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This paper presents a novel and efficient optimization approach based on the Artificial 

Ecosystem Optimization (AEO) algorithm to solve the problem of finding optimal location 

and sizing of Distributed Generation (DGs) in radial distribution systems. The objective is 

to satisfy a fluctuating demand in a constant and instantaneous way while respecting the 

requirements of power loss reduction, operating cost minimization and voltage profile 

improvement within the equality and inequality constraints. The robustness of the 

proposed technique in terms of solution quality and convergence characteristics is 

evaluated using the IEEE-33 bus radial distribution network test system. The simulation 

results are compared with those of other methods recently used in the literature for the 

same test system. The experimental outcomes show that the proposed AEO approach is 

comparatively able to achieve a higher quality solution within a timeliness of computation. 
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1. INTRODUCTION

Nowadays, the integration of DGs is a key step in the active 

network management process for economic, ecological and 

political reasons [1]. The active management process permits, 

in particular, to decrease power plant capacity, increase the use 

of distribution networks, reinforce system security and 

minimize both operational costs and CO2 emission rates.  

However, several challenges constrain the effective DGs 

integration. Among these challenges, the location and size of 

DG in the grid constitute a major integration issue. In fact, DG 

is located closer to the consumer and requires less transmission 

and distribution network services [2].  

Also, experience shows that such integration affects the 

power flows in the grid. DGs are mainly based on renewable 

energies, local combined heat and power (CHP) plants and the 

use of wastes. For economic and geographical reasons, many 

of these sustainable energy sources are integrated into the 

distribution networks rather than transmission grids. The 

generation is then distributed within the system and not 

centralized. 

But this integration leads to the inversion of the power flows 

and the distribution network becomes an active system where 

voltages, real (P) and reactive (Q) power flows are defined by 

the production as well as the loads and not a passive 

component feeding loads in a unidirectional power flow. The 

change in the behavior of the grid caused by DGs 

incorporation leads to important technical and economic 

consequences for the power system.  

These are manifested by the increase in system losses, the 

disruption of voltage performance and consequently the 

increase in operational cost. Therefore, effective network 

connection involves the search for the optimal DGs location 

and size to address the above problems. Achieving this 

objective is an optimization problem for which many 

approaches have been proposed in order to provide solutions 

using appropriate methods. Mathematical methods include, 

among others, Newton Raphson load flow dedicated initially 

to the transmission networks are not adapted to the radial 

distribution network to which the DGs are connected and 

consequently do not provide accurate results [ 3]. Backward 

forward sweep is the most appropriate method for load flow 

analysis of radial distribution network [4].  

Different metaheuristic methods are proposed to solve the 

DGs integration problem for optimal location and size such as 

the Whale Optimization Algorithm (WOA) [5], the Invasive 

Weed Optimization Algorithm (IWO) [6], the Artificial Bee 

Colony algorithm (ABC) [7], and the Dragonfly optimization 

Algorithm (DA) [8], multiple objective particle swarm 

optimization algorithm (MOPSO) [9]. The hybrid approach, 

which combines analytical and metaheuristic tools to deal with 

DGs optimal location and sizing problem, is suggested in Ref. 

[10]. 

Accordingly, this paper applies an efficient optimization 

approach based on the Artificial Ecosystem Optimization 

(AEO) [11] to solve the problem of optimal DGs location and 

sizing in radial distribution network.  

The objective is to evaluate the convergence capabilities 

and the respect of the equality and inequality constraints of the 

AEO algorithm through various simulations.  

These are performed on IEEE-33 bus test system by creating 

two different situations according to the type of integrated DG. 

Type 1 DG that injects only real power P to the system and 

Type 2 DG that injects both real P and reactive power Q [12]. 

The obtained results are compared to those of previous 

methods. The rest part of this paper is outlined as follows: 

Section II describes the mathematical model of the DG 

integration problem. Section III details the procedures of the 

AEO algorithm. Section IV provides simulation results. 

