
Novel Optimized Reusable Component Repository Using Neural Networks

Krishna Chythanya Nagaraju1*, Cheruku Ramesh Kumar Reddy2

1 CSE Gokarau Rangaraju Institute of Engineering and Technology-Hyderabad 5000090, Telangana, India
2 CSE Mahatma Gandhi Institute of Technology, RangaReddy 5000075, Telengana, India

Corresponding Author Email: kcn_be@rediffmail.com

https://doi.org/10.18280/ria.360109 ABSTRACT

Received: 26 November 2021

Accepted: 15 December 2021

For the success of the time bound development of software to meet with high demand of

market, it is very much necessary for organizations to maintain a proper reusable

component repository, either open source or proprietary. This was also endorsed by the

survey authors conducted and analyzed data collected as shown in this work. This paper

aims to bring out the opinions of actual users like developers in using the Repository. A

survey was conducted by the authors of this paper. Basically, survey aims at identifying the

experiences of developers using reusable components and trying to identify what

developers are expecting from the reusable component repositories and the practices of

usage of repositories in the companies. In this paper a Novel Repository building

mechanism using Neural Networks is proposed. The normalized features are considered as

input to Neural Network model which specifies whether required component exists or not

in the repository. The experiment results were found to be giving 94% accuracy in

identifying an existing component at the time of retrieval.

Keywords:

repository, neural networks, reusable

component, identification, challenges

1. INTRODUCTION

A reusable component is any independent artifact including

code, design, test cases etc. of a software development process,

which is designed, developed and tested for its effective use

and which can be stored and retrieved from a Reusable

component repository. The generic properties of component

include abstraction, independency, and modularity. For the

success of the time bound development of software to meet

with high demand of market, it is very much necessary for

organizations to maintain a proper reusable component

repository, either open source or proprietary. There are a few

problems associated with the development environment of

software using repositories. This paper aims to bring out the

opinions of actual users like developers in using the

Repository and also based on findings, a novel repository

building using neural networks is tried. The paper aims to

strengthen the motive of research of authors on reusable

component retrieval from large component repository.

Reusability of anything can be considered as a boon for

human kind. People belonging to diversified fields like

biologists, chemists use, and reuse the existing standard

instruments to record experimental results and also it is

unreasonable to expect an electrical engineer to design and

develop the transistor from first principles every time one is

required, whereas when it is for software engineers, they are

looked at as guilty for the same concept of reusing existing

software. The reasons for which vary such as a lack of

development standards; the not invented here syndrome, poor

programming language support for the mechanical act of reuse

and poor support in identifying, cataloging and retrieving

reuse conditions

In the wake of the above facts, a survey was conducted

online by the authors of this paper. Basically, the survey aims

at identifying the experiences of developers using reusable

components and trying to identify what developers are

expecting from the reusable component repositories and the

practices of usage of repositories in the companies. The main

objective behind this gap identification is, to develop a robust

optimized repository which can be helpful in easy retrieval of

required reusable code component.

The purpose of this paper is to provide a new way of reuse

repository building and applying neural network concept at the

time of repository building and retrieval. A neural network

model to handle required reusable component identification

based on normalized features is implemented and an accuracy

of 94% could be achieved. It can be considered as extension to

[1] but differs on the way of repository built and applying

neural network. The paper is organized as follows: Section 1

deals with the introductory part of topic, Section 2 deals with

related previous work in the field and in Section 3 the

background work for survey is discussed, questions and

respondents’ views are discussed in detail in Section 4,

whereas Section 5 gives idea and implementation results and

Section 6 deals with future scope and conclusion.

2. PREVIOUS WORK

One of the major problems that the software reusers face is

the distinct names associated to the same or almost the same

operation performing code. Considering the operation of push

and insert of stack and queue or insert at begin of linked list,

such a problem is referred as Vocabulary problem. Hence

completely keyword-based retrieval is not a good solution.

