did not describe the 

segmentation method. Augmentation is also useful, as it can 

increase the amount of relevant data in a dataset. 

Augmentation methods include random affine, color jittering, 

cropping, rotation, flipping, zooming, noise addition, and so 

on. Among the 32 studies, 20 used at least one data 

augmentation technique. Finally, visualization techniques can 

also help in identifying infected parts. Two methods were 

included in this review, such as CAM and Grad-CAM. 

Information on the data segmentation, augmentation, and 

visualization techniques is listed in Table 3. Among the 32 

studies, only four considered the CAM technique, whereas 

five considered the Grad-CAM technique. The remaining 23 

studies did not employ a visualization technique 

 

3.5 Evaluation metrics and validation 

 

This section explains the metrics and validation methods 

used in this review. Based on the retrieved papers, only the 

most relevant and clearest metrics were chosen, such as 

accuracy, precision, recall/sensitivity, F1 score, specificity, 

and Cohen’s kappa. An important factor in the validation 

process was also included, that is, k-fold cross-validation. The 

reasons for the use of k-fold cross-validation in the retrieved 

papers were as follows: 1) to make predictions on the data for 

training and testing and multiclass problems, 2) to obtain other 

metrics and draw important conclusions on algorithms and 

data, 3) to work with dependent/grouped data, and 4) to fine 

tune parameters. Each of the selected metrics was calculated 

based on the equations listed in Table 4, with abbreviations for 

all the terms. The validation is also defined in the same table. 

As shown in Table 4, different k-fold cross-validations were 

used, such as four folds, 10 folds, and the most commonly used 

five folds. The assessment measurements were used to ensure 

the efficiency of the models in detecting COVID-19. 

 

 

4. DISCUSSION 

 

4.1 Principal results and analysis 

 

This scoping review discuss studies on the detection of 

COVID-19 using DL based on CT and ULS imaging published 

between April 2020 and December 2020. It shows that most of 

the data and papers were obtained from and published in China, 

as it was the first country to identify and confront the virus. 

Most of the papers were published in IEEE and 

ScienceDirect and focused on CT imaging. All the proposed 

approaches promised excellent results. However, the proposed 

approaches are at risk of bias, which implies that when the 

designs are implemented in a real-time environment, they are 

expected to obtain results lower than those described in the 

papers, because some of the approaches have yet to be 

implemented in a real environment. Most of the datasets used 

are small and do not reflect ideal results owing to the shortage 

in public datasets. 

Although numerous studies on the early detection of 

COVID-19 were published, we have yet to witness real-time 

experiments. This observation creates doubt on whether the 

designs will work properly. Furthermore, some researchers 

chose other disciplines to achieve the same goals owing to 

their misgivings from their lack of understanding of how DL 

works in real time when dealing with COVID-19. Comparing 

the different approaches would be nearly impossible, because 

of the datasets used, testing environment, and validation 

methods. Some of the methods were built on top of other 

designs, making them comparable to only certain types. Use 

of DL to develop an early detection mechanism requires large 

amounts of data to obtain acceptable results. Training a DL 

model is expensive, owing to the complexity of the data model, 

as it requires high computing power and GPUs. Researchers 

can investigate this issue in future works and include it in their 

results to create a comprehensive environment for future 

research in this field. Recurrent neural networks (RNNs) and 

reinforcement learning can also be considered in future works. 

In this review, we find that 87.5% of the retrieved studies 

disclosed how the training–testing dataset was split, and 

40.6% implemented validation methods, whereas 59.4% did 

not mention how the validation was conducted. In addition, as 

shown in Table 5, none of the studies covered all six relevant 

evaluation metrics, 31.25% covered five evaluation metrics, 

28.125% covered four evaluation metrics, 37.5% covered 

three evaluation metrics, none covered two evaluation metrics, 

and 3.125% covered only one evaluation metric. Furthermore, 
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93.75%, 62.5%, 62.5%, 96.87%, 62.5%, and 6.25% of the 

studies used the accuracy, F1 score, precision, recall, 

specificity, and Cohen’s kappa, respectively, which indicates 

the significance of recall and accuracy compared with the 

other metrics. The kappa metric seems to have the least 

evaluation value for researchers. Several studies also used 

additional ROC, AUC, and PPV metrics to improve their 

evaluations. 