Finally, the main conclusions are given in Section V.
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2. PROBLEM FORMULATION 
 

DGs integration problem is to minimize the active power 

losses in the system while satisfying several constraints 

associated to the power balance, voltage limits and operational 

cost. The complexity of the problem depends on the nature of 

the objective function and the type of the considered 

constraints. The optimal placement and sizing of DG in 

distribution network is determined from the solution of load 

flow equations using backward forward sweep technique 

within the AEO optimization framework (section 3). The 

objective function is defined as follows: 

 

𝑚𝑖𝑛𝑓 = 𝑚𝑖𝑛𝑇𝑃𝐿𝑂𝑆𝑆 = 𝑚𝑖𝑛 ∑ 𝑃𝐿𝑂𝑆𝑆𝑖

𝑛𝑏𝑟

𝑖=1

 (1) 

 

where, 𝑃𝐿𝑂𝑆𝑆𝑖
 is power loss in i-th branch, 𝑛𝑏𝑟 is the number 

of branches, 𝑇𝑃𝐿𝑂𝑆𝑆 is total real power loss. 

 

𝑃𝐿𝑂𝑆𝑆𝑖
= 𝑅𝑖  ∙ |𝐼𝑖|2 (2) 

 

where, 𝑅𝑖 is the resistance of i-th branch in the network, 𝐼𝑖  is 

the current magnitude of i-th branch.  

The problem is to minimize system power losses while 

respecting the following constraints: 

 

2.1 Equality constraints  

 

Equality constraints are given by the power flow equations 

as follows:  

 

𝑃𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑖𝑜𝑛 + ∑ 𝑃𝐷𝐺 = 𝑃𝑙𝑜𝑎𝑑 + ∑ 𝑃𝐿𝑂𝑆𝑆  (3) 

 

𝑄𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑖𝑜𝑛 + ∑ 𝑄𝐷𝐺 = 𝑄𝑙𝑜𝑎𝑑 + ∑ 𝑄𝐿𝑂𝑆𝑆 (4) 

 

2.2 Inequality constraints 

 

The inequality constraints are defined as follows:  

 

2.2.1 Bus voltage limits 

 

𝑉𝑚𝑖𝑛 ≤ |𝑉𝑖| ≤ 𝑉𝑚𝑎𝑥      ;          𝑖 = 1,2, … , 𝑛𝑏𝑢𝑠 (5) 

 

where, 𝑉𝑚𝑖𝑛 = 0.95 (𝑝𝑢), and 𝑉𝑚𝑎𝑥 = 1.05 (𝑝𝑢). 

 

2.2.2 Branch current 

 

𝐼𝑖 ≤ 𝐼𝑖𝑚𝑎𝑥      ;          𝑖 = 1,2, … , 𝑛𝑏𝑟 (6) 

 

where, 𝐼𝑖  is the current magnitude of i-th branch, 𝐼𝑖𝑚𝑎𝑥  is the 

maximum permitted current of i-th branch. 

 

2.2.3 Size of DG  

 

𝑃𝐷𝐺
𝑚𝑖𝑛 ≤ |𝑃𝐷𝐺𝑖| ≤ 𝑃𝐷𝐺

𝑚𝑎𝑥; (7) 

  

𝑄𝐷𝐺
𝑚𝑖𝑛 ≤ |𝑄𝐷𝐺𝑖| ≤ 𝑄𝐷𝐺

𝑚𝑎𝑥; (8) 

 

2.2.4 Position of DG 

 

2 ≤ 𝐷𝐺𝑏𝑢𝑠 ≤ 𝑛𝑏𝑢𝑠; (9) 

where, 𝑛𝑏𝑢𝑠 is the number of buses, 𝐷𝐺𝑏𝑢𝑠 is the bus number 

of the DG installation, 𝑉𝑖 the bus voltage. 

