
Comparative Analysis of OpenPose, PoseNet, and MoveNet Models for Pose Estimation in

Mobile Devices

BeomJun Jo1, SeongKi Kim2*

1 Dept. of Game Design and Development, Sangmyung University, Seoul 03016, Korea
2 Division of SW Convergence, Sangmyung University, Seoul 03016, Korea

Corresponding Author Email: skkim9226@smu.ac.kr

https://doi.org/10.18280/ts.390111 ABSTRACT

Received: 30 December 2021

Accepted: 26 February 2022

Pose estimation is a significant strategy that has been actively researched in various fields.

For example, the strategy has been adopted for motion capture in moviemaking, and

character control in video games. It can also be applied to implement the user interfaces of

mobile devices through human poses. Therefore, this paper compares and analyzes four

popular pose estimation models, namely, OpenPose, PoseNet, MoveNet Lightning, and

MoveNet Thunder, using pre-classified images. The results show that MoveNet Lightning

was the fastest, and OpenPose was the slowest among the four models. But OpenPose was

the only model capable of estimating the poses of multiple persons. The accuracies of

OpenPose, PoseNet, MoveNet Lightning, and MoveNet Thunder were 86.2%, 97.6%,

75.1%, and 80.6%, respectively.

Keywords:

mobile devices, MoveNet, OpenPose, pose

estimation, PoseNet

1. INTRODUCTION

Pose refers to the movement of a part of the human body,

such as the hands, arms, head, and face, that expresses an idea

or a feeling. It is a form of non-verbal communication often

used consciously, or unconsciously in daily life. The common

poses include handshaking, clapping, and dancing. If these

poses are taken as the user interface of devices, e.g., desktops,

laptops, and smartphones, it is possible to express intentions

more directly and obtain an extended experience. Apart from

that, poses can be applied to virtual reality (VR), augmented

reality (AR) and mixed reality (MR) to enhance the immersion

and presence of users. The pose-based user interfaces boast

another advantage: numerous poses can be defined, and used

to interact with the devices.

Pose estimation, the key to pose recognition in user

interfaces, can be utilized in various manners. In the field of

movies and video games, poses are commonly estimated by

motion capture. Actors are required to either wear a suit with

multiple sensors or attach markers to their bodies. During the

performance, computer graphics are added to the captured

media, making the expression vivid and lively. In the field of

video games, Nintendo released the Wii, a home video game

console, in 2006 [1]. The controller of the console uses an

infrared sensor, and allows operations on the screen, such as

cursor movement on a personal computer (PC). Besides

infrared sensors, various built-in sensors enable us to play

realistic games, such as tennis, golf, and boxing. In 2010,

Microsoft launched Kinect, a peripheral device of Xbox 360

[2]. Kinect relies on a camera to estimate poses and a

microphone to recognize voices. As a result, users can play

games without the aid of additional controllers. Although not

embedded in the latest Xbox, Kinect continues to be used for

military and research purposes. Similarly, the PlayStation

camera [3], move controller [4], and VIVE tracker [5] are

employed in video games.

In addition to motion capture and video games, pose

estimation plays a significant role in smartphones. Despite the

expansion of the screen and smartphones itself, and the

reduction of the bezel, the current size of smartphones is not

enough for various expressions. To overcome the limitation,

pose estimation could be adopted to provide a convenient input

method, in replacement of the traditional touch approach [6].

For example, Samsung Health [7] and Apple Fitness+ [8]

could adopt pose estimation to inform users about the

correctness of their poses via a mobile device. Pose estimation

can also be employed to interact with AR contents [9] on

smartphones.

OpenPose, PoseNet, and MoveNet are available for pose

estimation on mobile devices. All these methods estimate

poses through deep learning of camera inputs, eliminating the

need for sensors, and therefore apply to most devices.

To the best of our knowledge, this paper is the first attempt

to summarize and compare the features and prospects of

OpenPose, PoseNet, and MoveNet, which are common tools

for pose estimation on mobile devices. The remainder of this

paper is organized as follows: Section 2 summarizes the

functions of OpenPose, PoseNet, and MoveNet for a better

understanding of the research; Section 3 evaluates the three

models in terms of the features and performance in the same

environment; Section 4 puts forward the conclusions.

