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Pose estimation is a significant strategy that has been actively researched in various fields. 

For example, the strategy has been adopted for motion capture in moviemaking, and 

character control in video games. It can also be applied to implement the user interfaces of 

mobile devices through human poses. Therefore, this paper compares and analyzes four 

popular pose estimation models, namely, OpenPose, PoseNet, MoveNet Lightning, and 

MoveNet Thunder, using pre-classified images. The results show that MoveNet Lightning 

was the fastest, and OpenPose was the slowest among the four models. But OpenPose was 

the only model capable of estimating the poses of multiple persons. The accuracies of 

OpenPose, PoseNet, MoveNet Lightning, and MoveNet Thunder were 86.2%, 97.6%, 

75.1%, and 80.6%, respectively. 
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1. INTRODUCTION

Pose refers to the movement of a part of the human body, 

such as the hands, arms, head, and face, that expresses an idea 

or a feeling. It is a form of non-verbal communication often 

used consciously, or unconsciously in daily life. The common 

poses include handshaking, clapping, and dancing. If these 

poses are taken as the user interface of devices, e.g., desktops, 

laptops, and smartphones, it is possible to express intentions 

more directly and obtain an extended experience. Apart from 

that, poses can be applied to virtual reality (VR), augmented 

reality (AR) and mixed reality (MR) to enhance the immersion 

and presence of users. The pose-based user interfaces boast 

another advantage: numerous poses can be defined, and used 

to interact with the devices. 

Pose estimation, the key to pose recognition in user 

interfaces, can be utilized in various manners. In the field of 

movies and video games, poses are commonly estimated by 

motion capture. Actors are required to either wear a suit with 

multiple sensors or attach markers to their bodies. During the 

performance, computer graphics are added to the captured 

media, making the expression vivid and lively. In the field of 

video games, Nintendo released the Wii, a home video game 

console, in 2006 [1]. The controller of the console uses an 

infrared sensor, and allows operations on the screen, such as 

cursor movement on a personal computer (PC). Besides 

infrared sensors, various built-in sensors enable us to play 

realistic games, such as tennis, golf, and boxing. In 2010, 

Microsoft launched Kinect, a peripheral device of Xbox 360 

[2]. Kinect relies on a camera to estimate poses and a 

microphone to recognize voices. As a result, users can play 

games without the aid of additional controllers. Although not 

embedded in the latest Xbox, Kinect continues to be used for 

military and research purposes. Similarly, the PlayStation 

camera [3], move controller [4], and VIVE tracker [5] are 

employed in video games. 

In addition to motion capture and video games, pose 

estimation plays a significant role in smartphones. Despite the 

expansion of the screen and smartphones itself, and the 

reduction of the bezel, the current size of smartphones is not 

enough for various expressions. To overcome the limitation, 

pose estimation could be adopted to provide a convenient input 

method, in replacement of the traditional touch approach [6]. 

For example, Samsung Health [7] and Apple Fitness+ [8] 

could adopt pose estimation to inform users about the 

correctness of their poses via a mobile device. Pose estimation 

can also be employed to interact with AR contents [9] on 

smartphones. 

OpenPose, PoseNet, and MoveNet are available for pose 

estimation on mobile devices. All these methods estimate 

poses through deep learning of camera inputs, eliminating the 

need for sensors, and therefore apply to most devices. 

To the best of our knowledge, this paper is the first attempt 

to summarize and compare the features and prospects of 

OpenPose, PoseNet, and MoveNet, which are common tools 

for pose estimation on mobile devices. The remainder of this 

paper is organized as follows: Section 2 summarizes the 

functions of OpenPose, PoseNet, and MoveNet for a better 

understanding of the research; Section 3 evaluates the three 

models in terms of the features and performance in the same 

environment; Section 4 puts forward the conclusions. 