 

2.3 Operational costs 

 

Operational costs are calculated using the following 

equations [5, 8]: 

 

𝐶𝑇𝑃𝐿𝑂𝑆𝑆
= 𝑇𝑃𝐿𝑂𝑆𝑆 × (𝐾𝑃 + 𝐾𝑒 + 𝐿𝑠𝑓 × 8760)$ (10) 

 

𝐶𝐷𝐺 = ∑ 𝐾𝐷𝐺𝑃
× 𝑃𝐷𝐺 + ∑ 𝐾𝐷𝐺𝑞

× 𝑄𝐷𝐺  (11) 

 

𝑇𝑂𝐶 = 𝐶𝑇𝑃𝐿𝑂𝑆𝑆
+ 𝐶𝐷𝐺 (12) 

 

where, 𝐾𝑃 is annual demand cost of power loss ($/kW), 𝐾𝑒 is 

the annual cost of energy loss ($/kWh); 𝐿𝑠𝑓 is the loss factor 

expressed as: 

 

𝐿𝑠𝑓 = 𝐾 × 𝐿𝑓 + (1 − 𝐾) × 𝐿𝑓
2  (13) 

 

where,  

𝐾 = 0.2,    𝐿𝑓 = 0.47,    𝐾𝑃 = 57.6923 $ 𝐾𝑊⁄ , 

𝐾𝑒 = 0.0096153 $ 𝐾𝑊ℎ⁄ 𝐾𝐷𝐺𝑃
= 5 $ 𝐾𝑊⁄ ,  

𝐾𝐷𝐺𝑄
= 0.2211 $ 𝐾𝑉𝑎𝑟⁄ . 

 

 

3. PROPOSED AEO ALGORITHM  
 

AEO algorithm is created by Zhao et al. [11] in 2019. 

According to the study [11] the AEO algorithm uses three 

different operators including production, consumption and 

decomposition. By analogy with living beings’ natural 

behaviors within the terrestrial ecosystem. The fundamental 

utility of these operators is to improve the optimum search 

process. This process is fully detailed in Ref. [11]. This section 

focuses on the mathematical basis supporting this tool. Figure 

1 shows an AEO ecosystem according to which all individuals 

are ranked in decreasing sense of their fitness function, such 

that highest fitness value corresponds to highest energy level. 

 

 
 

Figure 1. AEO ecosystem adapted from [11] 

 

The mathematical equations that support the AEO model 

are given below [11]: 

 

𝑥1(𝑡 + 1) = (1 − 𝑎)𝑥𝑛(𝑡) + 𝑎𝑥𝑟𝑎𝑛𝑑(𝑡) (14) 

 

𝑎 = (1 −
𝑡

𝑇
) 𝑟1 (15) 

   

   

   

   

   

      

   

Producer  
Consumer   
Decomposer   

Energy level  High Low     

22



𝑥𝑟𝑎𝑛𝑑 = 𝒓(𝑈 − 𝐿) + 𝐿 (16) 

 

𝐶 =
1

2

𝑉1

|𝑉2|
 (17) 

 

𝑉1~ 𝑁(0,1), 𝑉2~ 𝑁(0,1) (18) 

 

where, N(0,1) is a normal distribution with mean = 0 and 

standard deviation = 1. 

If the consumer is randomly selected as herbivore, it will eat 

only producers. The following equation describes this 

behavior:  

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝐶 ∙ (𝑥𝑖(𝑡) − 𝑥1(𝑡 + 1)), 

𝑖 ∈ [2, … , 𝑛] 
(19) 

 

If the consumer is selected as a carnivore, it will eat only the 

consumers with the higher energy level (lower fitness value). 