2. MODELS

Poses are generally estimated by top-down or bottom-up

methods. The top-down method first discovers a person in the

input, and derives the pose in his/her bounding box. The

bottom-up method infers the pose from all the key-points in

the input, as well as the relationship between these points.

Traitement du Signal
Vol. 39, No. 1, February, 2022, pp. 119-124

Journal homepage: http://iieta.org/journals/ts

119

https://crossmark.crossref.org/dialog/?doi=10.18280/ts.390111&domain=pdf

(b) Part confidence maps

(a) Input image (c) PAFs (d) Bipartite matching (e) Results

Figure 1. Overall process of OpenPose

2.1 OpenPose

In 2017, Cao et al. [10] at Carnegie Mellon University

proposed OpenPose. This open source model marks the first

attempt to estimate multi-person poses in the real time. It uses

the bottom-up method to overcome the limitations of the top-

down method. The flow of OpenPose is illustrated in Figure 1.

As shown in Figure 1 (a), two-dimensional (2D)

images/videos are imported to the model. Then, a confidence

map is obtained from the input. Through non-maximum

suppression (NMS), the candidates for the body are identified

in the confidence map. After identifying an object, a bounding

box is created to contain the object, and the probability of the

object is set as a score. Next, the scores are sorted in

descending order, and the redundant bounding boxes are

removed by the following criterion: the intersection of union

(IoU) is greater than the threshold, which means the two

bounding boxes identify the same object. The IoU refers to the

ratio of the overlapping region to the combined region. The

removal of redundant bounding boxes is known as NMS. On

this basis, OpenPose creates part affinity fields (PAFs), a set

of flow fields representing the relationships between parts of

many persons. Finally, bipartite matching is performed on the

candidates using confidence maps and PAFs, producing full-

body poses.

OpenPose and Alpha-Pose are still under research [11, 12].

OpenPose was initially written in C++, and recently in Python.

The applicability of different versions depends on central

processing unit (CPU) or Unity [13].

2.2 PoseNet

PoseNet is an open source machine learning model created

by Google Creative Lab. Capable of estimating human poses

in the real time [14], the model works on the recently released

COCO person key-point detection dataset, which tracks the

key-points of the entire body.

Single-person pose estimation uses four elements as input:

an input image, an image scale factor, a horizontal flip, and an

output stride. The single-person detection algorithm is faster

and simpler than the multi-person detection algorithm. Besides

the four elements above, three other elements are required in

the input of multi-person pose estimation: the maximum

number of detected poses, the threshold for pose confidence

score, and the NMS radius. These additional elements improve

the accuracy of multi-person pose estimation. The estimation

results include pose confidence scores and key-points. Figure

2 illustrates the flow of PoseNet.

Figure 2. Flow of PoseNet [15]

As shown in Figure 2, PoseNet for mobile devices operating

on Android and iOS has been developed under TensorFlow

Lite [15-17]. The overall pipeline is similar to the JavaScript

version. Currently, there is a face tracker called Facemesh,

which combines PoseNet into a pose animator [18]. Facemesh

can animate full-body characters, similar to motion capture.

2.3 MoveNet

MoveNet [19, 20] is a Google-based inference model

developed by IncludeHealth, a digital health company [21].

IncludeHealth unveiled the model in 2021, and solicited help

from Google to support remote treatment of patients. Similar

to PoseNet, the web version of MoveNet uses TensorFlow.js,

and the mobile version uses TensorFlow Lite. There are two

versions of MoveNet: the performance-oriented Lightning

[22], and the accuracy-oriented Thunder [23]. The two models

differ in input size and depth multiplier. In terms of input,

Lightning receives a video or an image of a fixed size

(192×192) and three channels, and employs 1.0 depth

multiplier. In contrast, Thunder receives an input of the size

256×256 and three channels, and employs 1.75 depth

multiplier. The depth multiplier changes the number of

channels of the input video/image, which generally adopts the

red-green-blue (RGB) format. Yet feature maps can also be

regarded as one channel in each layer. Meanwhile, Thunder

has 1.75 times more layers for deep learning than Lightning.