2. MODELS

Poses are generally estimated by top-down or bottom-up 

methods. The top-down method first discovers a person in the 

input, and derives the pose in his/her bounding box. The 

bottom-up method infers the pose from all the key-points in 

the input, as well as the relationship between these points. 
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Figure 1. Overall process of OpenPose 

 

2.1 OpenPose 

 

In 2017, Cao et al. [10] at Carnegie Mellon University 

proposed OpenPose. This open source model marks the first 

attempt to estimate multi-person poses in the real time. It uses 

the bottom-up method to overcome the limitations of the top-

down method. The flow of OpenPose is illustrated in Figure 1. 

As shown in Figure 1 (a), two-dimensional (2D) 

images/videos are imported to the model. Then, a confidence 

map is obtained from the input. Through non-maximum 

suppression (NMS), the candidates for the body are identified 

in the confidence map. After identifying an object, a bounding 

box is created to contain the object, and the probability of the 

object is set as a score. Next, the scores are sorted in 

descending order, and the redundant bounding boxes are 

removed by the following criterion: the intersection of union 

(IoU) is greater than the threshold, which means the two 

bounding boxes identify the same object. The IoU refers to the 

ratio of the overlapping region to the combined region. The 

removal of redundant bounding boxes is known as NMS. On 

this basis, OpenPose creates part affinity fields (PAFs), a set 

of flow fields representing the relationships between parts of 

many persons. Finally, bipartite matching is performed on the 

candidates using confidence maps and PAFs, producing full-

body poses. 

OpenPose and Alpha-Pose are still under research [11, 12]. 

OpenPose was initially written in C++, and recently in Python. 

The applicability of different versions depends on central 

processing unit (CPU) or Unity [13]. 

 

2.2 PoseNet 

 

PoseNet is an open source machine learning model created 

by Google Creative Lab. Capable of estimating human poses 

in the real time [14], the model works on the recently released 

COCO person key-point detection dataset, which tracks the 

key-points of the entire body. 

Single-person pose estimation uses four elements as input: 

an input image, an image scale factor, a horizontal flip, and an 

output stride. The single-person detection algorithm is faster 

and simpler than the multi-person detection algorithm. Besides 

the four elements above, three other elements are required in 

the input of multi-person pose estimation: the maximum 

number of detected poses, the threshold for pose confidence 

score, and the NMS radius. These additional elements improve 

the accuracy of multi-person pose estimation. The estimation 

results include pose confidence scores and key-points. Figure 

2 illustrates the flow of PoseNet. 

 

 
 

Figure 2. Flow of PoseNet [15] 

 

As shown in Figure 2, PoseNet for mobile devices operating 

on Android and iOS has been developed under TensorFlow 

Lite [15-17]. The overall pipeline is similar to the JavaScript 

version. Currently, there is a face tracker called Facemesh, 

which combines PoseNet into a pose animator [18]. Facemesh 

can animate full-body characters, similar to motion capture. 

 

2.3 MoveNet 

 

MoveNet [19, 20] is a Google-based inference model 

developed by IncludeHealth, a digital health company [21]. 

IncludeHealth unveiled the model in 2021, and solicited help 

from Google to support remote treatment of patients. Similar 

to PoseNet, the web version of MoveNet uses TensorFlow.js, 

and the mobile version uses TensorFlow Lite. There are two 

versions of MoveNet: the performance-oriented Lightning 

[22], and the accuracy-oriented Thunder [23]. The two models 

differ in input size and depth multiplier. In terms of input, 

Lightning receives a video or an image of a fixed size 

(192×192) and three channels, and employs 1.0 depth 

multiplier. In contrast, Thunder receives an input of the size 

256×256 and three channels, and employs 1.75 depth 

multiplier. The depth multiplier changes the number of 

channels of the input video/image, which generally adopts the 

red-green-blue (RGB) format. Yet feature maps can also be 

regarded as one channel in each layer. Meanwhile, Thunder 

has 1.75 times more layers for deep learning than Lightning. 

Hence, it performs 1.75 times more calculations. 