The best results were achieved by [68], which employed a 

ULS imaging, with a 98% F1 score, 99% precision, and 97% 

sensitivity or recall. The paper used the VGG-19 model trained 

and tested on a public dataset named POCOVID from GitHub 

[82]. 

The best results with a CT scan approach were achieved by 

[52], with the following evaluation metric values: 99.51% 

accuracy, 98.04% sensitivity, and 100% specificity. The study 

used a ResNet-101 model trained and tested on the ImageNet 

public dataset [68] using the CAD approach. The results of this 

model are also the overall best among the models in the 

retrieved studies. Another study [57] that employed ResNet-

50, VGG-16, and GoogleNet also obtained remarkable results, 

specifically, a 96.91% accuracy, 97% F1 score, 98% precision, 

97.73% sensitivity, and 100% specificity. The DL model in the 

study was trained and tested on a public dataset of chest X-ray 

images and viral pneumonia images by a research team from 

Pakistan, Qatar, Bangladesh, and Malaysia. Interestingly, 

neither of the two studies used k-fold cross-validation. A study 

[49] that employed a two-dimensional sparse matrix 

DenseNet-201 model on two publicly available COVID-19 

lung CT image datasets came close to the best results, with a 

97.88% accuracy, 98.56% F1 score, 97.99% precision, and 

99.14% sensitivity. The researchers [58] showed comparable 

results by using a cross-layer-connection neural network 

DenseNet-121 model with a high tensor dimension of 16 on a 

private dataset, with a 92% accuracy, 95% F1 score, 90% 

precision, and 99% sensitivity. The findings give us a clue on 

which DL models to consider when proceeding with future 

research in this area. The best models are ResNet-101, ResNet-

50, VGG-16, GoogleNet, DenseNet-201, and DenseNet-121. 

Interestingly, referring to Table 5, it can be seen that none of 

the data preprocessing techniques were used by the four papers 

that achieved the best results with the CT approach [49, 52, 57, 

58]. However, the paper that achieved the best results with the 

ULS approach [68] used data segmentation techniques such as 

a combined U-Net segmentation and 3D classification CNN 

and data augmentation techniques such as rotation, flipping, 

and shifting. These findings also show us that the best results 

were achieved by the models trained on publicly available 

datasets. 

 

4.2 Research implications and future work 

 

To reduce researchers’ confusion, the scientific community 

and developers should agree on a standard protocol for 

conducting COVID-19 research, such as gathering appropriate 

datasets from various medical centers, including a variety of 

images for each patient. Improvements should be made in the 

dataset preprocessing phase, such as switching from U-Net to 

FC-DenseNet103 for segmentation. Furthermore, data 

augmentation was completely excluded or yielded negligible 

results in the reviewed studies. Scientists in countries with 

limited resources should focus on developing lightweight 

models for COVID-19 detection [84]. Instead of X-rays and 

CT scans, researchers should pay more attention to ULS 

images. However, some of the studies showed that X-rays and 

CT scans can be used successfully, which requires further 

investigation. In order to detect COVID-19 and create a solid 

prototype that can detect various types of diseases from images, 

all the evaluation metrics should be used. Furthermore, RNNs 

and reinforcement learning have yet to be used in the field of 

COVID-19 detection, which could be a promising direction for 

future research. 