The equation modeling the consumption behavior of a 

carnivore is as follows: 

 

{
𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝐶 ∙ (𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)) , 𝑖 ∈ [2, … , 𝑛] 

𝑗 = 𝑟𝑎𝑛𝑑𝑖([2 𝑖 − 1])
 (20) 

 

When the consumer is chosen as an omnivore, the consumer 

has the ability to hunt other consumers with higher energy 

levels and/or producers. The consumption behavior of an 

omnivore can be mathematically formulated as follows: 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝐶 ∙ (𝑟2 ∙ (𝑥𝑖(𝑡) − 𝑥1(𝑡 + 1))) +

(1 − 𝑟2) (𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)) ,                       𝑖 ∈ [3, … , 𝑛]

𝑗 = 𝑟𝑎𝑛𝑑𝑖([2 𝑖 − 1])                                                 

 (21) 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑛(𝑡) + 𝐷 ∙ (𝑒 ∙ 𝑥𝑛(𝑡) − ℎ ∙ 𝑥𝑖(𝑡)), 

                  𝑖 = 1, … , 𝑛 
(22) 

 

𝐷 = 3𝑢,        𝑢 ~ 𝑁(0,1) (23) 

 

𝑒 = 𝑟3 ∙ 𝑟𝑎𝑛𝑑𝑖([1 2]) − 1, (24) 

 

ℎ = 2 ∙ 𝑟3 − 1, (25) 

 

where, 𝑎 is linear weighting coefficient, 𝑟 is random vector 

from the interval [0, 1], 𝑟1, 𝑟2 𝑎𝑛𝑑 𝑟3 are random numbers in 

[0, 1], 𝐿 is search space lower limit, 𝑈is search space upper 

limit, 𝑁(0,1)  is a normal distribution, 𝐶 𝑎𝑛𝑑 𝐷  are 

consumption and decomposition factors, respectively. 

AEO initiates the optimization by generating a random 

population. For each iteration, the position of the first 

individual (producer) is updated based on (14), while other 

individuals in the population will update their positions 

according to (19), (20), and (21) regarding the type of the 

consumer except if the individual obtains a higher fitness value, 

then the position of such individual will be updated based on 

(22). The updating process will continue until the AEO 

reaches the end criterion. Finally, the optimal solution will be 

introduced. The overall process of the AEO is represented in 

Figure 2. 

 

 
 

Figure 2. The AEO algorithm steps 

 

 

4. TESTS AND RESULTS  

 

The IEEE-33 bus test system presented in Figure 3 is used 

to evaluate the AEO robustness. Its characteristics are listed in 

Table 1 [13]: 

 

Table 1. IEEE-33 bus characteristics 

  
Characteristics Values Units 

nbus 33 [bus] 

nbr 32 [branch] 

Pload 3.72 [MW] 
Qload 2.30 [MVar] 

Vsubstat 12.66 [KV] 
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Figure 3. IEEE-33 bus test system [11] 

The results reported in Table 2, clearly show how losses 

decrease from 210.99 KW (base values) to 73.13 KW for DG 

type 1 integration and decrease to 11.76 KW for DG type 2 

installation, minimum voltage values increase and operational 

costs reduce. These important outcomes are achieved during 

the first thirty iterations as illustrated in Figure 4. 

This notable decrease in losses enhanced in Figure 6 is 

accompanied by an improvement in the voltage profile 

highlighted in Figure 5.  

AEO results are compared to those found with WOA, IWO 

ALO, and ABC methods as shown in Tables 3 and 4 for DG 

type 1 and DG type 2, respectively. AEO results are much 

better. 

 

 

 
 

Figure 4. AEO convergence characteristics 

 

 
 

Figure 5. Voltage profile of IEEE-33 bus system 

 

 
 

Figure 6. Power Loss at every branch of IEEE-33 bus test system 
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Table 2. Summary of the obtained results 

 

 Uncompensated 

Compensated 

Type 1 Type 2 

bus 𝑃𝐷𝐺(𝐾𝑊) bus 𝑃𝐷𝐺(𝐾𝑊) 𝑄𝐷𝐺(𝐾𝑉𝑎𝑟) 

