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The Distributed Denial of Service (DDoS) attack is a serious cyber security attack that 

attempts to disrupt the availability security principle of computer networks and information 

systems. It's critical to detect DDoS attacks quickly and accurately while using as less 

computing power as possible in order to minimize damage and cost efficient. This research 

proposes a fast and high-accuracy detection approach by using features selected by 

proposed method for Exploitation-based DDoS attacks. Experiments are carried out on the 

CICDDoS2019 datasets Syn flood, UDP flood, and UDP-Lag, as well as customized 

dataset. In addition, experiments were also conducted on a customized dataset that was 

constructed by combining three CICDDoS2019 datasets. Pearson, Spearman, and Kendall 

correlation techniques have been used for datasets to find un-correlated feature subsets. 

Then, among three un-correlated feature subsets, choose the common un-correlated 

features. On the datasets, classification techniques are applied to these common un-

correlated features. This research used conventional classifiers Logistic regression, 

Decision tree, KNN, Naive Bayes, bagging classifier Random forest, boosting classifiers 

Ada boost, Gradient boost, and neural network-based classifier Multilayer perceptron. The 

performance of these classification algorithms was also evaluated in terms of accuracy, 

precision, recall, F1-score, specificity, log loss, execution time, and K-fold cross-validation. 

Finally, classification techniques were tested on a customized dataset with common features 

that were common in all of the dataset’s common un-correlated feature sets. 
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1. INTRODUCTION

Availability-based attacks are network security attacks 

carried out by a malicious node with the goal of denying access 

to resources on computer networks. Denial of service (DoS) is 

an available-based security attack in which the attacker aims 

to make network resources unavailable to its intended users by 

temporarily or indefinitely disrupting the services of a host 

connected to a network. A DoS attack launched by more than 

one attacker is called a Distributed Denial of Service (DDoS) 

attack [1].  

DDoS attacks make use of a variety of vulnerabilities in the 

TCP/UDP-based protocols at the application layer to deny its 

users are called Exploitation based DDoS attacks. DDoS has 

become more prevalent among cyberattacks due to the 

extensive use of TCP protocol and easier to exploit features of 

the TCP three-way handshake mechanism. Syn flood is a TCP-

based exploitation DDoS attack, UDP flood, and UDP-Lag are 

UDP-based exploitation DDoS attacks.  

SYN flood [2] is a commonly used exploitation-based 

DDoS attack that exploits the advantage of a feature of the 

TCP three-way handshake to overflow the TCP queue of the 

server and make it consume resources resulting in it being 

unavailable to legitimate users' requests. A TCP connection is 

established between a client and a server using the TCP three-

way handshake mechanism. A client must send a synchronized 

flag packet (SYN) to the server to establish a TCP connection. 

The server sends the client an acknowledgment flag for the 

synchronized packet (SYN-ACK) after receiving the SYN 

packet delivered by the client. The client sends an 

acknowledgment flag to the server after receiving the SYN-

ACK flag from the server. With these three steps, a connection 

between the client and the server is established, and data 

transformation can now commence. In order to launch a TCP 

SYN flood attack on a server, attackers take advantage of the 

server's half-opened connection state. This is the state in which 

the server is waiting for the client's ACK flag before 

attempting to establish a connection. The server would have 

already allocated Memory resources to the client at this point. 

To take advantage of this behavior, the attacker sends a large 

number of SYN flags to the server for a number of spoofed IP 

addresses. The server treats these requests as legitimate, 

allocating memory and resources to these IP sources and 

sending the client a SYN-ACK flag. The server would now 

wait in a half-open state for the client to respond with an ACK 

flag which would never receive. The attacker's large number 

of illegitimate SYN requests leads the TCP backlog queue to 

overflow, resulting in half-opened connections until all system 

resources are consumed. The legitimate user's request is not 

accepted by the server due to an overflow of the TCP queue. 

The primary objective of the TCP SYN flood attack is to 

disrupt the system's availability. 
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UDP flood [3] refers to a type of exploitation-based DDoS 

attack in which the attacker overflows random ports on the 

targeted host with IP packets containing UDP datagrams. UDP 

flood attack’s main objective is to saturate the Internet pipe. A 

UDP flood operates by taking advantage of the steps taken by 

a server when responding to UDP packets transmitted to one 

of its ports. When a server receives a UDP packet at a specific 

port, it goes through two steps in response to normal 

circumstances: First, the server looks to determine if any 

programs are currently listening for requests on the specified 

port. If no programs are receiving packets on that port, the 

server sends an ICMP (ping) message to the sender to alert 

them that the destination is unavailable. When the server 

receives a new UDP packet, it goes through a series of steps to 

process the request, consuming server resources in the process. 

When a huge flood of UDP packets is received from different 

sources with spoof IP addresses, the target's resources can 

quickly become exhausted as a result of the targeted server 

using resources to check and then respond to each single UDP 

packet.  

The UDP-Lag attack [4] is an attempt to break the 

connection between the client and the server. This attack is 

most commonly used in online gaming to outsmart other 

players slowing down/interrupting their movement. This 

attack can be carried out in two ways: using a hardware switch 

known as a lag switch, or with a software program that runs on 

the network and consumes other users' bandwidth.  

According to research findings on DDoS attacks, due of 

their distributed nature, fast detection, less computation, and 

accuracy in detection is three key challenges in DDoS attack 

detection. DDoS attacks have caused significant damage in all 

aspects of business; hence, early detection is essential. As 

computation is so expensive these days, reducing the number 

of features is essential to make the computation process more 

cost-effective. To avoid inconvenience to legitimate users, 

accurate detection is essential. This research proposes a 

method for select the un-correlated feature subset using three 

correlation techniques. It builds a fast and high-accuracy 

DDoS attack detection approach with very few features. 

This section introduces the TCP/UDP based Exploitation 

DDoS attacks and the research motivation and objective of 

detecting DDoS attacks. In section II of this paper, the 

methodology is explained, including proposed framework, 

algorithm, preprocessing, and machine learning classification 

algorithms. The results and discussion are explained with 

experimental results in section III of this paper. The study's 

conclusion is found in Section IV of this paper. 