Image classification and object detection are utilized in ULS 

and CT procedures for real-time tumor segmentation, disease 

diagnosis, and prediction. DL models can generate reasonable 

interpretations by combining several image data components, 

such as tissue size, volume, and shape, to provide a complete 

view of a particular medical issue. Such models are capable of 

highlighting crucial areas in medical images. For instance, 

they are utilized to diagnose diabetic retinopathy and early 

onset of Alzheimer’s disease and detect breast lumps in ULS 

images. However, DL also plays a significant role in drug and 

vaccine discovery; thus, the contributions of DL models in 

drug discovery and interaction prediction are becoming 

increasingly important. DL can analyze genetic, clinical, and 

demographic data in real time and find potential medication 

combinations for clinical trials. Pharmaceutical researchers 

can take advantage of DL toolkits to focus on patterns in 

massive datasets, which will allow them to make effective 

decisions. Furthermore, the application of DL models gained 

popularity owing to the COVID-19 pandemic. Researchers 

have begun to investigate DL applications for various 

purposes, including the detection of COVID-19 through the 

use of different medical image modalities, prediction of 

intensive care unit admissions, identification of patients at 

high risk for COVID-19, calculation of requirements for 

mechanical ventilation, drug development, and vaccine 

discovery and testing [85]. 
 

4.3 Strengths and limitations 

 

4.3.1 Strengths 

To the best of our knowledge, this scoping review is the first 

to discuss CT and ULS imaging with such findings. We 

present a comprehensive review that can be used to employ 

DL for COVID-19 detection. In addition, we provide 

researchers with detailed results on all the works conducted 

during the period examined in this research. We summarize 

the information from the reviewed papers, including their 

primary information, datasets, and different segmentation, 

augmentation, and visualization methods. In addition, our 

review includes different metrics and definitions, with detailed 

results of all the papers collected from the most common 

databases. Furthermore, our research follows the PRISMA-

ScR guidelines. 

 

4.3.2 Limitations 

This scoping review cannot be considered up to date, 

because the field is quickly entering the medical literature, 

with new publications on COVID-19-related AI and DL 

models. This work also covers only peer-reviewed articles and 

conference proceedings and a total of 32 approaches. It does 

not mention other works, such as preprinted studies, proposals, 

and conference abstracts. Other papers may have been 

accepted but have yet to be published when this paper was 

written. Moreover, this review covers only papers on Medline, 

ScienceDirect, IEEE, and the ACM Digital Library, with 

special terms, which can be useful for finding related studies. 
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Three of the four databases are prominent in the field of 

computer science, and the remaining database is prominent in 

the field of medicine. All the information found and analyzed 

by the authors was based on given information from related 

studies; thus, the findings of this review may also be affected. 

 

Table 5. Evaluation metrics and detailed results 

 

Ref 

No. 

Evaluation 

Metrics 
Accuracy F1-Score Precision 

Sensitivity 

or Recall 
Specificity Kappa 

K-folds 

Cross 

Validation 

   Computed Tomography (CT)     

[41] 

Accuracy, ROC, 

Precision, recall 

curve, FLOPs 

90% N/A 97% 95% 95% N/A N/A 

[42] 

Accuracy, 

precision, 

sensitivity, 

specificity 

94% N/A 95% 93% 93% N/A Five-Folds 

[43] 

Accuracy, F1 

score, precision, 

recall, Cohen 

kappa score, 

ROC, AUC. 

97% 97% 97% 97% N/A 95% Five-Folds 

[44] 
F1 score, 

precision, recall 
N/A 90% 97% 84% N/A N/A N/A 

[45] 

Accuracy, F1 

score, 

sensitivity, 

precision, AUC 

90% 90% 95% 85% N/A N/A Four-Folds 

[46] 

Accuracy, 

Sensitivity, 

specificity, 

precision, F1 

score, ROC 

Anchored 

ensembling: 

81.4% regularized 

ensembling: 

81.9% 

unconstrained 

ensembling: 

82.76% 

Anchored ensembling: 

84.33% 

regularized ensembling: 

84% 

unconstrained 

ensembling: 84.33% 

Anchored ensembling: 

83.66% 

regularized 

ensembling: 83.66% 

unconstrained 

ensembling: 84.33% 

Anchored 

ensembling: 

85.33% 

regularized 

ensembling: 

83.1% 

unconstrained 

ensembling: 

88.5% 

Anchored 

ensembling: 