MoveNet is a bottom-up model relies on TensorFlow object 

detection API and MobileNet V2 as a feature extractor. In the 

TensorFlow object detection API, there are multiple detection 

models supporting TensorFlow 1 and TensorFlow 2. MoveNet 

follows CenterNet [24, 25], a detection API [26]. Different 

from the standard anchor (bounding box)-based detection 

model, CenterNet takes the center point as the only anchor, 
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and searches for and classifies objects by processing regional 

proposals, rather than inferring objects from the IoU value. 

Without requiring NMS, CenterNet recognizes the difference 

between objects in one stage, and exhibits a high performance. 

 

 
 

Figure 3. Flow of MoveNet [19] 

 

As shown in Figure 3, MoveNet [19] calculates all four 

processes simultaneously. Once a person center heatmap is 

prepared to identify each person, the location with the highest 

score is selected. Then, a set of key-points for the person is 

initialized based on the key-points obtained through regression. 

A person is identified, when the regression fits the 

arrangement of prepared key-points into a person. 

Furthermore, each pixel is multiplied by a weight, which is 

inversely proportional to the distance from the regressed key-

point. In this way, the key-points from the persons in the 

background are excluded from the computation. In the end, the 

set of key-points is finalized according to the maximum 

heatmap values in each key-point channel. 

 

 

3. RESULTS AND DISCUSSION  

 

Table 1 compares the basic specifications of OpenPose, 

PoseNet, and MoveNet. It can be observed that the number of 

key-points is the most prominent difference between these 

models. PoseNet provides a total of 17 key-points: 5 in the face 

and 12 in the body. MoveNet has the same key-points as 

PoseNet. OpenPose supports 137 key-points: 25 in the body, 

including the foot, 21 in each hand, and 70 in the face. Overall, 

OpenPose can track the body in greater details than the other 

two models. Another difference lies in the pose estimation 

method: PoseNet uses the top-down method, while OpenPose 

and MoveNet adopt the bottom-up method. The top-down 

method estimates a pose within a person’s bounding box after 

detecting the person. On the contrary, the bottom-up method 

predicts the key-points of persons in the input, and estimates 

the pose from the correlation between the key-points. 

 

Table 1. Basic specifications of OpenPose, PoseNet, and 

MoveNet 

 
 OpenPose PoseNet MoveNet 

Detection Parts 
Body, Foot, 

Hand, Face 

Body,  

Part of face 

Body,  

Part of face 

Detection No. Many One One 

Key-points 137 17 17 

Operation Real-time Real-time Real-time 

Method Bottom-up Top-down Bottom-up 

 

These models can be applied to mobile devices in the 

following steps: 
 

Step 1. The outside view is imported via the camera of the 

mobile phone, where the screen presents the preview of the 

application. 

Step 2. The application captures a short moment of the 

preview. 

Step 3. The captured contents are entered into the estimation 

model. 

Step 4. The results of the above step are displayed on the 

preview screen. 

Step 5. The application shuts down if the user presses the 

back button. 

Step 6. Otherwise, Steps 2-5 are repeated. 

To compare the three models fairly and accurately, the input 

method of comparative applications was changed, and the 

same scenes were delivered to OpenPose, PoseNet, and 

MoveNet. The images of the COCO and MPII datasets [27, 28] 

(Figure 4) were grouped, and used for the comparative 

analysis. 
 

    
(a) 

    
(b) 

    
(c) 

 

Figure 4. Examples of image groups 

(a) First group with a single person (b) Second group with 

multiple persons (c) Third group without any person 
 

As shown in Figure 4, the first group consists of images with 

only one person. This group was used to compare the 

performance of OpenPose, PoseNet, and MoveNet.  

The second group consists of images with multiple persons. 

Since the mobile versions of PoseNet and MoveNet only apply 

to single-person pose estimation, the two models cannot be 

compared accurately with OpenPose on the second group of 

images. 