Hence, it performs 1.75 times more calculations.

MoveNet is a bottom-up model relies on TensorFlow object

detection API and MobileNet V2 as a feature extractor. In the

TensorFlow object detection API, there are multiple detection

models supporting TensorFlow 1 and TensorFlow 2. MoveNet

follows CenterNet [24, 25], a detection API [26]. Different

from the standard anchor (bounding box)-based detection

model, CenterNet takes the center point as the only anchor,

120

and searches for and classifies objects by processing regional

proposals, rather than inferring objects from the IoU value.

Without requiring NMS, CenterNet recognizes the difference

between objects in one stage, and exhibits a high performance.

Figure 3. Flow of MoveNet [19]

As shown in Figure 3, MoveNet [19] calculates all four

processes simultaneously. Once a person center heatmap is

prepared to identify each person, the location with the highest

score is selected. Then, a set of key-points for the person is

initialized based on the key-points obtained through regression.

A person is identified, when the regression fits the

arrangement of prepared key-points into a person.

Furthermore, each pixel is multiplied by a weight, which is

inversely proportional to the distance from the regressed key-

point. In this way, the key-points from the persons in the

background are excluded from the computation. In the end, the

set of key-points is finalized according to the maximum

heatmap values in each key-point channel.

3. RESULTS AND DISCUSSION

Table 1 compares the basic specifications of OpenPose,

PoseNet, and MoveNet. It can be observed that the number of

key-points is the most prominent difference between these

models. PoseNet provides a total of 17 key-points: 5 in the face

and 12 in the body. MoveNet has the same key-points as

PoseNet. OpenPose supports 137 key-points: 25 in the body,

including the foot, 21 in each hand, and 70 in the face. Overall,

OpenPose can track the body in greater details than the other

two models. Another difference lies in the pose estimation

method: PoseNet uses the top-down method, while OpenPose

and MoveNet adopt the bottom-up method. The top-down

method estimates a pose within a person’s bounding box after

detecting the person. On the contrary, the bottom-up method

predicts the key-points of persons in the input, and estimates

the pose from the correlation between the key-points.

Table 1. Basic specifications of OpenPose, PoseNet, and

MoveNet

 OpenPose PoseNet MoveNet

Detection Parts
Body, Foot,

Hand, Face

Body,

Part of face

Body,

Part of face

Detection No. Many One One

Key-points 137 17 17

Operation Real-time Real-time Real-time

Method Bottom-up Top-down Bottom-up

These models can be applied to mobile devices in the

following steps:

Step 1. The outside view is imported via the camera of the

mobile phone, where the screen presents the preview of the

application.

Step 2. The application captures a short moment of the

preview.

Step 3. The captured contents are entered into the estimation

model.

Step 4. The results of the above step are displayed on the

preview screen.

Step 5. The application shuts down if the user presses the

back button.

Step 6. Otherwise, Steps 2-5 are repeated.

To compare the three models fairly and accurately, the input

method of comparative applications was changed, and the

same scenes were delivered to OpenPose, PoseNet, and

MoveNet. The images of the COCO and MPII datasets [27, 28]

(Figure 4) were grouped, and used for the comparative

analysis.

(a)

(b)

(c)

Figure 4. Examples of image groups

(a) First group with a single person (b) Second group with

multiple persons (c) Third group without any person

As shown in Figure 4, the first group consists of images with

only one person. This group was used to compare the

performance of OpenPose, PoseNet, and MoveNet.

The second group consists of images with multiple persons.

Since the mobile versions of PoseNet and MoveNet only apply

to single-person pose estimation, the two models cannot be

compared accurately with OpenPose on the second group of

images.

The third group comprises images, which contain no person,

but include elements like animals, dolls, food, and natural

environment. This group was adopted to verify whether the

three models can estimate poses, when there is no person in

the image, and check if their performance would be affected.

Each of the three groups includes 1,000 different images.