81.33% 

regularized 

ensembling: 

80.33% 

unconstrained 

ensembling: 

78.33% 

N/A N/A 

[47] 

Accuracy, F1 

score, precision, 

recall 

Overall (mean): 

86.7% 
Overall (mean): 86.7% 

Overall (mean): 

86.87% 

Overall (mean): 

86.67% 
N/A N/A N/A 

[48] 

Accuracy, 

sensitivity, 

specificity, 

precision, F1 

score 

82.91% 

ResNet50 with 

AUGMENTATION > 

80% 

ResNet50 with 

AUGMENTATION 

80% 

77.66% 87.62% N/A N/A 

[49] 

Accuracy, 

precision, 

Recall, AUC, F1 

score 

DenseNet201 

Dataset 1: 78.07% 

Dataset 2: 97.88% 

DenseNet201 

Dataset 1: 71.19% 

Dataset 2: 98.56% 

DenseNet201 

Dataset 1: 69.30% 

Dataset 2: 97.99% 

DenseNet201 

Dataset 1: 73.19% 

Dataset 2: 99.14% 

N/A N/A N/A 

[50] 

Accuracy, 

sensitivity, 

specificity, AUC 

91.79% 93.07% 93.10% 93.05% 89.95% N/A Five-Folds 

[51] 

Accuracy, 

precision, recall, 

F1-score, AUC 

Xception trained 

on dataset, 

COVID-CT-349a: 

87.74% 

Xception trained on 

dataset, COVID-CT-

349a: 86.59% 

Xception trained on 

dataset, COVID-CT-

349a: 91% 

Xception trained 

on dataset, 

COVID-CT-349a: 

82.60% 

N/A N/A N/A 

[52] 

Accuracy, 

sensitivity, 

specificity, PPV, 

NPV 

ResNet-101: 

99.51% 
N/A N/A 

ResNet-101: 

98.04% 

ResNet-101: 

100% 
N/A N/A 

[53] 

Accuracy, 

sensitivity, 

specificity, AUC 

97.7% N/A N/A 99.5% 95.6% N/A N/A 

[54] 

Threshold, 

accuracy, 

sensitivity, 

specificity, PR-

AUC, AUC, CI, 

Youden index 

Merged Model: 

81.4% 
N/A N/A 

Merged Model: 

87.5% 

Merged Model: 

77.8% 
N/A Five-Folds 
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[55] 

Accuracy, 

precision, 

sensitivity, 

specificity, F1 

score, AUC 

94.3% 94.2% 97.1% 91.4% 97.3% N/A N/A 

[56] 

Accuracy, 

sensitivity, 

COVID-19 + 

PC, F1- score, 

AUC 

Highest value 

using the 

EfficientNet-B0: 

87.68% 

Highest value using the 

EfficientNet-B0: 

86.19% 

N/A 

Highest value 

using the 

EfficientNet-B0: 

83.67% 

N/A N/A Five-Folds 

[57] 

Accuracy, 

sensitivity, 

specificity, 

precision, recall, 

F1 score 

Highest value 

using ResNet 50: 

96.9% 

Highest value using 

ResNet 50: 97% 

Highest value using 

ResNet 50: 98% 

Highest value 

using Vgg16 Net: 

97.73% 

Highest value 

using ResNet 50 

and GoogleNet: 

100% 

N/A N/A 

[58] 

Accuracy, 

precision, recall, 

F1 score, AUC 

Highest results: 

92% 

(When DenseNet-

121, tensor 

dimension is 16) 

Highest results: 95% 

(When DenseNet-121, 

tensor dimension is 16) 

Highest results: 90% 

(When DenseNet-121, 

tensor dimension is 

16) 

Highest results: 

99% 

(When DenseNet-

121, 

tensor dimension 

is 16) 

N/A N/A N/A 

[59] 

AUC, accuracy, 

sensitivity, and 

specificity. 