 

 

2. METHODOLOGY 

 

Proposed model framework depicted in Figure 1. 

 

Proposed Algorithm 

1. Start. 

2. Read DDoS attack dataset. 

3. Preprocessing: 

3.1.  Remove uninfluential socket features 

3.2.  Removing missing and infinity values 

3.3.  Encoding Benign and Attack labels 

3.4.  Removing constant features (Threshold==0) 

3.5.  Removing quasi-constant features 

(Threshold==0.01) 

4. Split the dataset into the train and test data in 80:20 

ratio. 

5. Apply Pearson, Spearman and Kendall correlations 

to test and train data. 

6. Apply threshold >=80 and collect Pearson, 

Spearman and Kendall un-correlated feature subsets. 

7. Apply intersection of Pearson, Spearman and 

Kendall un-correlated feature subsets and find 

common un-correlated feature set. 

8. Apply classification algorithms to train and test data 

to classify Benign and Attack labels. 

9. Stop. 

 

 
 

Figure 1. Proposed model framework 

 

Data set 

This study uses the CICDDoS2019 data set which includes 

a wide variety of DDoS attacks and fills up the gaps in the 

previous data sets. Every DDoS attack dataset contains 87 

features.  

 

Data preprocessing 

Data Preprocessing [5] is the first and most important step 

in building a classification model. It is a process of clean and 

formatted data suitable for the classification model. It 

increases the accuracy and efficiency of classification models. 

First, remove socket features that vary from network to 

network. Next to clean the data by removing missing and 

infinity values. Encoding the label string values for Benign 

and attack label to the binary value of 0 and 1 respectively. 

And finally, standardize the independent feature values. 

Initially each dataset contains 88 features, after removing 

uninfluential socket features each dataset contain 81 features. 

Pre-processing results are statistically shown in Figure 2 with 

a bar chart in order of the number of records processed. 

 

Feature selection 

Feature Selection [6] is a very critical component in 

Machine learning algorithms. Machine learning algorithms 

typically choke when provided with data with a large 

dimensionality because the number of features raises the 

training time exponentially and an increasing amount of 
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features, models run the risk of overfitting. Feature Selection 

methods help in the resolution of these issues by reducing the 

dimensions while preserving the overall information. It also 

helps in identifying the features and their importance. 

Variance threshold and correlation feature selection methods 

are used in this study. A variance threshold is used to remove 

constant and quasi-constant features. Correlation methods are 

used to find uncorrelated features. 

 

 
 

Figure 2. Pre-processing results bar-chart 

 

Variance threshold 

A simple baseline technique for feature selection is the 

variance threshold. This method eliminates features that vary 

below a specific threshold. It removes all zero-variance 

features by default, that is, features that have the same value 

throughout all samples. More useful information is contained 

in features with a higher variance. The variance threshold 

doesn’t consider the relationship of features with the target 

variable.  

 

Correlation 

Correlation [5] is a bivariate analysis that determines the 

level of association and the direction of the relationship 

between two variables. The value of the correlation coefficient 

varies between +1 and -1 in terms of the strength of the 

association. A value of ±1 shows that the two variables are 

perfectly associated. The value of 0 shows that the two 

variables are weakly associated. The sign of the coefficient 

specifies the relationship's direction; +sign indicates a positive 

relationship that means one variable goes up, then the second 

variable also goes up, while –sign indicates a negative relation 

that means one variable increase then another variable 

decrease. 

We can predict one variable from the other using correlation. 

When two features are correlated, the model only needs one of 

them, as the other does not provide any extra information. This 

study uses three types of correlations: Pearson correlation, 

Spearman correlation, and Kendall rank correlation. 

 

Pearson correlation 

The Pearson correlation is the most generally used 

correlation statistic for determining the degree of association 

between linearly related variables. The Pearson correlation is 

based on information about the mean and standard deviation.  

Pearson correlation coefficient calculated by:  

 

𝑟 =
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

√∑(𝑥𝑖 − �̅�)2 ∑(𝑦𝑖 − �̅�)
 (1) 

Here,  

r is the correlation coefficient; 

xi - is the value of the x-feature in a sample; 

�̅� – is the mean of the values of the x-feature; 

yi - is the value of the y-feature in a sample; 

�̅� – is the mean of the values of the y-feature. 

 

Spearman correlation 

Spearman rank correlation is a non-parametric measure of 

correlation used to determine the degree of relationship 

between two variables. Non-parametric correlations rely 

solely on ordinal data and pair scores. The Pearson correlation 

between the rank scores of two variables is equivalent to the 

Spearman correlation between those two variables. 

Spearman's correlation evaluates monotonic relationships, 

whereas Pearson's correlation evaluates linear relationships.  

The strength of a monotonic relationship between two 

variables with the same scaling as the Pearson correlation is 

measured by the Spearman correlation. 

Spearman correlation coefficient calculated by: 

 

𝜌 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
 (2) 

 

Here,  

ρ is the Spearman’s rank correlation coefficient; 

di is the difference between the two ranks of each 

observation; 

n is the number of observations. 

 

Kendall rank correlation 

Kendall rank correlation is a non-parametric test that 

assesses the degree of association between two variables. Non-

parametric correlations rely solely on ordinal data and pair 

scores. Kendall correlation outperforms Spearman correlation 

in terms of robustness and efficiency. When there are few 

samples or some outliers, Kendall correlation is preferred. 

 

Kendall correlation coefficient calculated by: 

 

𝜏 =
𝑁𝑐 − 𝑁𝑑

𝑛(𝑛 − 1)
2

 (3) 

 

Here, 

𝜏 is the Kendall rank correlation coefficient; 

Nc is the number of concordant; 

Nd is the number of discordant. 

 

Classification algorithms 

Machine learning is becoming more widely used to detect 

and classify DDoS attacks [7]. One of the most important steps 

in machine learning algorithms is feature selection. Feature 

Selection is essential for reducing dimensionality and 

removing redundant and irrelevant features. 
 