One method of implementation could be having a synonym

database and going on pattern matching based on synonyms of

keyword also.

Revue d'Intelligence Artificielle
Vol. 36, No. 1, February, 2022, pp. 79-86

Journal homepage: http://iieta.org/journals/ria

79

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.360109&domain=pdf

The Basic Faceted Classification was first proposed by

Prieto-Diaz and Freeman who identified six facets namely:

function; object; medium; system type; functional area; setting

[2, 3]. The software reuser locates software components by

specifying facet values that are descriptive of the software

desired.

The idea was further extended by Eichman and Atkins by

incorporating a lattice as the principal structuring mechanism.

The difference in the work done by the both groups was in the

way queries can be posed. The Fichman and Atkins methods

permit to use as many less facets as the reuser wishes to specify

thus avoiding the use of wild cards as happens in the Freeman

method i.e. Basic faceted Classification.

Associative retrieval based on neural networks uses

relaxations retrieving components based on

partial/approximate / best matters. This is sometimes referred

to as data fault tolerance. The neuro computing paradigm is

characterized by asynchronous, massively parallel, simple

computations. Since neural networks are massively parallel,

retrieval from large repositories is easily possible using fast

associative search techniques.

In general, when we refer the work previously done in this

area, we observe neural network applied using SOM i.e.

unsupervised learning algorithms [2, 4-7], whereas in case of

[8-10] the authors made use of Back Propagation network

variants, which emphasized on Reliability Assessment This

subsequently gives us enough scope to say that we can apply

supervised learning procedures for Reusable software

component retrieval from repository [11-13] also. Gibb (2000)

highlight two advantages of software reuse.

1. Those components that have been tested provide higher

guarantees of robust and reliability in any future

implementation.

2. Component reuse should lead to faster development of

projects [14-16]. Even with the greater advantages, software

reuse has not taken an integrate place in enterprise software

engineering policy. There are still many misconceptions

related with reuse such as:

i) Software reuse is a technical problem: Many developers

feel that software reuse [17-19] is only technical issue but

don’t realize that it is a design practice which makes developed

software more reusable. All organizations should inculcate

design based on reusability as a culture.

ii) Artificial Intelligence will solve the reuse problem: This

is another misconception that artificial intelligence can solve

the reuse problem. Unless there are existing reusable

components, even an artificial agent cannot be trained to

handle reusable components.

iii) Revisions code results in huge increase in productivity:

Not all the code components are exactly matching with the

project on hand. Many times adaptation of component to suit

with current requirement may be needed. Sometimes time

spent in adaptation or finding reusable code component itself

may be a penalty on productivity.

iv) There is a myth that building a repository will motivate

people for reusing components: By mere presence of a

repository will not motivate people to use it or reuse code

components. The organization should bring in a reuse policy

making it mandatory for at least 25% of code to be developed

should be a reused one. Also, every member of the

organization should be aware of available repository and the

mechanism to access components should be familiar for all.

3. BACKGROUND WORK FOR ONLINE SURVEY

This section discusses the strategy applied, questions

considered and the rationality behind the question and

analyzes the responses given by the respondents of online

survey.

3.1 Target people

The survey was basically targeted at developers in corporate

industry who might have used repositories like Github, CVS,

NVC, or any proprietary reusable component repository in

their respective company. Even though we send the survey

link to all and sundry, we had a special request for developers

who used component repositories to participate actively. In

this survey we considered both types of repositories whether

Open source or ones’ specifically developed and maintained

by company for reusable purposes.

3.2 Reaching target people

When it comes for a survey to be conducted, it can be done

in many ways as, making people of single organization

responding, or making people belonging to multiple

organizations to take part or more simply we can conduct an

on-line survey to involve respondents from across the globe.