The third group comprises images, which contain no person, 

but include elements like animals, dolls, food, and natural 

environment. This group was adopted to verify whether the 

three models can estimate poses, when there is no person in 

the image, and check if their performance would be affected. 

Each of the three groups includes 1,000 different images. 

The performance of each model was measured by: 
 

𝑇𝑟
𝑔

= ∑ 𝐸(𝐼𝑘
𝑔

)

𝑛−1

𝑘=0

 (1) 

121



 

where, 𝑔 is the group number; 𝑇𝑟
𝑔

 is the total time to estimate 

all images in each run; 𝑛 is the number of images; 𝐸(𝐼𝑘
𝑔

) is the 

time to estimate an image 𝐼𝑘
𝑔

 within group 𝑔 . Formula (1) 

represents the time to estimate the poses in 1,000 images 

within group 𝑔. The 𝑇𝑟
𝑔

 value of each model was measured 10 

times. 

The sum 𝑆𝑔 of 𝑇𝑟
𝑔

 can be expressed as: 

 

𝑆𝑔 = ∑ 𝑇𝑟
𝑔

9

𝑟=0
 (2) 

 

The standard deviation 𝑆𝐷𝑔 of 𝑇𝑟
𝑔

 can be expressed as: 

 

𝑆𝐷𝑔 = √
∑(𝑇𝑟

𝑔
− 𝑇𝑔̅̅̅̅ )

10
 (3) 

 

Table 2 summarized the results of all three models. Note 

that all results were rounded to the third decimal place. 

 

Table 2. Total time (unit: s) to estimate 1,000 images within 

a group and its standard deviation 

 

Group 
OpenPose PoseNet 

Total time SD Total time SD 

1st 649.368 13.757 78.289 0.252 

2nd 643.384 21.915 77.732 0.630 

3rd 637.856 16.960 69.675 0.464 

 

Group 
MoveNet Lightning MoveNet Thunder 

Total time SD Total time SD 

1st 55.362 0.652 141.435 8.186 

2nd 56.122 1.086 141.005 3.832 

3rd 48.891 1.746 137.482 0.717 

 

As shown in Table 2, all models achieved the best 

performance on the images of the third group, for the images 

do not contain any person. PoseNet had the smallest standard 

deviation, i.e., the smallest performance fluctuation between 

runs. 

The performance required for each image was measured by: 

 

𝐴𝑀 =
1

𝑛1+𝑛2+𝑛3
(𝑇1 + 𝑇2 + 𝑇3) (4) 

 

where, 𝑀  is the model used to estimate the pose; 𝑛𝑖  is the 

number of images within group 𝑖 ; 𝑇𝑖  is the total time to 

estimate all images within group 𝑖; 𝐴𝑀  is the mean time to 

estimate poses in all images within all groups by model 𝑀. The 

𝐴𝑀 was measured ten times, and the average was taken as the 

final result (Table 3). 

As shown in Table 3, the models can be ranked in 

descending order of performance as MoveNet Lightning, 

PoseNet, MoveNet Thunder, and OpenPose. This is because 

OpenPose is a multi-person pose estimation model, and the 

bottom-up method is slower than the top-down method. 

 

Table 3. Mean time to estimate 1,000 images (unit: s) 

 

Models OpenPose PoseNet 
MoveNet 

Lightning 

MoveNet 

Thunder 

Average 

time  
643.536 75.232 53.458 139.974 

 

Aside from performance, the accuracy of each model was 

measured by: 

 

𝐶𝑔 =
𝑒𝑔

𝑛𝑔
 (5) 

 

where, 𝑔 is the group number; 𝑛𝑔  is the number of images 

within group g; 𝑒𝑔  is the number of the estimated correctly 

images within group 𝑔. The pose estimation accuracies of the 

models on the first and third groups are recorded in Table 4. 