DG Optimal location and size 
 

- 

14 755.7328 13 798.54 371.9419 

30 1031.13 30 1039.2820 1008.2937 

24 961.1931 24 1106.6686 504.5372 

Total size of DG   2748.05  2944.4907 1884.7728 

Total 𝑃𝐿𝑂𝑆𝑆 (KW) 210.99 73.13 11.76 

Total 𝑄𝐿𝑂𝑆𝑆 (Kvar) 143.13 50.78 9.8 

% Reduction in 𝑃𝐿𝑂𝑆𝑆 - 65.33 94.42 

% Reduction in 𝑄𝐿𝑂𝑆𝑆 - 64.52 93.15 

Minimum voltage (pu) 0.9038 0.9668 0.9924 

Operational costs ($/year) 512532.9979 191388.3115 43687.6397 

Net savings ($/year) - 321144.6864 468845.3582 

% Savings - 62.65 91.47 

 

Table 3. DGs Type1: comparison results 

 

Methods 
DG 

Power Loss (KW) % reduction in Power Loss 
Total Operational Cost 

 ($/year) 

Net savings 

 ($/year) 
% savings 

Size (KW) Bus 

WOA [5] 

1072.83 30 

73.75 65.05 192664.151 319868.84 62.40 772.488 25 

856.678 13 

IWO [6] 

624.7 14 

90.69 57.02 229232.973 283300.02 55.27 104.9 18 

1056 32 

ABC [7] 

1750 6 

79.25 61.13 208014.8212 304518.1767 59.41 570 15 

780 25 

 

ALO [14] 

1500 32 

75.26 65.01 195322.2769 317210.72 61.89 750 5 

250 18 

 

AEO 

755.7328 14 

73.13 65.33 191388.3115 321144.6864 62.65 1031.13 30 

961.1931 24 

 

Table 4. DGs Type 2: comparison results 

 

Method 

DG Size and location 
Power Loss 

(KW) 

% reduction in Power 

Loss 

Total Operational 

Cost 

 ($/year) 

Net savings 

 ($/year) 

% 

savings 𝑃𝐷𝐺(𝐾𝑊) 𝑄𝐷𝐺(𝐾𝑉𝑎𝑟) Bus 

WOA 

[5] 

1171.38 602.811 24 

16.28 92.28 55023.42 457509.57 89.26 881.88 644.027 13 

953.62 750 30 

IWO [6] 

1098 766.26 6 

22.29 89.43 69424.41 443108.58 86.45 1098 766.26 30 

768 535.96 14 

ABC [7] 

1014 628.21 12 

15.91 92.45 55790.81 456742.18 89.11 960 594.76 25 

1363 844.43 30 

AEO 

798.54 371.9419 13 

11.76 94.42 43687.6397 468845.3679 91.47 1039.282 1008.2937 30 

1106.4907 504.5372 24 

 

 

5. CONCLUSIONS 

 

In this paper, AEO is applied to search DGs optimal location 

and sizing in radial distribution network, with main objective 

to minimize power losses and operating cost. This method is 

tasted on IEEE-33 bus test system. Depending on the nature of 

the injected power, two different situations are simulated.  

The first consists on injecting only real power (Type 1), the 

obtained results clearly show how the values of the objective 

function (active power losses) and total operational cost 

decrease from 210.99 KW and 512532.9979 ($/year) to 73.13 

KW and 191388.3115 ($/year) respectively, also the voltage 

profile has been improved from 0.9038 pu to 0.9698 pu.  

In the second situation both real and reactive power are 

injected (Type 2), the obtained results show that the values of 

the objective function (active power losses) and total 

operational cost decrease from 210.99 KW and 512532.9979 

($/year) to 11.76 KW and 43687.6397 ($/year) respectively 

and it should be noted that the voltage profile has been 

dramatically increased from 0.9038 pu to 0.9924 pu.  

The obtained results are compared with those of WOA, 

IWO, ABC and ALO methods to validate the efficiency of the 
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AEO method. It’s concluded that the AEO algorithm, in 

comparison with other recent algorithms from the literature, 

provides the best optimum in terms of power loss, voltage 

profile, total operational cost and convergence capability. 
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