The survey authors have chosen is an online survey. The

survey was actually created using online free resources and a

tiny URL was created for the survey. The tiny URL was shared

to targeted group of people who were actually belonging to

circle of close friends, relative and known old colleagues of

the authors, who are working in software companies with

varying experience. The URL was shared to targeted people

using Emails, WhatsApp groups and personal messages. The

advantage of this survey as compared to one performed

previous ones is that it is not confined to one people working

in one company or in similar developing environment where

the survey may not hold correct. On the promise of anonymity,

many of the people who participated in the survey gave their

valuable inputs. The authors would like to place on record their

earnest thanks to all those respondents who took out their

valuable time and spent to answers the questions of survey.

Even in survey, as people have a psychological effect when

they give their complete details while answering survey

questions, the authors avoided questions related to company

where the survey respondents are working. As questions of

survey also looks in the angle of psychological impact of using

reusable repository by the developer or some user. Most

respondents to our questionnaire considered their practices to

be in accordance with current emerging trends.

3.3 Demographical analysis of respondents

The size and distribution of these respondents varies largely,

giving a more in-depth idea on how people across the globe

are looking at reusable component repository usages and

probably the changes required in this area. Though the number

of respondents is far less as compared to number in Ref. [8],

we consider survey is qualitative as we were able to reach

correct respondents across many countries. There were nearly

40 respondents who participated in this online survey

belonging to working places in various countries like USA,

U.K., Australia and also from different states of INDIA. As

80

they work in different development environment, the authors

hoped for a in depth insight in the inputs shared.

3.4 Categories of research questions

The research questions (RQ) were judiciously prepared to

get the maximum required information in minimum time that

can be expected from the respondent. There were 20 questions

designed and they can be categorized in to following

categories , which were identified based on the literature

survey done by the authors and thought would be helpful in

exploring the experiences of developers or users of reusable

component practices in the aspects of, how generally sharing

of different artifacts happen in their respective organization,

practices of reuse, psychological impact on developer, impact

on quality of developed product, security issues and human

factors involved, support by the management of organization

in implementing reuse practices, barrier for adoption, factors

influencing success of products implemented using reusability,

Copy right and legal issues, and basically how do they find

reusable components. The only questions based on the profile

of the respondent were, one to know about his years of

experience in development and the other to record the number

of projects respondent had worked using reusable repositories,

making him more suitable candidate for valid input being

shared. Authors have analyzed the most suitable questions and

are addressed in this article.

4. SURVEY QUESTIONS AND ANALYSIS OF

COLLECTED DATA

Let’s take look at the most prominent questions of the

survey and the analysis of the data received. Each research

question (RQ) is given and followed by the rationality to

consider the question is also explained. The following Table 1

summarizes certain RQs(RQ1-RQ6) considered and their

responses in % along with options given.

RQ1: Years of experience as a Developer and/or

Design/Analyst/Manager?

The question was intended to check the familiarity of the

respondents with the availability of repositories and their

usage practices in the SDLC process. The more experience

they gain they would be rationale enough to speak on the

design issues and in the early days of coding many may be

dependent on repositories for ease of use.

The survey has shown that, of the respondents nearly 23%

of them were having around 15 yrs of experience and around

26% of respondents are having nearly 10 years of experience

as in Figure 1 below, hence authors hope for the genuinely

information provided by such middle level experienced

developers or users of repositories (RQ1 of Table 1).

RQ2: Number of projects for which you used Reusable

components at any level as Design, Code, Testing etc. in your

career.

It was observed from responses as shown in RQ2 of Table

1 above that around 42% of the respondents were using

reusable components in more than 5 projects and it should also

be noted that there were only 5% of respondents who never

used a repository in their development process. The less

percentage of people who never used reusable components

clearly indicates raging demand of reusable component

repositories and the practices being made common in almost

all companies.

RQ3: Does your company policy support using reusable

components?

Surprisingly, 85% of the respondents have positively

responded, mentioning YES the organization for which they

are working does has it as a policy to make use of reusable

components, which clearly throws light on the emerging trends

on software development based on the shelf components to

reduce time of development and improve efficiency of

developed product with the help of already tested artifacts

(RQ3 of Table 1).