Highest results: 

89% 

(When ResNet-18 

is used) 

N/A N/A 

Highest results: 

98% 

(When ResNet-18 

is used) 

Highest results: 

86% (When 

ResNet-18 is 

used) 

N/A N/A 

[60] 

Accuracy, 

sensitivity, 

specificity, PPV, 

NPV 

Overall (mean for 

both retrospective 

and prospective 

dataset): 95.67% 

N/A N/A 

Overall (mean for 

both retrospective 

and prospective 

dataset): 98.08% 

Overall (mean for 

both retrospective 

and prospective 

dataset): 92.13% 

N/A N/A 

[61] 

Accuracy, 

precision, recall, 

F1 score, AUC, 

kappa index 

95.07% 95% 94.99% 95.09% N/A 90% Five-Folds 

[62] 

AUC, accuracy, 

sensitivity, and 

specificity 

Refer to reference N/A N/A Refer to reference Refer to reference N/A N/A 

[63] 

AUC, accuracy, 

sensitivity, 

specificity, F1 

score 

87.5% 82% N/A 86.9% 90.1% N/A Five-Folds 

[64] 

Accuracy, 

precision and 

recall 

90.90% 

(based on 100 

training times) 

N/A 

74.36% 

(based on 100 training 

times) 

71.31% 

(based on 100 

training times) 

N/A N/A N/A 

[65] 

Dice coefficient, 

accuracy, 

sensitivity, 

specificity, AUC 

94.67% N/A N/A 96% 92% N/A N/A 

[66] 

Accuracy, 

sensitivity, 

specificity, F 

value, Matthews 

correlation 

coefficient. 

Refer to reference Refer to reference N/A Refer to reference Refer to reference N/A Five-Folds 

Ultrasound (ULS) 

[67] 

Accuracy, F1 

scores, 

Precision, Recall 

96% N/A N/A N/A N/A N/A Five-Folds 

[68] N/A N/A 98% 99% 97% N/A N/A N/A 

[69] 

Accuracy, 

Recall, 

Precision, F1-

score, 

Specificity, 

MCC 

Frame-based: 

90% 
Mean Value: 88% Frame-based >93% 

Frame-

based >93% 

Frame-

based >93% 
N/A Five-Folds 

[70] 

Accuracy, 

Feasibility, 

Sensitivity, 

specificity 

3 clinical stages: 

94.62% 

4 clinical stages: 

91.18% 

8 clinical stages: 

82.75% 

3 clinical stages: 93.2% 

4 clinical stages: 89.9% 

8 clinical stages: 81.6% 

3 clinical stages: 

93.2%4 clinical 

stages: 89.9% 

8 clinical stages: 

81.6% 

3 clinical stages: 

93.2%4 clinical 

stages: 89.9% 

8 clinical stages: 

81.6% 

3 clinical stages: 

96.6%4 clinical 

stages: 96.6% 

8 clinical stages: 

97.4% 

N/A 10-Folds 
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[71] 

Accuracy, 

ZeroRule 

classifier 

Mean Value: 

97.07% 
N/A N/A 

Mean Value: 

97.20% 

Mean Value: 

95.63% 
N/A N/A 

[72] 

Accuracy, 

Sensitivity, 

Specificity, 

Precision, F1-

score, Frames 

89% 
92% (COVID-19 

Detection) 

88% (COVID-19 

Detection) 

96% (COVID-19 

Detection) 

79% (COVID-19 

Detection) 
N/A Five-Folds 

 

 

5. RESEARCH AGENDA 

 

For this research agenda, we carefully investigated 32 

studies. We realized that limitations persisted in the 

application of DL in COVID-19 detection via CT and ULS 

images and state-of-the-art techniques. However, the proposed 

solutions found in the studies showing promising results are 

currently in the maturation stage, with tenuous outcomes for 

actual clinical applications. As a contribution, we outlined a 

preliminary but well-founded research agenda to fill the 

research gaps, including studies that achieved the following: 

 

1. Designated objective metrics, which will allow 

researchers to measure the performance and 

conceptualization of the proposed solutions. 