The performance of each model was measured by:

𝑇𝑟
𝑔

= ∑ 𝐸(𝐼𝑘
𝑔

)

𝑛−1

𝑘=0

 (1)

121

where, 𝑔 is the group number; 𝑇𝑟
𝑔

 is the total time to estimate

all images in each run; 𝑛 is the number of images; 𝐸(𝐼𝑘
𝑔

) is the

time to estimate an image 𝐼𝑘
𝑔

 within group 𝑔 . Formula (1)

represents the time to estimate the poses in 1,000 images

within group 𝑔. The 𝑇𝑟
𝑔

 value of each model was measured 10

times.

The sum 𝑆𝑔 of 𝑇𝑟
𝑔

 can be expressed as:

𝑆𝑔 = ∑ 𝑇𝑟
𝑔

9

𝑟=0
 (2)

The standard deviation 𝑆𝐷𝑔 of 𝑇𝑟
𝑔

 can be expressed as:

𝑆𝐷𝑔 = √
∑(𝑇𝑟

𝑔
− 𝑇𝑔̅̅̅̅)

10
 (3)

Table 2 summarized the results of all three models. Note

that all results were rounded to the third decimal place.

Table 2. Total time (unit: s) to estimate 1,000 images within

a group and its standard deviation

Group
OpenPose PoseNet

Total time SD Total time SD

1st 649.368 13.757 78.289 0.252

2nd 643.384 21.915 77.732 0.630

3rd 637.856 16.960 69.675 0.464

Group
MoveNet Lightning MoveNet Thunder

Total time SD Total time SD

1st 55.362 0.652 141.435 8.186

2nd 56.122 1.086 141.005 3.832

3rd 48.891 1.746 137.482 0.717

As shown in Table 2, all models achieved the best

performance on the images of the third group, for the images

do not contain any person. PoseNet had the smallest standard

deviation, i.e., the smallest performance fluctuation between

runs.

The performance required for each image was measured by:

𝐴𝑀 =
1

𝑛1+𝑛2+𝑛3
(𝑇1 + 𝑇2 + 𝑇3) (4)

where, 𝑀 is the model used to estimate the pose; 𝑛𝑖 is the

number of images within group 𝑖 ; 𝑇𝑖 is the total time to

estimate all images within group 𝑖; 𝐴𝑀 is the mean time to

estimate poses in all images within all groups by model 𝑀. The

𝐴𝑀 was measured ten times, and the average was taken as the

final result (Table 3).

As shown in Table 3, the models can be ranked in

descending order of performance as MoveNet Lightning,

PoseNet, MoveNet Thunder, and OpenPose. This is because

OpenPose is a multi-person pose estimation model, and the

bottom-up method is slower than the top-down method.

Table 3. Mean time to estimate 1,000 images (unit: s)

Models OpenPose PoseNet
MoveNet

Lightning

MoveNet

Thunder

Average

time
643.536 75.232 53.458 139.974

Aside from performance, the accuracy of each model was

measured by:

𝐶𝑔 =
𝑒𝑔

𝑛𝑔
 (5)

where, 𝑔 is the group number; 𝑛𝑔 is the number of images

within group g; 𝑒𝑔 is the number of the estimated correctly

images within group 𝑔. The pose estimation accuracies of the

models on the first and third groups are recorded in Table 4.

The model accuracies on the second group are not shown, for

PoseNet and MoveNet cannot estimate poses in images with

multiple persons. All models, except for OpenPose, only

output zeros and ones as the result of human identification,

although the image groups have different objects and

treatments. Therefore, the results between the first and third

groups can be shared, and have meaningful results.

Table 4. Pose estimation accuracies on images within the

first and third groups

Model OpenPose PoseNet
MoveNet

Lightning

MoveNet

Thunder

Group 1 78.5% 96.7% 78.7% 79.5%

Group 3 93.8% 98.4% 71.5% 81.6%

Average 86.2% 97.6% 75.1% 80.6%

As shown in Table 4, PoseNet had the highest accuracy,

followed by OpenPose, and then MoveNet Thunder/ Lightning.

Next, the multi-person pose estimation effect of OpenPose

was verified. The relevant results are displayed in Figure 5.