RQ4: Did anyone ever insist you to use a reusable component?

The rationality behind using this question is twofold. One is

to know whether it is voluntary from user side to reuse without

any not here implemented psychological concept or it is

because organization is insisting, they are using, which then

does have some psychological negative impact on the user

(RQ4 of Table 1).

Table 1. Certain prominent questions asked through survey conducted and recorded responses

RQ1: Years of experience as a Developer and/or Design/Analyst/Manager?

Options Fresher <5 >=5&<10 >=10&<15 Above 15

Response in % 5 38 26 23 8

RQ2: Number of projects for which you used Reusable components at any level as Design, Code, Testing etc in your career.

Options Never Used 2 3 4 More than 5

Response in % 5 24 11 18 42

RQ3: Does your company policy support using reusable components

Options YES NO
DON’T

KNOW

Response in % 85 3 12

RQ4: Did anyone ever insist you to use a reusable component?

Options Never Sometimes Often Advised Yes, Mandatory

Response in % 5 29 12 21 13

RQ5: Do you think the code snippets that are generally developed by you are reusable?

Options No A few Specifically Designed for Reuse Don’t Know

Response in % 0 49 38 13

RQ6: The reason for failing to utilize reusable component, in your experience was

Options
No attempt

to reuse

Component Doesn’t

exist
Unavailability

Could not be found in

time

Component

Intangible
Not integrable

Response in % 26 4 15 15 7 9

81

It was observed, from the data collected that only 2% have

said it as Never, whereas 61% mentioned it as sometimes or

often and 24% mentioned that either it was advised or made

mandatory to use reusable components. When we observe the

answers in comparison with answers to RQ3 which queries on

company policy to use reusable components, yet the insistent

is only 61% as compared to 85% of policy support, which

signifies some inhibiting factors which could be psychological

or availability of component or maintenance of repository by

organization etc. are not allowing it to be made compulsory to

use reusable components.

RQ5: Do you think the code snippets that are generally

developed by you are reusable?

It is observed that only 38% of the respondents have said

that the code snippets that are generally developed by them are

reusable. And another 49% of people mentioned that not all

but a few components could be reusable (RQ5 of Table 1).

Now this becomes one of the major concerns for the success

of Reusability. The authors strongly argue the organizations to

look in to this point and implement practices which make

people to develop maximum components with features of

reusable components such that the Reusability concept is

successful.

The list of commonly used repositories by different

organizations can be shown as in the Table 2 below.

Table 2. List of commonly used repositories

SVN CSS XML CANON TEST ASSETS

CODE

REVIEW

IBM’s

iRAM

Mighty &

Reuse Platform

IOC Container

Framework

A Few of the respondents though not working in the same

company has mentioned what their company used to have and

a few have refrained from mentioning stating the company

security reasons.

The following is list of the familiar repositories available in

the market, but is not limited to this list. This list emphasizes

on the point that many companies are now trying to develop

their own repositories rather than using open source

repositories which may or may not suite the project

requirements aptly.

1) GITHUB 2) SVN 3) TFS-Team Foundation sever 4)

Appache POI 5) BITBUCKET 6) Xml canon 7) Flex library 8)

Azure library 9) Entities 10) underscore 11) minify 12) Jquery

13) iRAM 14) CODE REVIEW 15) Migration 16) Dynamic

File generator 17) Accurev 18) Mapplets in informatica 19)

NPM 20) Log4j 21) Microsoft Visual Component manager 22)

Laravel components 23) Visual Studio Online (VSO) 24)

Subversion 25) Mercurial 26) Perforce 27)

AdaInformationClearinghouse 28) Ada Compiler Evaluation

System (ACES) 29) Ada and Software Engineering [12] (ASE)

CDROM 30) CodeBroker 31) CARDS (Comprehensive

Approach to Reusable Defense Software) 32) PAL 33)

STARS program 34) Betavine 35) Buddy 36) CloudForge 37)

CodePlex 38) Assemblea.

