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Edge detection is a key technique in image processing. The detected edge quality has a 

direct and significant impact on performance. There is a multitude of methods for edge 

detection but they are strongly associated with the application and the quality of the images. 

However, more precise outcomes and a reduced execution time remain the primary 

objectives for extracting edges. To address these issues, we propose a novel technique based 

on a complex system called Cellular Automata (CA). They are successfully applied in edge 

detection due to their simplicity and local interactions. This undertook shed new light on a 

novel method using Outer Totalistic Cellular Automata (OTCA) to perform efficiently edge 

detection. We have tested images from Berkeley dataset. RMSE and SSIM are used as 

fitness functions for estimating numerical performance of OTCA rules. Comparisons were 

made with classical edge detectors like: Canny, Scharr, Sobel, Roberts. Experimental 

results showed that OTCA rules provide excellent performance and outperforms other edge 

detectors in terms of precision and execution time, particularly when dealing with noisy 

images. 
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1. INTRODUCTION

Image processing is one of the key factors influencing the 

research progress and it is deeply motivated to be a driving 

force in the technology race. It rivals human visual abilities 

and brings significant benefits in many areas. In image 

processing, edge detection is a crucial stage. The image edge 

is the most visible portion of the partial intensity fluctuations 

in pictures [1] that define the borders of objects in a scene. It 

is a primary step in image processing, image analysis, pattern 

identification in images, computer vision, and human vision. 

The objective of detecting abrupt changes in the brightness of 

an image is to capture significant events and features. By using 

an edge detector on an image, you may considerably lessen the 

amount of data that has to be processed and thereby filter out 

information that is deemed less important while keeping the 

image's crucial structural qualities [2]. The merits of detected 

edges algorithms have a direct and high influence on system 

performance. The accuracy and dependability of its outputs 

have a direct effect on the objective world comprehension 

machine system. 

It is challenging to create a general-purpose edge detection 

algorithm that performs effectively in a wide variety of 

situations and meets the needs of later processing stages. As a 

result, throughout the history of digital image processing, 

several edge detectors have been developed, each with a 

specific features and mathematical and algorithmic qualities 

[3]. 

There are several edge detection methods, but the majority 

of them fall into two categories: search-based and zero-

crossing-based [4]. The search-based methods for detecting 

edges begin by computing a measure of edge strength, 

typically a first-order derivative expression such as the 

gradient magnitude, and then searching for local directional 

maxima of the gradient magnitude using a computed estimate 

of the edge's local orientation, usually the gradient direction 

(Canny [5], Deriche [6]). Biological vision has a significant 

effect on edge identification based on second-order difference 

(zero crossings). Marr and Hildreth [7] and Marr [8] discuss 

the pioneering work. 

Each technique of image edge detection has distinct benefits 

and limitations, and further study is needed to develop 

algorithms to increase the use of edge detection not just for 

higher level image processing, but also for accuracy. To 

accomplish this purpose, the following investigations are 

necessary: 

• Accurate and correct edge detection,

• More precise echo to varied scale edges and a reduced

missed detection ratio, 

• Increased anti-noise capacity,

• Reduce the extent of the edge direction that affects

detection sensitivity. 

Numerous standard methods for the majority of image 

processing problems have already been created over the 

previous few decades by various researchers. Their concern is 

always to improve the quality of the expected result while 

reducing the processing time. In recent years, much effort has 

been expended on developing other techniques of edge 

detection. In this context, several academics have examined 

the capacity of cellular automata to handle the same issue and 

discovered that it outperforms conventional techniques. There 

has been increasing interest in the last decade in employing 

cellular automata to accomplish edge detection. 

Due to the parallel nature of cellular automata (CA), they 

have become an interesting topic of research for academics 

from a wide range of domains. They are utilized in engineering 

and science areas. The appeal of cellular automata can be 

attributed to their simplicity and, despite its inherent 
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parallelism, their immense potential for representing complex 

systems [9]. It’s found to be efficient in several image 

processing tasks, regarding grid structure, local interactions, 

emerging behavior, and low time processing.  

Cellular Automata expressed by an n-dimensional array of 

cells. Each cell starts from an  initial to a final state. All cells 

are updated in discrete stages synchronously according to a 

basic local rule. Each cell's current state is determined by its 

previous state and the states of its nearest neighbors. The 

primary advantage of CA is that each cell normally adheres to 

a few basic principles; but, when a matrix of cells is combined 

with their local interaction, more intricate emergent global 

behavior occurs. 

Numerous variants of CA have been presented by various 

researchers to facilitate the design and simulation of complex 

systems: uniform, hybrid, null boundary, periodic boundary, 

linear, nonlinear, complement, additive…etc. [10]. Each of 

these types of CA has shown varied and amazing advantages 

and properties, it has also opened the horizon to future 

explorations for the use of CA in different areas. The related 

literature that will be detailed in the following paragraph will 

present a variety of CA models used for image processing. 