Logistic regression 

Logistic regression [8] is a machine learning classification 

method borrowed from statistics to predict the target variable. 

It uses the logistic function also called as the Sigmoid function. 

Sigmoid function is:  

 

∅(𝑧) =
1

1 + 𝑒−𝑧
 (4) 
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Here z is the input which is the linear combination of 

weights and features.  
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+ ++
  (5) 

 

ϕ(z) values limits in the range [0,1]. It indicates that if z goes 

to infinity, the function becomes one, and if z goes minus 

infinity, the function reaches zero. 

 

Decision tree 

Decision Tree [9] is a supervised learning method that can 

be used to display a model's visual representation. A decision 

tree employs a hierarchical model resembling a flow chart with 

multiple connected nodes. These nodes indicate tests on the 

dataset's features, with a branch that leads to either another 

node or a classification result. The prediction data is passed 

through the nodes until it can be classified, with the training 

data used to form the tree. 

 

K-Nearest neighbor 

One of the most basic machine learning classification 

models is K-Nearest Neighbor (KNN) [10]. With KNN, there 

is no training; the training data is used to make predictions in 

order to classify the data. KNN works on the notion that 

comparable data points would group together, and it uses the 

K value, which can be any number, to locate the closest data 

points.  

 

Naive bayes classifier 

A typical NB classifier [11] also relies on Bayes’ theorem 

and applies probability density information to the training data. 

It is used to calculate the chance of an event occurring based 

on previous occurrences that have occurred. 

 

Random forest 

The random forest [12] is based on the principle of bagging, 

which is used to train a number of decision trees and enhance 

them based on their attributes. Random attribute selection is 

used in the random forest training process to improve the 

relative independence of the generated decision tree and hence 

improve performance. Assuming that there are n nodes, the 

standard decision tree selects the best attribute based on all of 

the n nodes' characteristics, but each node of the random 

forest's decision tree is based on k attributes that are randomly 

selected in advance. The magnitude of the k parameter, which 

is commonly set to log2 d, determines the degree of 

randomness. Furthermore, the k value can be 1 or d, which 

reflects a random selection of an attribute and a selection 

procedure utilizing a traditional decision tree, respectively. 

 

Ada boost 

AdaBoost, also known as Adaptive Boosting [13], is a 

Machine Learning ensemble classification model. It is an 

iterative ensemble classification algorithm that means weak 

learners grow sequentially and become strong ones. The 

classifier should be interactively trained using a variety of 

weighted training instances. It tries to provide an excellent fit 

for these instances in each iteration by minimizing training 

errors. 

 

Gradient boost 

Gradient Boost [14] is an ensemble boosting classification 

algorithm that combines several weak learners into strong 

learners. Gradient Boosting classification algorithm depends 

on the loss function. The gradient descent optimization 

procedure is used to determine the contribution of the weak 

learner to the ensemble.  

 

Multilayer perceptron 

A multilayer perceptron (MLP) [15] is the most standard 

form of feed-forward artificial neural network. MLP consists 

of an input layer to receive input data, output layers that make 

predictions about the input, and at least one hidden layer is 

capable of approximating any continuous function. 
 

 

3. RESULTS AND DISCUSSION 
 

The objective of this study has been to reduce data 

computation and execution time in order to improve the 

accuracy of TCP/UDP-based exploitation DDoS attack 

detection. Data processing or computation is accomplished by 

reducing the number of features in the input data sets. Data 

computation is proportionate to the model's execution time. It 

means that as data computation time reduces, execution time 

significantly reduces as well. So, the main objectives of this 

paper is to reduce the number of features in data sets without 

decreasing the accuracy of exploitation-based DDoS attack 

detection. In this paper, we propose a model for reducing the 

number of features with improving DDoS attack detection 

accuracy. The proposed model depicted in Figure 1. 

TCP/UDP-based exploitation DDoS attack data sets are 

collected for this study from the CICDDoS2019 data set, 

which contains various TCP/UDP based DDoS attack data sets. 

Syn flood is TCP based exploitation DDoS attack data set 

while UDP flood and UDP-Lag are UDP based exploitation 

DDoS attack data sets. Experiments have also been conducted 

on a customized exploitation DDoS attack data set in this 

research. Concatenated 400000 records from each of the Syn-

flood, UDP flood, and UDP-Lag datasets to create a 

customized exploitation DDoS attack data set. 

In this section results are discussed in the order of removing 

constant and quasi-constant features by using variance 

threshold, finding un-correlated feature subsets with Pearson, 

Spearman and Kendall correlation methods, finding common 

un-correlated features from un-correlated feature subsets of 

Pearson, Spearman and Kendall correlation methods, 

discussed performance evaluation metrics of classification 

algorithms with common uncorrelated feature subsets on 

TCP/UDP based exploitation DDoS attack datasets of Syn-

flood, UDP-flood, UDP-Lag and customized DDoS attack and 

finally discussed performance evaluation metrics of 

classification algorithms on customized dataset with common 

features that were common in all of the dataset’s common un-

correlated feature sets. 

After pre-processing, variance threshold filter-based feature 

selection is being used to remove constant and quasi-constant 

features from the data sets in order to reduce the number of 

features. The features that are almost constant are known as 

quasi-constant features. Constant features have a variance 

threshold value of 0, whereas quasi-constant features have a 

variance threshold value of 0.01. Constant features are those 

that have the same value across the entire dataset's rows. 