A comparative statement among many repositories based on

the experience of respondents is shown in Table 3 below-Y

standing for yes. Yet it may not be actual statement of

comparison as we have depicted only what respondents

mentioned. Some believe this depends on the usage. It won’t

be good to say which is best. If it works for the context we use,

it is good enough.

RQ6: How many times you felt, it is better to code from

scratch than to use a on the shelf component, and why so?

Except in case like one respondent responded as “Few times

because sometimes your requirements are unique and

sometimes because the components are buggy and or poorly

documented Depending on use-case aka requirement, there

would be a need to look for a proven utility or to write from

scratch, almost every one mentioned that it’s better to use a

reusable component as it saves both time and effort and as it is

also tested previously.

RQ7: What do you think is the level of information regarding

the availability of specific component existing in the

repository being used by you or your friends?

From the set of respondents, around 66% of them mentioned

that about 50% of the times the information about availability

of required specific component in the repository was easy to

know for them and in other cases they had to explore the

repository to just check whether it exists or not. This is a prime

factor for availability information of component searching and

gives strength to our idea of building a fast-searching

technique and repository itself being built in an optimized way

such that the information is always available for user with in

stipulated time of need of hour.

RQ8: Can you suggest or mention 3 qualities of best

repository you dream of?

Rationality: This research question aims to know the

requirements and expectations of users and what they expect

more from the repository designs. The respondents have

mentioned quite a few qualities, which are listed below.

➢ Easy Extraction

➢ regular updates

➢ Bug free

➢ documentation and examples

➢ code quality analysis info

➢ better handling multiple clones

➢ Atomic pushes Easy to reference

➢ quicker fixes

➢ Maintenance

➢ Scalability

➢ Continuous deployment

➢ Continuous integration

Table 3. A comparative statement among many repositories based on the experience of respondents

 Github SVN Laravel Lumen TFS jquery Accurev

Friendly Y Y Y Y Y Y

East use Y Y Y Y Y

Availability Y Y Y Y Y

Plug &play Y Y Y Y Y Y

Help Y Y Y

Illustration Y Y

82

As it is evident from the analyzed data Ease of extraction

plays an important role and hence our research is focusing on

ease of extracting the required reusable component.

RQ9: The reason for failing to utilize reusable component,

in your experience was?

The respondents to the extent of 30% have mentioned the

reason for failing to use a component was its unavailability or

could not be found in time. This once again emphasis

something needs to be done for better performance of

repositories presently available in market. Another 33% of

participants mentioned that as the component was not

integrable they could not use the component. The result

analysis can be seen in the pie chart of Figure 1 below. Where

the Yellow and Light brown colors represent cases of

responses belonging to category of unavailability and could

not be found in time respectively. The blue color indicates

participants representing who found component which is not

integrable. Others include who have not used reusable

components or component does not exist or component

intangible.

Figure 1. The reason for failing to utilize reusable

component, in your experience was

Figure 2. Sharing of artifacts

RQ10: What is the success rate of qualitative projects that

made use of reusable components as per your experiences?

It is observed that 45% of people have mentioned that 80%

of times their projects in which reusable components are used

are successful and delivered the required objective with high

quality.

RQ11: How do you share the artifacts of reusable

components (Multiple answers can be selected)?

The query was focusing to identify whether repository or

any other form of artifact sharing is happening in the

companies.

Of the total respondents, 70% inclination was given for

common reusable repository as shown in the figure below. The

Figure 2 emphasizes the demand of repository practice in the

software industry.

5. PROPOSED IDEA AND IMPLEMENTATION

However, to make software reuse operational the software

developers need to be provided with large libraries containing

reusable software component. The user of such a library must

be assisted in locating components that are functionally close

to the required component [7].