However, it has been found that the kind of CA called Outer 

Totalistic Cellular Automata (OTCA) has been rarely used, 

this encouraged us to explore its capabilities and high 

complexity to carry out edge detection. Likewise, a 

comparative study assesses their relative merit over classical 

methods of edge detection: Canny, Sobel, Prewitt, Roberts and 

Scharr. Visual inspection and statistical evaluation consolidate 

the promising results obtained by the OTCA rules. 

 

 

2. RELATED WORK 
 

A two-dimensional array of (n x m) pixels is referred to as 

a digital image. Each pixel is denoted by the triplet (i, j, k), 

where (i, j) identifies its array position and k is the associated 

color. The image may thus be regarded as a particular 

configuration state of a cellular automaton with the (n x m) 

array defined by the image as its cellular space. Each cell in 

the array represents a single pixel. The cell state is the pixel 

intensity. This projection makes the CA model an interesting 

tool to perform digital image processing tasks. Moreover, due 

to their local character and straightforward parallel 

computation implementation, cellular automata appear to be 

ideal instruments for image processing. Numerous research 

studies have been conducted in this field to train cellular 

automata for image processing applications.  

Several algorithms for edge detection have been developed, 

such as Sobel [11], Prewitt [12], and Canny [13], obtaining 

adequate edge extraction at a desirable level of performance 

remains a difficult issue. 

Rosin [14] demonstrates the possibility of learning effective 

rule sets for basic image processing applications, as well as 

numerous variations to the classic CA formulation. Also, he 

described the application of CA for various image processing 

tasks in Ref. [15]. Preston and Duff [16] provided a single 

source, detailed descriptions of exact CA machines, 

assembling such work and demonstrating the range and 

efficacy of CA-based methods to image processing challenges. 

Diosan et al. [17] presented in detail a class of CA applied for 

image processing tasks. In the last few decades, numerous 

standard methods have previously been established by various 

academics for the majority of image processing applications. 

However, other researchers eventually discovered that using 

CA to tackle the identical problem was superior [2]. 

Enhancing accuracy of the edges, and less time consuming 

remains challenging problems. 

In the literature, there are a lot of works based on CA models 

for performing edge detection [2]. We cite: 

- Wongthanavasu et al.  [18] presented a uniform CA rule 

based on the Von Neumann neighborhood for edge detection 

on binary and gray-scale images; 

- Chang et al. [19] presented CA edge detection model. The 

gray scale matrix of the image was dealt with using an 

information orientation approach, a new kind of CA 

neighborhood was established, and an appropriate local rule of 

the CA was designed; 

- Ha [20] introduced a nonlinear CA-based approach for 

edge detection. Experiments have demonstrated that the novel 

edge detection approach successfully eliminates noise and 

assures the continuity, integrity, and precise position of edges; 

- Ke et al. [21] improved the edge detection technique based 

on the cloud model CA. It combines direction and edge order 

information to create cloud seasoning, then provides feedback 

to the input data and detects auto evolution through CA; 

- Liu et al. [22] adopted a two-dimensional fuzzy CA model, 

a quadrangle-shaped grid, and maximin law as the conversion 

rule for the fuzzy cellular automata; 

- Kumar et al. [23] proposed an optimal approach for edge 

detection based on CA; 

- Djemame and Batouche [24] proposed a new edge 

detection algorithm, based on CA to extract edges of different 

types of images, using a totalistic transition rule. They used a 

meta-heuristic, Particle Swarm Optimization, to determine the 

most optimum and acceptable set of CA transition rules for the 

edge detection task; 

- Zagoris et al. [25] suggested a method for recognizing 

scene in natural photos; to begin, a binary edge map is 

constructed using the CA's flexibility; subsequent phases 

include the application of altering transition rules; 

- Dhillon [26] presented a robust CA approach based on 

edge detection. The simulation results indicate that the 

suggested approach detects edges more smoothly and in less 

time than other edge detectors; 

- Priego et al. [27] deals with the problem of finding edges 

in hyperspectral images. For this purpose, he utilized cellular 

automata (CA) and their advantageous emergent behavior; 

- Gorsevski et al. [28] explored the application of two-

dimensional CA to the challenge of detecting and extracting 

grain boundaries from digital images of thin slices in damaged 

rocks; 

- Uguz et al. [29] suggested an efficient and straightforward 

approach for edge identification using a uniform CA transition 

matrix format. Sahin et al. [30] described a solution for edge 

detection thresholding that is based on fuzzy CA transition 

rules tuned with the Particle Swarm Optimization 

metaheuristic. Diwakar et al. [31] employed CA-based edge 

detection to detect malignant cells in the brain. They adopted 

CA guidelines to assist in assessing the tumor's precise 

location and size;  

- Rosin and Sun [32] discussed the advantages and 

disadvantages of CA-based edge detection approaches and 

evaluated their respective qualities and limitations. Numerous 

CA-based edge detection algorithms are implemented and 

evaluated in order to provide a baseline comparison of 

competing approaches; 