Remove these features because they provide no information to 

the classification algorithms. Table 1 shows the number of 

constant and quasi-constant feature counts for the Syn flood, 

UDP flood, UDP-Lag, and customized exploitation data sets. 
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Table 1. Number of constant and quasi-constant features of TCP/UDP Exploitation-based DDoS attack data sets 

 

Data Set 
Number of Constant Features 

(Variance Threshold=0) 
Number of Quasi-constant Features 

(Variance Threshold=0.01) 
Syn Flood attack 12 7 
UDP flood attack 12 8 
UDP-Lag attack 12 5 

Customized Exploitation DDoS attack 12 6 

 

Table 2. Number of correlated features, which has a 

threshold value >= 80 by Pearson, Spearman, and Kendall 

correlation methods for TCP/UDP Exploitation-based DDoS 

attack data sets 

 
Correlation Methods 

Data Sets Pearson Spearman Kendall 

Syn Flood attack 37 50 48 

UDP flood attack 34 46 46 

UDP-Lag attack 36 50 46 

Customized Exploitation 

DDoS attack 
39 48 47 

 

Table 3. Number of common un-correlated features count 

with a proposed feature selection method on TCP/UDP 

Exploitation-based DDoS attack data sets 

 

Data Set 
Number of common un-

correlated features 
Syn Flood attack 9 
UDP flood attack 11 
UDP-Lag attack 10 

Customized Exploitation 

DDoS attack 
12 

 

Apply the Pearson, Spearman, and Kendall correlations 

individually on the exploitation-based DDoS attack data sets 

after deleting constant and quasi-constant features, then collect 

un-correlated features sub-sets of each correlation method. 

Table 2 shows the number of correlated feature counts for the 

Syn flood, UDP flood, UDP-Lag, and customized exploitation 

data sets. To find the common un-correlated feature subset, 

apply intersection to un-correlated feature subsets of the 

Pearson, Spearman, and Kendall correlation methods. Table 3 

shows the number of common un-correlated feature counts for 

the Syn flood, UDP flood, UDP-Lag, and customized 

exploitation data sets. Table 4 shows the common un-

correlated feature list for the Syn flood, UDP flood, UDP-Lag, 

and customized exploitation data sets. Unnamed: 0, Flow 

Duration, Flow IAT Min, Total Length of Bwd Packets, and 

Protocol are common in the lists of common un-correlated 

features of Syn flood, UDP flood, UDP-Lag, and customized 

exploitation DDoS attack data sets. Classification algorithms 

are applied to Syn flood, UDP flood, UDP-Lag, and 

customized exploitation DDoS attack data sets with their 

common un-correlated feature subsets and results evaluated. 

On customized exploitation DDoS attack data set with 

common features in the lists of common un-correlated features 

of Syn flood, UDP flood, UDP-Lag, and customized 

exploitation DDoS attack data sets, classification algorithms 

are applied and the results also evaluated. 

 

Confusion matrix 

The actual and predicted values of label classes are 

displayed in a confusion matrix. It shows the four key values 

that are True Positive, False Negative, False Positive, and True 

Negative. These values are used to calculate the evaluation 

metrics. 

TRUE POSITIVE (TP): The amount of DDoS attacks 

properly identified by the classifier. 

TRUE NEGATIVE (TN): The number of BENIGN class 

labels accurately detected by the classifier. 

FALSE POSITIVE (FP): The number of BENIGN class 

labels, classified as DDoS attacks by the classifier. 

FALSE NEGATIVE (FN): The number of DDoS attack 

labels, classified as BENIGN class labels by the classifier. 

 

Accuracy 

Accuracy is defined as the proportion of benign and attack 

data in the right classification to the total data. 

 

𝐴𝐶𝐶𝑈𝑅𝐴𝐶𝑌 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (6) 

 

Precision 

Precision refers to the ratio of the number of attacks 

correctly classified into attacks to the entire proportion of 

attack data, which indicates the model's capability to detect 

attack data. 

 

𝐴𝐶𝐶𝑈𝑅𝐴𝐶𝑌 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (7) 

 

Recall/TPR 

The recall or true positive rate (TPR) is the percentage of 

accurately detected attack data instances among all attack data. 

 

𝐴𝐶𝐶𝑈𝑅𝐴𝐶𝑌 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (8) 

 

F1-Score 

The F1 score is the weighted average precision and recall. 

Logistic Regression, Gradient Boost, and Naive Bayes provide 

the best F-score value. Ada Boost and KNN almost provide 

the best F1-score value. Decision Tree also provides a poor 

F1-score value. 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (9) 

 

Specificity 

Specificity is the ratio of the truly classified BENIGN class 

labels out of the total actual BENIGN class labels.  

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (10) 

 

Table 5 shows performance evaluation metrics in terms of 

accuracy, precision, recall, F-score, and specificity for the 

different classification algorithms on Syn flood attack with 

common un-correlated features. The classification methods of 

multilayer perceptron and Ada boost produce the best 
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accuracy results compared to others. For attack classification, 

all classification methods produce good results in terms of 

precision, recall, and F-score. Multilayer perceptron produces 

better precision and F-score values for benign classification, 

while KNN produces better recall values. For attack 

classification, logistic regression produces a better specificity 

value. All classification methods produce better specificity 

values for benign classification. 

Table 6 shows performance evaluation metrics in terms of 

accuracy, precision, recall, F-score, and specificity for the 

different classification algorithms on UDP flood attacks with 

common un-correlated features. The classification methods of 

KNN, Ada boost, and multilayer perceptron produce the best 

accuracy results compared to others. In terms of precision, 

recall, and F-score, all classification algorithms produce good 

results for attack classification. Multilayer perceptron 

produces the best precision score, random forest produces the 

best recall score, and KNN produces the best F-score value for 

benign classification. Except for Naive Bayes, all 

classification methods produce good specificity scores for 

benign classification. For attack classification, logistic 

regression and Naive Bayes produce a high specificity score. 

Table 7 shows performance evaluation metrics in terms of 

accuracy, precision, recall, F-score, and specificity for the 

different classification algorithms on UDP-Lag attacks with 

common un-correlated features. Random Forest and 

multilayer perceptron produce the best accuracy results 

compared to other classifiers. All classification algorithms 

produce good results for attack classification in terms of 

precision, recall, and F-score except Naive Bayes classifier. 