In the fast-growing technological world with high number

of components being developed by a single person, it is no

surprise that he himself finds it hard to locate a single piece of

code. [9] The problem can be divided into three parts:

classifying the original component, describing the component

wanted, finding close enough matches between the two. The

established solutions for the above mentioned are based on

enumerated classification, facetted classification, free text

indexing [9]. The Figure 3 below represents the classifications.

Figure 3. Established solutions of component classification

Neural network has emerged as a promising technology in

application that requires generalization, abstraction,

adaptation and learning. A neural network approach can serve

as an economical and automatic tool, to generate reusability

ranking of software components [6]. Inputs to neural network

system are to be provided in form of structured attributes of

software component as metric values and output is the

reusability value category [6].

It may be revolutionary to mention that, we can altogether

avoid maintaining any data structure for storing different

software components but only for the identifying the location

and corresponding unique id of a component we can make use

of AVL tree structure.

The idea is to represent the each component that is being

stored in form of some 17 features viz. Operating System,

Programming Language, Name, Return type, No. of

parameters, types of parameters, Recursion , Model of

development, already modified, etc. and out of all thee

seventeen features only 13 features are considered to be given

for Input to the Neural Networks as features like name of

component and author name does not exactly contribute in

identifying the code component at the time of retrieval.

The input is generally at the time of inserting a valid

component in to the repository, or while searching for a

required component in the repository already built. The user is

supposed to give or select appropriate values of the list of

features which suites the required component. The application

shall permit user to search for a component directly asking for

faceted values, which are supposed to be entered by the user.

83

By considering each feature to have certain set of possible

values say for Operating Systems, it can take for example one

of 4 values like Windows or Linux or Unix or IoS, we consider

2 bits to represent this feature and so on. The values are

normalized to set of 0,1 s of total 32 bits which would be acting

as input vector for Neural Network. The sample data set is

shown in Figure 6 below.

The idea is to train the Neural Network to remember the

giving normalized input features of a particular component

and make it identify when asked for again. In this process we

need not store the components in a specific data structure

internally but need to maintain only the location wherever they

are stored in the system/server so that same can be used to open

when the required component is identified by the Neural

Networks as existing.

A drop-down list consisting of multiples possible values for

each feature is provided in a GUI to the user. The input is read

and is normalized. Say for example the possible values of one

feature by name “Operating System” are Unix, Linux,

Windows, Mac. Here we have 4 possible values and the

equivalent normalized values can be 00,01,10,11 respectively.

That means when a user selects “Windows” under feature of

Operating System”, the normalized input would be “10”.

Likewise normalized inputs for all features are considered and

the final string of bits whose length is based on the possible

values each feature can take is given as an input to already

trained Neural Network model. The trained neural networks

model tries to recollect from the training set whether the

required reusable component exists in the repository or not,

accordingly it gives location of component if it exists else an

error message is displayed. The flow chart of proposed idea is

shown in Figure 4 below.

Figure 4. Flowchart of idea implemented

The algorithm of component retrieval use by the authors

can be as shown below:

Component Retrieval Algorithm. (f1,f2,f3…f13)

Input: Selected 13 features of a component being searched

for.

Output: 1. Location of component. if found in repository.

 2. Error message mentioning component not

found.

Begin

Step 1: Read the features from user interface. Say f1..f13.

Step 2: Normalize the inputs: convert each feature in to

equivalent bit string based on number of possibilities the value

of feature can take to form a 32 bits input.

Step 3: Input the normalized data to already trained Neural

Networks Model.

Step 4: Model outputs either location of component if it

exists in repository or a message of “component not exists” to

the user.

End.

6. IMPLEMENTATION RESULTS

To implement our idea, we made use of Python along with

NumPy, pandas, keras, matplotlib libraries and created a

Neural Network of 4 layers of which first layer is Input layer

having 32 input variables and second and Third layers are the

First hidden Layer and Second Hidden Layer with 6 nodes

each and then the ultimate layer is an output layer with One

output node that has to indicate whether the input features of a

component match with already known component or not.