Figure 5. Results of OpenPose

As shown in Figure 5, OpenPose successfully identified the

multiple persons, and accurately estimated the poses within

each image. But PoseNet and MoveNet failed to find such

persons.

A part of the execution results is reported in Figure 6, where

the columns are in the order of original, OpenPose, PoseNet,

and MoveNet Lightning/ Thunder, the first and second rows

are the images, where the poses are successfully estimated, and

the third row is the results of the third group. As shown in

Figure 6, PoseNet and MoveNet Thunder outputted human

poses, although no pose is included in the third group.

Figure 7 shows the images in the first group, where the

poses are incorrectly estimated. The results of PoseNet are

presented in subgraphs (a) and (b): In both cases, PoseNet and

MoveNet successfully inferred the poses, but OpenPose failed.

The results of OpenPose are presented in subgraphs (c) and (d):
In the case (c), both MoveNet models successfully inferred

the pose, while OpenPose estimated only a part of the arm, and

PoseNet failed to estimate the pose, as it could not recognize

the person due to rotation; In the case (d), OpenPose

recognized the doll as a human, and estimated the doll poses

in addition to human poses, yet PoseNet and MoveNet

estimated only human poses.

122

(a) (b) (c) (d) (e)

Figure 6. A part of the execution results (a) Original image (b) Results of OpenPose (c) Results of PoseNet (d) Results of y

MoveNet Lightning (e) Results of MoveNet Thunder

(a) (b) (c) (d)

Figure 7. Incorrect outputs on the first group (a)(b) Results of PoseNet (c)(d) Results of OpenPose

4. CONCLUSION

The pose estimation on mobile devices is crucial, because it

supports manipulations that cannot be performed with only a

touch interface. For example, smartphones with Android 4.3

Jelly Bean or newer versions have an additional function

called Smart Stay, which tracks user eyes on the phone.

Another emerging example is the function of Smart Scrolling,

which captures user eyes and phone tilt. Moreover, the Motion

Sense function of Pixel 4 enables media control without

touching the phone, even if the screen is turned off. In addition,

many other functions can be realized through using pose

estimation. As a result, OpenPose, PoseNet, and MoveNet

boast a great potential in mobile device applications. However,

their advantages and disadvantages have not yet been

investigated.

This paper compares the mobile version of OpenPose,

PoseNet, and MoveNet in terms of features and performance,

using pre-classified images. All models could use normal

cameras without any specific sensors. The comparison reveals

123

that MoveNet Lightning was the fastest model. OpenPose was

12 times slower than MoveNet, but it could estimate the poses

of multiple persons. Meanwhile, PoseNet achieved the highest

accuracy. The limitation of our research is that the model

performance was merely compared on images, and the results

of the camera input were not measured, which will be

considered in future research. Also, MoveNet MultiPose was

recently developed and was unable to be compared in this

paper. We consider it as the next research.

REFERENCES

[1] Wikipedia. Wii. https://en.wikipedia.org/wiki/Wii,

accessed on Feb. 17, 2022.

[2] Microsoft. Azure Kinect DK.

https://azure.microsoft.com/en-us/services/kinect-dk/,

accessed on Feb. 17, 2022.

[3] SONY Playstation. PlayStation Camera.

https://www.playstation.com/en-

us/accessories/playstation-camera/, accessed on Feb. 17,

2022.

[4] SONY Playstation. Playstation Move Motion Controller.

https://www.playstation.com/en-

us/accessories/playstation-move-motion-controller/,

accessed on Feb. 17, 2022.

[5] Vive. VIVE tracker (3.0).

https://www.vive.com/us/accessory/tracker3/, accessed

on Feb. 17, 2022.

[6] Samsung Newsroom. [Infographic] A rich life with

Samsung Galaxy S4. https://news.samsung.com/kr/4306,

accessed on Feb. 17, 2022.

[7] Youtube. How to use Samsung Health with Neo QLED |

Samsung.

https://www.youtube.com/watch?v=7i3q1tw7Et0,

accessed on Feb. 17, 2022.