2. Appointed a set of publicly available datasets to 

encourage the creation and sharing of datasets among 

researchers and healthcare professionals. 

3. Increased the impact of generated COVID-19 images 

annotated with crowdsourced tools, particularly for 

individuals involved in medical imaging processes 

and work. 

4. Explored DL architectures based on more than one 

image modality, such as models effective for CT or 

ULS images or a combination of both techniques. 

5. Highlighted several research implications and future 

work directions for researchers and healthcare 

professionals. 

 

 

6. CONCLUSION 

 

This scoping review included 32 studies on the use of DL 

for early COVID-19 detection. The findings of our research 

showed that this field is gaining traction, and some studies 

demonstrated that the method is highly accurate and effective. 

Our study examined various aspects of DL, including CNNs 

and transfer learning, and the primary information of the 

retrieved papers, including the datasets used; different 

segmentation, augmentation, and visualization methods; and 

evaluation metrics, to create a comprehensive and unique 

review. To highlight the limitations of AI and DL in this field, 

the approaches should not only identify current research 

implications but also focus on real-world evaluations based on 

large-scale deployments. Other limitations include the slightly 

outdated studies owing to the recent numerous publications on 

COVID-19-related AI and DL models; the exclusion of 

preprinted studies, proposals, and conference abstracts; and 

access to a limited number of databases. 

As a starting point, this review discussed the use of DL for 

COVID-19 detection, which can serve as a guide for future 

research. Future works can include up-to-date articles on 

various topics, such as the prediction of outcomes and 

vaccines, and cover other databases with unrestricted access. 
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APPENDIX 

 

APPENDIX A: Used search terms and total number of 

retrieved studies per database APPENDIX B: Data extraction 

form. 

 

Search terms and total number of retrieved studies per database 

 
Database name Research terms Number of retrieved studies 

MEDLINE 

("artificial intelligence" OR 

"machine learning" OR 

"deep learning") AND 

("COVID-19" OR 

"COVID19" OR 

N=14 

218



"coronavirus") AND 

("ultrasound" OR 

"Computed tomography") 

Science Direct 

("artificial intelligence" OR 

"machine learning" OR 

"deep learning") AND 

("COVID-19" OR 

"COVID19" OR 

"coronavirus") AND 

("ultrasound" OR 

"Computed tomography") 

N=144 

IEEE Explore 

("artificial intelligence" OR 

"machine learning" OR 

"deep learning") AND 

("COVID-19" OR 

"COVID19" OR 

"coronavirus") AND 

("ultrasound" OR 

"Computed tomography") 

N=277 

ACM 

("artificial intelligence" OR 

"machine learning" OR 

"deep learning") AND 

("COVID-19" OR 

"COVID19" OR 

"coronavirus") AND 

("ultrasound" OR 

"Computed tomography") 

N=22 

Total studies 2020 N=457 

Data extraction form 

Concept Definition 

Study Characteristics 

Author The first author of the study 

Year Submission The year in which the study was submitted 

Country of publication The country where the study was published 

Publication type The paper type (i.e., peer-reviewed, conference or preprint) 

AI, ML, and DL techniques 

characteristics 

Detection modality What type of medical images are used (CT, and ULS)? 

AI, ML, and DL branches The branches/areas of that were used (e.g., CNN, Transfer learning, ... etc.) 

Dataset Characteristics 

Data sources Source of data that were used for the development and validation of AI models/ algorithms (e.g., 

public databases, clinical settings, government sources) 

Dataset size The total number of data that were used for the development and validation of AI models/ algorithms 

Type of validation How the dataset was split/used to develop and test the proposed models/ algorithms (e.g., Train-test 

split, K-fold cross-validation, External validation) 

Proportion of training set Percentage of the training set of the total dataset 

Proportion of test set Percentage of the test set of the total dataset 

Evaluation metrics Any evaluation method that are used to check the performance of the model. (e.g., accuracy, precision, 

F1 score, recall and Kappa) 

Visualization method Type of used visualization method 
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