Figure 5. Schematic diagram of neural net

First, we created an input layer with 32 neurons and first

hidden layer with 6 neurons. The synaptic weights of first

hidden layer are initialized from the standard normal

distribution. Then we add a second hidden layer of 6 neurons

and even its initial synaptic weights are initialized from

standard normal distribution. And finally, we add the output

neuron. The activation function used for the neurons in the first

2 hidden layers is rectified linear units (ReLU) and the

activation function used for output layer is Sigmoid.

We compiled our model using the optimizer stochastic

gradient descent and the metrics to optimize the weights is

based on accuracy.

Since we used stochastic gradient descent, took batches of

10 samples each and trained the whole data over 100 epochs.

The schematic diagram of Neural Network is as shown in

Figure 5 above.

For our experimentation purpose we considered 170

samples of 32 bits each. The Figure 6 shows the feature matrix

84

sample of 170 components.

Finally, a weight matrix of optimized weights is as in Figure

7 is obtained after training.

Figure 6. Feature matrix of 170 samples of 32 bits each

representing one reusable component (Owing to space

constraint, only a part of matrix shown)

Figure 7. Weight matrix

The accuracy of the system was found to be over 94%. The

accuracy graph can be seen as in Figure 8 below.

Figure 8. Accuracy graph

So basically, first the 32 neurons in the input layer are fully

connected to the hidden layer over random synaptic weights

and the neurons in the hidden layer receive information and

further it is propagated to second layer and so on till output

layer. The weights are then back propagated to the first hidden

layer and the initial weights are adjusted accordingly using

back propagation algorithm This adjustment of weights took

over 100 epochs to converge. The optimizer used to converge

the weights is stochastic gradient descent The accuracy

increased over time with increase in epochs and converged to

over 94% when trying to identify an existing component in the

component repository.

7. CONCLUSIONS

In this paper authors have summarized the observations

made using online survey done. The gaps identified based on

data collected appropriately justified the need of an optimized

reusable code component repository to be built. The work

differs from other studies on the basis of diversified locations

from where survey inputs were taken ranging from different

states to continents. Also, survey was majorly responded by

richly experienced developers who worked with reusable

component repositories. In this work a novel mechanism of

implementing reusable component repository containing code

components of different platforms is experimented using

neural network model. A 13-feature set normalized input for

each of 170 reusable components is used as training data set.

The whole mechanism saves lot of space in storing detailed

information of a component as happens in other works. An

accuracy of 94% was observed in this work. The authors could

collect responses from only a small number of developers

which can be looked at as one limitation of this work. The

scaling up of data set is required to check for robustness of

system. It is planned to extend this work by observing the

operation under different training algorithms for neural

networks with varied parameters and to experiment with

different architectures to improvise performance measure to

achieve accuracy of above 98%.

REFERENCES

[1] Niranjan, P., Rao, D.C.G. (2010). A mock-up tool for

software component reuse repository. International

Journal of Software Engineering & Applications, 1(2): 1-

12. https://doi.org/10.5121/ijsea.2010.1201

[2] Kurfess, F.,Wang, Z., Jololia, L. (2000). Content-based

component retrieval. European Conference on Artificial

Intelligence ECAI 2000, Berlin, Germany.