Ada Boost and Multilayer perceptron produce the best 

precision results, while Logistic regression produces the best 

recall value and KNN, Random forest, and Multilayer 

perceptron produce the best F-score values for benign 

classification. Logistic regression produces the best specificity 

score for attack classification. All classification algorithms 

produce good results for benign classification in terms of 

specificity except the Naive Bayes classifier. 

Table 8 shows performance evaluation metrics in terms of 

accuracy, precision, recall, F-score, and specificity for the 

different classification algorithms on Customized Exploitation 

DDoS attacks with common un-correlated features. Multilayer 

perceptron produces the best accuracy results compared to 

other classifiers. All classification algorithms produce good 

results for attack classification in terms of precision, recall, 

and F-score. The random forest produces the best precision 

score, while Logistic regression produces the best recall value 

and KNN produces the best F score value for benign 

classification. All classification algorithms produce good 

results for benign classification in terms of specificity. 

Logistic regression produces the best specificity value for 

attack classification. 

 

K-fold cross validation 

Cross-fold validation is a statistical method for evaluating 

machine learning classification models. A test set should still 

be kept aside for final evaluation when employing Cross-

validation, but the validation set is no longer required. The 

training set is partitioned into k smaller sets in a k-Cross-fold 

validation. The training data for a model is taken from k-1 

folds. After that, the model is tested against the remaining data. 

 

Table 4. Common un-correlated feature list with a proposed feature selection method on TCP/UDP Exploitation-based DDoS 

attack data sets 

 

 Syn Flood attack UDP flood attack UDP-Lag attack 
Customized Exploitation DDoS 

attack 
1 Unnamed: 0 Unnamed: 0 Unnamed: 0 Unnamed: 0 
2 Flow Duration Flow Duration Flow Duration Flow Duration 
3 Flow IAT Min Flow IAT Min Flow IAT Min Flow IAT Min 

4 
Total Length of Bwd 

Packets 
Total Length of Bwd 

Packets 
Total Length of Bwd 

Packets 
Total Length of Bwd Packets 

5 Protocol Protocol Protocol Protocol 
6 min_seg_size_forward min_seg_size_forward Inbound min_seg_size_forward 
7 Fwd Packet Length Std Fwd Packet Length Max Fwd Packet Length Std Fwd Packet Length Std 
8 Total Backward Packets Bwd Packet Length Min Total Backward Packets Total Backward Packets 
9 Total Fwd Packets Active Std Active Std Active Std 
10  Fwd Header Length Fwd Header Length Fwd Header Length 

11  Active Mean  Active Mean 

12    Down/Up Ratio 

 

Table 5. Accuracy, Precision, Recall, F-score and Specificity score values of the classification algorithms with common un-

correlated feature subset selected by the proposed model on Syn flood attack dataset 

 

Classification algorithms 
Precision Recall F-Score Specificity 

Accuracy (%) 
Attack Benign Attack Benign Attack Benign Attack Benign 

Logistic Regression 1.00 0.01 0.97 0.84 0.99 0.02 0.84 0.97 97.06 
Decision Tree 1.00 0.21 1.00 0.72 1.00 0.32 0.72 1.00 99.89 

KNN 1.00 0.03 0.99 0.82 0.99 0.05 0.82 0.99 98.91 
Naive Bayes 1.00 0.33 1.00 0.80 1.00 0.47 0.80 1.00 99.93 

Random Forest 1.00 0.24 1.00 0.78 1.00 0.36 0.78 1.00 99.90 
Ada Boost 1.00 0.71 1.00 0.50 1.00 0.59 0.50 1.00 99.97 

Gradient Boost 1.00 0.22 1.00 0.79 1.00 0.35 0.79 1.00 99.89 
Multilayer Perceptron 1.00 1.00 1.00 0.48 1.00 0.64 0.48 1.00 99.98 
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Table 6. Accuracy, Precision, Recall, F-score and Specificity score values of the classification algorithms with common un-

correlated feature subset selected by the proposed model for the UDP flood attack 

 

Classification algorithms 
Precision Recall F-Score Specificity 

Accuracy (%) 
Attack Benign Attack Benign Attack Benign Attack Benign 

Logistic Regression 1.00 0.58 1.00 1.00 1.00 0.73 1.00 1.00 99.92 
Decision Tree 1.00 0.46 1.00 0.77 1.00 0.57 0.77 1.00 99.88 

KNN 1.00 0.93 1.00 0.83 1.00 0.88 0.83 1.00 99.98 
Naive Bayes 1.00 0.00 0.04 1.00 0.07 0.00 1.00 0.04 3.87 

Random Forest 1.00 0.64 1.00 0.94 1.00 0.76 0.94 1.00 99.94 
Ada Boost 1.00 0.90 1.00 0.79 1.00 0.84 0.79 1.00 99.97 

Gradient Boost 1.00 0.70 1.00 0.23 1.00 0.35 0.23 1.00 99.91 
Multilayer Perceptron 1.00 0.95 1.00 0.67 1.00 0.78 0.67 1.00 99.96 

 

Table 7. Accuracy, Precision, Recall, F-score and Specificity score values of the classification algorithms with common un-

correlated feature subset selected by the proposed model for the UDP - Lag attack 

 

Classification algorithms 
Precision Recall F-Score Specificity 

Accuracy (%) 
Attack Benign Attack Benign Attack Benign Attack Benign 

Logistic Regression 1.00 0.17 0.95 0.93 0.97 0.28 0.93 0.95 94.77 
Decision Tree 1.00 0.28 0.97 0.86 0.99 0.42 0.86 0.97 97.37 

KNN 1.00 0.93 1.00 0.89 1.00 0.91 0.89 1.0 99.80 
Naive Bayes 1.00 0.01 0.01 1.00 0.01 0.02 1.00 0.01 01.63 

Random Forest 1.00 0.94 1.00 0.88 1.00 0.91 0.88 1.00 99.81 
Ada Boost 1.00 0.98 1.00 0.76 1.00 0.86 0.76 1.00 99.71 

Gradient Boost 1.00 0.90 1.00 0.87 1.00 0.89 0.87 1.00 99.75 
Multilayer Perceptron 1.00 0.98 1.00 0.85 1.00 0.91 0.85 1.00 99.81 