The model accuracies on the second group are not shown, for 

PoseNet and MoveNet cannot estimate poses in images with 

multiple persons. All models, except for OpenPose, only 

output zeros and ones as the result of human identification, 

although the image groups have different objects and 

treatments. Therefore, the results between the first and third 

groups can be shared, and have meaningful results. 

 

Table 4. Pose estimation accuracies on images within the 

first and third groups 

 

Model OpenPose PoseNet 
MoveNet 

Lightning 

MoveNet 

Thunder 

Group 1 78.5% 96.7% 78.7% 79.5% 

Group 3 93.8% 98.4% 71.5% 81.6% 

Average 86.2% 97.6% 75.1% 80.6% 

 

As shown in Table 4, PoseNet had the highest accuracy, 

followed by OpenPose, and then MoveNet Thunder/ Lightning. 

Next, the multi-person pose estimation effect of OpenPose 

was verified. The relevant results are displayed in Figure 5. 

 

    

 

Figure 5. Results of OpenPose 

 

As shown in Figure 5, OpenPose successfully identified the 

multiple persons, and accurately estimated the poses within 

each image. But PoseNet and MoveNet failed to find such 

persons. 

A part of the execution results is reported in Figure 6, where 

the columns are in the order of original, OpenPose, PoseNet, 

and MoveNet Lightning/ Thunder, the first and second rows 

are the images, where the poses are successfully estimated, and 

the third row is the results of the third group. As shown in 

Figure 6, PoseNet and MoveNet Thunder outputted human 

poses, although no pose is included in the third group. 

Figure 7 shows the images in the first group, where the 

poses are incorrectly estimated. The results of PoseNet are 

presented in subgraphs (a) and (b): In both cases, PoseNet and 

MoveNet successfully inferred the poses, but OpenPose failed. 

The results of OpenPose are presented in subgraphs (c) and (d): 
In the case (c), both MoveNet models successfully inferred 

the pose, while OpenPose estimated only a part of the arm, and 

PoseNet failed to estimate the pose, as it could not recognize 

the person due to rotation; In the case (d), OpenPose 

recognized the doll as a human, and estimated the doll poses 

in addition to human poses, yet PoseNet and MoveNet 

estimated only human poses.  
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(a) (b)  (c) (d) (e) 

 

Figure 6. A part of the execution results (a) Original image (b) Results of OpenPose (c) Results of PoseNet (d) Results of y 

MoveNet Lightning (e) Results of MoveNet Thunder 

 

    

(a) (b) (c) (d) 

 

Figure 7. Incorrect outputs on the first group (a)(b) Results of PoseNet (c)(d) Results of OpenPose 

 

 

4. CONCLUSION 

 

The pose estimation on mobile devices is crucial, because it 

supports manipulations that cannot be performed with only a 

touch interface. For example, smartphones with Android 4.3 

Jelly Bean or newer versions have an additional function 

called Smart Stay, which tracks user eyes on the phone. 

Another emerging example is the function of Smart Scrolling, 

which captures user eyes and phone tilt. Moreover, the Motion 

Sense function of Pixel 4 enables media control without 

touching the phone, even if the screen is turned off. In addition, 

many other functions can be realized through using pose 

estimation. As a result, OpenPose, PoseNet, and MoveNet 

boast a great potential in mobile device applications. However, 

their advantages and disadvantages have not yet been 

investigated. 

This paper compares the mobile version of OpenPose, 

PoseNet, and MoveNet in terms of features and performance, 

using pre-classified images. All models could use normal 

cameras without any specific sensors. The comparison reveals 
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that MoveNet Lightning was the fastest model. OpenPose was 

12 times slower than MoveNet, but it could estimate the poses 

of multiple persons. Meanwhile, PoseNet achieved the highest 

accuracy. The limitation of our research is that the model 

performance was merely compared on images, and the results 

of the camera input were not measured, which will be 

considered in future research. Also, MoveNet MultiPose was 

recently developed and was unable to be compared in this 

paper. We consider it as the next research. 
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