[3] Merkl, D. (1995). Content-based software classification

by self-organization. In Proceedings of ICNN'95-

International Conference on Neural Networks, 2: 1086-

1091. https://doi.org/10.1109/ICNN.1995.487573

[4] Tangsripairoj, S., Samadzadeh, M.H. (2005). Organizing

and visualizing software repositories using the growing

hierarchical self-organizing map. In Proceedings of the

2005 ACM Symposium on Applied Computing, pp.

1539-1545. https://doi.org/10.1145/1066677.1067023

[5] Frakes, W.B., Fox, C.J. (1995). Sixteen questions about

software reuse. Communications of the ACM, 38(6): 75-

87. https://doi.org/10.1145/203241.203260

[6] Sandhu, P.S., Kaur, H., Singh, A. (2009). Modeling of

reusability of object oriented software system. World

Academy of Science, Engineering and Technology,

56(32): 162-165.

https://doi.org/10.5281/zenodo.1084404

[7] Frakes, W.B., Kang, K. (2005). Software reuse research:

Status and future. IEEE Transactions on Software

Engineering, 31(7): 529-536.

https://doi.org/10.1109/TSE.2005.85

[8] Wang, J.A. (2000). Towards component-based software

85

https://doi.org/10.1145/1066677.1067023
https://doi.org/10.1145/203241.203260
https://doi.org/10.5281/zenodo.1084404
https://doi.org/10.1109/TSE.2005.85

engineering. In Proceedings of the Seventh Annual

CCSC Midwestern Conference on Small Colleges, pp.

177-189.

[9] Aslund, S. (2003). Software Architecture: Classifying

and locating reusable software components. Overview of

Techniques.

[10] Gill, N.S. (2003). Reusability issues in component-based

development. ACM SIGSOFT Software Engineering

Notes, 28(4): 4. https://doi.org/10.1145/882240.882255

[11] Alkazemi, B.Y., Nour, M.K., Sahraoui, A.E.K. (2014).

Guidelines for designing reusable software components.

International Journal of Computer and Information

Technology, 3(6): 1356-1361.

[12] Kalia, A., Sood, S. (2014). Characterization of reusable

software components for better reuse. Int. Journal of

Research in Engineering and Technology, 3(5): 584-588,

https://doi.org/10.15623/ijret.2014.0305107

[13] Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y. (2016).

Androzoo: Collecting millions of android apps for the

research community. In 2016 IEEE/ACM 13th Working

Conference on Mining Software Repositories (MSR), pp.

468-471.

[14] Bhatia, R.K. (2007). Collaborative Tagging for Software

Reuse (Doctoral dissertation).

https://www.researchgate.net/publication/266342398_C

ollaborative_Tagging_for_Software_Reuse.

[15] Constantopoulos, P., Doerr, M., Vassiliou, Y. (1993).

Repositories for software reuse: the software information

base. In Information System Development Process, pp.

285-307. https://doi.org/10.1016/B978-0-444-81594-

1.50022-2

[16] Agresti, W.W. (2011). Software reuse: Developers’

experiences and perceptions. Journal of Software

Engineering and Applications, 4(1): 48-58.

https://doi.org/10.4236/jsea.2011.41006

[17] De Lemos, R., Giese, H., Müller, H.A., Shaw, M.,

Andersson, J., Baresi, L., Becker, B. (2013). Software

engineering for self-adaptive systems - A second

research road map. In Dagstuhl Seminar.

https://doi.org/10.1007/978-3-642-02161-9_1

[18] Prieto-Diaz, R. (1991). Implementing faceted

classification for software reuse. Communications of the

ACM, 34(5): 88-97.

https://doi.org/10.1109/ICSE.1990.63636

[19] Ortu, M., Murgia, A., Destefanis, G., Tourani, P., Tonelli,

R., Marchesi, M., Adams, B. (2016). The emotional side

of software developers in JIRA. In 2016 IEEE/ACM 13th

Working Conference on Mining Software Repositories

(MSR), pp. 480-483.

https://doi.org/10.1145/2901739.2903505

86

https://doi.org/10.1145/882240.882255
https://doi.org/10.15623/ijret.2014.0305107
https://www.researchgate.net/publication/266342398_Collaborative_Tagging_for_Software_Reuse
https://www.researchgate.net/publication/266342398_Collaborative_Tagging_for_Software_Reuse
https://doi.org/10.4236/jsea.2011.41006
https://doi.org/10.1109/ICSE.1990.63636