 

Table 8. Accuracy, Precision, Recall, F-score and Specificity score values of the classification algorithms with common un- 

correlated feature subset selected by the proposed model for the Customized Exploitation DDoS attack 

 

Classification algorithms 
Precision Recall F-Score Specificity 

Accuracy (%) 
Attack Benign Attack Benign Attack Benign Attack Benign 

Logistic Regression 1.00 0.15 0.98 0.92 0.99 0.25 0.92 0.98 97.55 
Decision Tree 1.00 0.07 0.96 0.71 0.98 0.13 0.71 0.96 95.81 

KNN 1.00 0.87 1.00 0.90 1.00 0.89 0.90 1.00 98.90 
Naive Bayes 1.00 0.35 1.00 0.55 1.00 0.43 0.55 1.00 99.35 

Random Forest 1.00 1.00 1.00 0.66 1.00 0.80 0.66 1.00 99.85 
Ada Boost 1.00 0.96 1.00 0.06 1.00 0.11 0.06 1.0 99.58 

Gradient Boost 1.00 0.86 1.00 0.74 1.00 0.79 0.74 1.00 99.83 
Multilayer Perceptron 1.00 0.99 1.00 0.75 1.00 0.85 0.75 1.00 99.88 

 

Table 9. K-fold cross-validation accuracy scores (with a standard deviation) in % of the different classification algorithms with 

common un-correlated feature subset selected by the proposed model 

 
Classification Algorithms Syn flood attack UDP flood attack UDP-Lag attack Customized Exploitation DDoS attack 

Logistic Regression 92.4385(0.7917) 99.9141(0.0111) 95.4938(0.1625) 97.0752(0.0245) 

Decision Tree 99.9974 (0.0009) 99.9831(0.0021) 99.9723(0.0064) 99.9558(0.0036) 

KNN 99.9960 (0.0010) 99.9774(0.0035) 99.8371(0.0079) 99.9342(0.0033) 

Naive Bayes 99.9138 (0.0032) 99.4898(0.0181) 99.3405(0.0291) 99.3236(0.0594) 

Random Forest 99.9978 (0.0006) 99.9630(0.0061) 99.9835(0.0060) 99.9316(0.0042) 

Ada Boost 99.9868 (0.0022) 99.9731(0.0041) 99.7678(0.0190) 99.8365(0.0112) 

Gradient Boost 99.9925 (0.0024) 99.9176(0.0360) 99.9165(0.0169) 99.8549(0.0309) 

Multilayer Perceptron 99.9844(0.0130) 99.9609(0.0059) 99.7955(0.0082) 99.9104(0.0138) 

 

Table 10. ROC-AUC Scores of the different classification algorithms with common un-correlated feature subset selected by the 

proposed model 

 
Classification Algorithms Syn flood attack UDP flood attack UDP-Lag attack Customized Exploitation DDoS attack 

Logistic Regression 0.9375 0.9998 0.9907 0.9892 

Decision Tree 0.8593 0.8821 0.9167 0.8364 

KNN 0.9070 0.9635 0.9529 0.9777 

Naive Bayes 0.9154 0.9997 0.8921 0.9369 

Random Forest 0.9566 0.9999 0.9950 0.8364 

Ada Boost 0.9037 0.9999 0.9949 0.9950 

Gradient Boost 0.9381 0.6153 0.9933 0.9204 

Multilayer Perceptron 0.9681 0.9999 0.9941 0.9948 
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Table 9 shows K-fold cross-validation accuracy scores 

(with a standard deviation) in % of the different classification 

algorithms with common un-correlated feature subset on Syn 

flood, UDP flood, UDP-Lag, and Customized Exploitation 

DDoS attacks. Random forest produces the best K-fold cross 

validation accuracy score with less standard deviation while 

logistic regression produces lowest value on Syn flood DDoS 

attack dataset. On the UDP flood DDoS attack dataset, 

decision tree produces the best K-fold cross validation 

accuracy score with less standard deviation, whereas Naive 

Bayes produces the lowest value. Random forest produces the 

best K-fold cross validation accuracy score with less standard 

deviation while logistic regression produces lowest value on 

UDP-Lag DDoS attack dataset. On the customized 

exploitation DDoS attack dataset, decision tree produces the 

best K-fold cross validation accuracy score with less standard 

deviation, whereas logistic regression produces the lowest 

value. 
 

ROC-AUC score 

The Receiver Operating Characteristic (ROC) curve is used 

to evaluate the model's accuracy. The ROC curve depicts the 

relationship between True and False classes. The area 

underneath the ROC Curve (AUC) measures separability 

between false positive and true positive rates. A ROC curve is 

a graph that shows a classification model's performance 

overall decision threshold. A decision threshold is a value used 

to translate a probabilistic prediction into a class label. Scores 

between 0 and 1 on the ROC-AUC. When the ROC-AUC 

value is 1, the classifier correctly classifies all labels. When 

the ROC-AUC value is zero, the classifier classifies all labels 

not accordingly, that is, it classifies TRUE labels as FALSE 

labels and FALSE labels as TRUE labels. 

The ratio of benign data misclassification to the proportion 

of all attack data filled with abnormal data is known as the 

false-positive rate. 