[8] Apple. Apple fitness+ - Apple.

https://www.apple.com/apple-fitness-plus/, accessed on

Feb. 17, 2022.

[9] Youtube. Minecraft Earth: Official reveal trailer.

https://youtu.be/AQEizp-VrVU, accessed on Feb. 17,

2022.

[10] Cao, Z., Simon, T., Wei, S.E., Sheikh, Y. (2017).

Realtime multi-person 2D pose estimation using part

affinity fields. 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 1302-1310.

http://dx.doi.org/10.1109/CVPR.2017.143

[11] Github. CMU-Perceptual-Computing-Lab/openpose.

https://github.com/CMU-Perceptual-Computing-

Lab/openpose, accessed on Feb. 17, 2022.

[12] Github. MVIG-SJTU/AlphaPose.

https://github.com/MVIG-SJTU/AlphaPose, accessed on

Feb. 17, 2022.

[13] Github. CMU-Perceptual-Computing-

Lab/openpose_unity_plugin. https://github.com/CMU-

Perceptual-Computing-Lab/openpose_unity_plugin,

accessed on Feb. 17, 2022.

[14] TensorFlow. Real-time human pose estimation in the

browser with TensorFlow.Js.

https://medium.com/tensorflow/real-time-human-pose-

estimation-in-the-browser-with-tensorflow-js-

7dd0bc881cd5, accessed on Feb. 17, 2022.

[15] TensorFlow. Pose estimation.

https://www.tensorflow.org/lite/examples/pose_estimati

on/overview, accessed on Feb. 17, 2022.

[16] Github. TensorFlow lite pose estimation Android demo.

https://github.com/tensorflow/examples/tree/master/lite/

examples/pose_estimation/android, accessed on Feb. 17,

2022.

[17] TensorFlow. Track human poses in real-time on Android

with TensorFlow Lite.

https://medium.com/tensorflow/track-human-poses-in-

real-time-on-android-with-tensorflow-lite-e66d0f3e6f9e,

accessed on Feb. 17, 2022.

[18] Tensorflow. Pose Animator - An open source tool to

bring SVG characters to life in the browser via motion

capture. https://blog.tensorflow.org/2020/05/pose-

animator-open-source-tool-to-bring-svg-characters-to-

life.html, accessed on Feb. 17, 2022.

[19] TensorFlow. MoveNet: Ultra fast and accurate pose

detection model.

https://www.tensorflow.org/hub/tutorials/movenet,

accessed on Feb. 17, 2022.

[20] Tensorflow. Pose estimation and classification on edge

devices with MoveNet and TensorFlow Lite.

https://blog.tensorflow.org/2021/08/pose-estimation-

and-classification-on-edge-devices-with-MoveNet-and-

TensorFlow-Lite.html, accessed on Feb. 17, 2022.

[21] Tensorflow. Next-generation pose detection with

MoveNet and TensorFlow.Js.

https://blog.tensorflow.org/2021/05/next-generation-

pose-detection-with-movenet-and-tensorflowjs.html,

accessed on Feb. 17, 2022.

[22] Tfhub.dev. movenet/singlepose/lightning.

https://tfhub.dev/google/movenet/singlepose/lightning/4,

accessed on Feb. 17, 2022.

[23] Tfhub.dev. movenet/singlepose/thunder.

https://tfhub.dev/google/movenet/singlepose/thunder/4,

accessed on Feb. 17, 2022.

[24] Zhou, X., Wang, D., Krähenbühl, P. (2019). Objects as

Points. ArXiv, https://arxiv.org/abs/1904.07850.

[25] Github. xingyizhou/CenterNet.

https://github.com/xingyizhou/CenterNet, accessed on

Feb. 17, 2022.

[26] Github. tensorflow/models.

https://github.com/tensorflow/models/tree/master/resear

ch/object_detection, accessed on Feb. 17, 2022.

[27] Cocodataset.org. COCO - common objects in context.

https://cocodataset.org/, accessed on Feb. 17, 2022.

[28] Mpg.de. MPII Human Pose Database. http://human-

pose.mpi-inf.mpg.de/, accessed on Feb. 17, 2022.

124