Table 10 shows ROC-AUC Scores of the different 

classification algorithms with common un-correlated feature 

subset on Syn flood, UDP flood, UDP-Lag, and Customized 

Exploitation DDoS attacks. On a Syn flood attack, Multilayer 

Perceptron produces the best ROC-AUC score, while Decision 

Tree produces a lesser ROC-AUC score. Figure 3 shows the 

Receiver Operating Curve (ROC) of the classification 

algorithms with common un-correlated feature subset selected 

by the proposed model for Syn flood attack. On UDP flood 

attacks, Random forest, Ada boost, and Multilayer perceptron 

produce the best ROC-AUC scores, whereas Gradient boost 

produces the lowest ROC-AUC scores. Figure 4 shows the 

Receiver Operating Curve (ROC) of the classification 

algorithms with common un-correlated feature subset selected 

by the proposed model for the UDP flood attack. Random 

forest and Ada boost produce the best ROC-AUC scores for 

UDP-Lag attacks, whereas Naïve Bayes classifier produces 

the lowest ROC-AUC score. Figure 5 shows the Receiver 

Operating Curve (ROC) of the classification algorithms with 

common un-correlated feature subset selected by the proposed 

model for the UDP-Lag attack. On customized exploitation 

DDoS attacks, Ada boost and Multilayer perceptron produce 

the best ROC-AUC scores, while Decision tree and Random 

forest produce the lowest ROC-AUC scores. Figure 6 shows 

the Receiver Operating Curve (ROC) of the classification 

algorithms with common un-correlated feature subset selected 

by the proposed model for the Customized Exploitation DDoS 

attack. Even if Ada boost does not produce the best ROC-AUC 

score on the Syn-flood attack data set, it does so on the UDP 

flood and UDP-Lag attack datasets, as well as the customized 

exploitation DDoS attack dataset. Multilayer perceptron 

produces the best scores on Syn flood and UDP flood DDoS 

attack datasets, good scores on UDP-Lag DDoS attack datasets, 

and better scores on customized exploitation DDoS attack 

datasets in terms of ROC AUC.  
 

 
 

Figure 3. Receiver Operating Curve (ROC) of the 

classification algorithms with common un-correlated feature 

subset selected by the proposed model for Syn flood attack 
 

 
 

Figure 4. Receiver Operating Curve (ROC) of the 

classification algorithms with common uncorrelated features 

subset selected by the proposed model on UDP flood attack 
 

 
 

Figure 5. Receiver Operating Curve (ROC) of the 

classification algorithms with common un-correlated features 

subset selected by the proposed model on UDP-Lag attack 
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Figure 6. Receiver Operating Curve (ROC) of the 

classification algorithms with common un-correlated feature 

subset selected by the proposed model for the Customized 

Exploitation DDoS attack 

 

Log loss 

The most important probability-based classification metric 

is log loss. The lower the log-loss number, the better the 

predictions; the log loss value is 0 for a perfect model.  

 

𝐿𝑜𝑔 − 𝑙𝑜𝑠𝑠 = −
1

𝑁
∑[𝑦𝑖 ln 𝑝𝑖 + (1 − 𝑦𝑖)𝑙𝑛(1

𝑁

𝑖=1

− 𝑝𝑖)] 

(11) 

 

where, N is the number of observations, p is the prediction 

probability and y is the actual value. 

Table 11 shows Log-loss values of the different 

classification algorithms with common un-correlated features 

subset on Syn flood, UDP flood, UDP-Lag, and Customized 

Exploitation DDoS attacks. On the Syn flood DDoS attack 

dataset, the multilayer perceptron classifier produces the best 

log value, whereas logistic regression produces the poorest log 

loss value. On a UDP flood DDoS attack dataset, the KNN 

classifier produces the best log value, whereas the Naive 

Bayes classifier produces the poorest log value. On the UDP-

lag DDoS attack dataset, the multilayer perceptron classifier 

produces the best log value, whereas the Naive Bayes 

classifier produces the poorest log loss value. On a customized 

exploitation DDoS attack dataset, the KNN classifier produces 

the best log value, whereas the Decision tree classifier 

produces the poorest log value. On all exploitation-based 

DDoS attack datasets, boosting type classifiers perform well 

in terms of log-loss evaluation metrics.  

 

Run time 

Run time means the execution time of the model. Table 12 

shows Execution times (in seconds) of the different 

classification algorithms with common un-correlated feature 

subset on Syn flood, UDP flood, UDP-Lag, and Customized 

Exploitation DDoS attacks. In terms of execution time, the 

Naive Bayes classifier takes less time while the Gradient 

boosting classifier takes more time on the Syn flood DDoS 

attack dataset. On the UDP flood DDoS attack dataset, the 

Naive Bayes classifier takes less time to run, whereas the 

Gradient boosting classifier takes longer. The Naive Bayes 

classifier takes less time to execute on the UDP-Lag DDoS 

attack data set, whereas the multilayer perceptron takes longer. 

The Naive Bayes classifier takes less time to execute on the 

customized exploitation DDoS attack data set, whereas the 

random forest classifier takes longer. Ada boost classifier 

takes less time for execution than Gradient boost classifier, 

random forest bagging classifier, and multilayer perceptron 

neural network classifier.  

 

Results of classification algorithms on customized data set 

with common feature subset 

Table 4 shows the common un-correlated feature list for the 

Syn flood, UDP flood, UDP-Lag, and customized exploitation 

data sets. Unnamed: 0, Flow Duration, Flow IAT Min, Total 

Length of Bwd Packets, and Protocol are common in the lists 

of common un-correlated features of Syn flood, UDP flood, 

UDP-Lag, and customized exploitation DDoS attack data sets. 

Now classification algorithms applied to a customized DDoS 

attack dataset with these common feature subsets and results 

are evaluated. 
 

Table 11. Log-loss values of the different classification algorithms with common un-correlated feature subset selected by the 

proposed model 
 

Classification Algorithms Syn flood attack UDP flood attack UDP-Lag attack Customized Exploitation DDoS attack 

Logistic Regression 1.0144 0.0273 1.8063  0.8448 

Decision Tree 0.0375 0.0427 0.9096 1.4486 

KNN 0.3775 0.0085 0.0693 0.0359 

Naive Bayes 0.0228 33.2010 33.9747 0.2251 

Random Forest 0.0342 0.0221 0.0662 0.0523 

Ada Boost 0.0088 0.0109 0.0988 0.1466 

Gradient Boost 0.0372 0.0326 0.0864 0.0590 

Multilayer Perceptron 0.0065 0.0138 0.0642 0.0400 
 

Table 12. Execution times (in seconds) of the different classification algorithms with common un-correlated feature subset 

selected by the proposed model 
 

Classification Algorithms Syn flood attack UDP flood attack UDP-Lag attack Customized Exploitation DDoS attack 

Logistic Regression 19.9021 15.6982 3.3212 13.9782 

Decision Tree 4.9124 1.6632 0.9543 3.7729 

KNN 2.3210 2.7505 0.6286 2.3074 

Naive Bayes 0.2645 0.2528 0.0674 0.2312 

Random Forest 113.9609 59.7390 22.2232 148.4150 

Ada Boost 34.0015 40.5446 9.8165 48.5320 

Gradient Boost 121.1507 143.1666 31.9532 125.2996 

Multilayer Perceptron 82.8440 78.7160 65.5630 138.0118 
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Table 13. Accuracy, Precision, Recall, F-score and Specificity score values of the classification algorithms with common feature 

subset selected for Customized Exploitation DDoS attack 

 

Classification algorithms 
Precision Recall F-Score Specificity 

Accuracy (%) 
Attack Benign Attack Benign Attack Benign Attack Benign 

Logistic Regression 1.00 0.09 0.96 0.84 0.98 0.16 0.84 0.96 95.96 
Decision Tree 1.00 0.95 1.00 0.64 1.00 0.76 0.64 1.00 99.82 

KNN 1.00 0.85 1.00 0.72 1.00 0.78 0.72 1.00 99.82 
Naive Bayes 1.00 0.68 1.00 0.26 1.00 0.38 0.26 1.00 99.61 

Random Forest 1.00 0.96 1.00 0.66 1.00 0.78 0.66 1.00 99.83 
Ada Boost 1.00 0.82 1.00 0.13 1.00 0.23 0.13 1.00 99.60 

Gradient Boost 1.00 0.99 1.00 0.50 1.00 0.67 0.50 1.00 99.77 
Multilayer Perceptron 1.00 0.95 1.00 0.60 1.00 0.73 0.60 1.00 99.81 

 

Table 14. K-fold cross-validation accuracy scores (with a standard deviation) in %, ROC-AUC Scores, Log- loss value and 

execution times of the different classification algorithms on Customized Exploitation DDoS attack with common feature subset 

 
Classification Algorithms K-fold cross-validation accuracy AUC Score Log-loss value Execution-time 

Logistic Regression 88.4218(0.1191) 0.9640 1.3963 7.3079 

Decision Tree 99.8955(0.0025) 0.8202 0.0612 4.5834 

KNN 99.8627(0.0039) 0.9205 0.0633 1.3982 

Naive Bayes 99.5840(0.0143) 0.7968 0.1338 0.1801 

Random Forest 99.8859(0.0144) 0.9372 0.0571 105.7972 

Ada Boost 99.8089(0.0088) 0.9762 0.1389 37.1230 

Gradient Boost 99.8200(0.0087) 0.8213 0.0778 117.3310 

Multilayer Perceptron 99.8360(0.0040) 0.9768 0.0673 133.2027 

 

 
 

Figure 7. Receiver Operating Curve (ROC) of the 

classification algorithms with common feature subset on 

Customized Exploitation DDoS attack 

 

Table 13 shows performance evaluation metrics in terms of 

accuracy, precision, recall, F-score, and specificity for the 

different classification algorithms on Customized Exploitation 

DDoS attacks with common features which are common in 

four common un-correlated feature subsets. Decision tree, 

KNN, and Multilayer perceptron provide better accuracy 

scores. In terms of precision, recall, and F-score, all 

classification methods produce good results for attack 

classification. The Gradient boost classifier has a higher 

accuracy score, while the Logistic regression classifier has a 

higher benign score, and the KNN and Random forest 

classifiers have a higher F-score for benign classification. 

Except for Logistic regression, all classification methods have 

a higher specificity score benign classification, while Logistic 

regression has a higher specificity score for attack 

classification. 

Table 14 shows K-fold cross-validation accuracy scores 

(with a standard deviation) in %, ROC-AUC Scores, Log-loss, 

value and execution times of the different classification 

algorithms on Customized Exploitation DDoS attack with 

common feature subset. Multilayer perceptron gives the best 

ROC-AUC value while Naive Bayes provides the lowest 

ROC-AUC score values in customized exploitation DDoS 

attack dataset. Figure 7 shows the ROC curves of the 

classification algorithms with common feature subset on the 

Customized Exploitation DDoS attack. On a customized 

exploitation DDoS attack dataset with common features set, 

KNN provides the best log loss value, whereas logistic 

regression provides the lowest log loss values. On a 

customized exploitation DDoS attack dataset with common 

features set, Naive Bayes takes less time for execution, 

whereas multilayer perceptron takes more time for execution. 

On a customized exploitation DDoS attack dataset with 

common features set, the Decision tree provides the best K-

fold cross-validation accuracy value, whereas logistic 

regression provides the lowest K-fold cross-validation 

accuracy score values.  

 

 

4. CONCLUSIONS 

 

This research evaluates the effectiveness of the 

classification algorithms for detecting exploitation DDoS 

attacks on three CIC-DDoS2019 datasets and customized 

exploitation DDoS attack dataset with common un-correlated 

feature subset selected by Pearson, Spearman and Kendall 

correlation methods. The classification methods of multilayer 

perceptron and Ada boost produce the best accuracy results 

compared to others on Syn flood DDoS attack dataset. 

Decision tree, KNN, and Multilayer perceptron provide better 

accuracy scores on UDP-flood attack dataset. Random Forest 

and multilayer perceptron produce the best accuracy results 

compared to other classifiers on UDP-lag attacks. Decision 

tree, KNN, and Multilayer perceptron provide better accuracy 

scores on customized exploitation DDoS attacks. Multilayer 

perceptron produces the best accuracy results compared to 

other classifiers on customized exploitation DDoS attacks 

dataset with common features which are common features of 

in un-correlated feature subsets. Overall, multilayer 
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perceptron produces the best accuracy in all exploitation 

DDoS attacks datasets. It also provides good results in 

remaining evaluation metrics. 
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