- Mohammed and Nayak [3] proposed a novel pattern of 
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two-dimensional CA linear rules that might be employed for 

image edge identification. Each suggested rule detects edges 

more accurately than existing edge detection methods when an 

image is enhanced; 

- Mofrad et al. [33] introduced a novel CA local rule with 

adaptive neighborhood type to generate an image's edge map, 

in comparison to CA with a fixed neighborhood; 

- Han et al. [34] took into account the space computing 

capacity of CA and the data pattern search capability of 

Extreme Learning Machine and proposed an extreme learning 

machine for edge identification in remote sensing images 

based on CA; 

- Amrogowicz et al. [35] pioneered the use of Outer 

Totalistic CA to create a distinctive edge detector. The most 

significant distinctions between their work and our study are 

as follows: 

* The fitnesses: we used SSIM and RMSE functions while 

[35] employed Pratt FOM, 

* The selected rules are different,  

* The data-set held for test and comparison: we used 

Berkeley dataset, while [35] employed (USF) Florida dataset, 

* For the visualization of testing images, [35] used one 

single image, while we presented a large variety of images for 

illustrating our results,  

* In ref. [35], we noticed a lack of statistical evaluation for 

images without noise. 

- Aghaei [36] proposed a system for noisy image edge 

identification based on a four-neighborhood under Null 

Boundary CA for noise removal and a two-dimensional 

twenty-five neighborhood under Null Boundary CA for edge 

detection; 

- Enescu et al. [37] demonstrated the compatibility and 

capacity of CA in image processing tasks by presenting an 

edge identification approach for binary images based on CA 

and Evolutionary Algorithms. 

Other researchers proposed to solve image processing tasks 

with CA optimizing rules by the use of metaheuristics. Kazar 

and Slatnia [38] utilized a genetic algorithm to identify a set of 

rules for edge detection. A genetic algorithm is an 

evolutionary process that continuously evolves CA to get the 

best edge detection. 

Djemame et al. [39] used a QPSO algorithm to evolve 

cellular automata for edge detection and noise filtering.  

Djemame and Batouche [40] suggest using Quantum 

Genetic Algorithms (QGA) to train Cellular Automata for 

edge detection tasks. 

Based on previous research results, we propose a new 

approach of edge detection using a class of CA called: Outer 

Totalistic Cellular Automata (OTCA). New rules are extracted, 

and trained on a benchmark of images. Therefore, we validate 

and compare the results with several existing edge detectors. 

Our results are produced very quickly. The results are 

compared with well-known edge detectors. Performance 

results are also calculated. 

 

 

3. BASIC CONCEPTS 
 

3.1 Definition 

 

CAs are composed of a regular grid of locally linked finite 

state machines, or cells, which update their states in response 

to their immediate neighbors and a predefined updating 

transition rule [3]. The grid may have any number of 

dimensions, and all of the cells' states are changed 

concurrently (Figure 1). 

 

 
a) 1D                        b) 2D                                      c) 3D 

 

Figure 1. Example of CA Cells representation 

 

3.2 Characteristics of Cellular Automata 

 

Cellular Automata are available in a variety of forms and 

configurations. They are defined by four characteristics [11]: 

 

3.2.1 The Lattice Geometry 

This can be a D-dimensional (possibly infinite) grid (Figure 

2). It is the most fundamental properties of a CA on which it 

is computed. 

 

 
 

Figure 2. Schematic diagram of CA 

 

• A one-dimensional CA is a linear array of cells [3], 

each of which can exist in one of multiple "states." plus a set 

of "rules" for changing those states. 

• Two-dimensional CA cells are laid out in a 

rectangular or hexagonal grid with linkages between adjacent 

cells [3]. 

• Three-dimensional CA have been implemented on 

rectangular grids, this is due to the fact that in rectangular grids 

each cell can be considered as an entry of a matrix, and the 

neighborhood (Moore, Von Neumann) of an entry is easily 

identified [12]. 

 

3.2.2 State of Cellular Automata 

At each time step, the transition rules are applied, and the 

future state of each cell is decided by the present state of its 

nearby cells [13]. 

 

3.2.3 Neighborhood Structure 

Neighborhood configuration is an essential element of CA 

model. There are different neighborhood structures. In the case 

of a two-dimensional cellular automaton on a square grid, two 

frequently encountered neighborhoods are the Moore 

neighborhood (a square neighborhood) and the Von Neumann 

neighborhood (a diamond-shaped neighborhood) (Figure 3) 

[10]. 
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Figure 3. Examples of CA neighborhoods [10] 
 

3.2.4 Transition Rule  

The transition rules determine the changing state of a cell 

depending on the lattice geometry, the neighborhood, and the 

state set [3]. Additionally, the nature of future state functions 

varies greatly; researchers have created the rule set in 

accordance with the application's design needs. 

Moreover, rules are distributed globally during each time 

step, and the next state of each cell is decided by the present 

state of its nearby cells. 

 

 

4. THE PROPOSED APPROACH 

 

This section introduces the OTCA-based edge detector. CA 

is an effective way to model a picture in image processing. A 

cell's state is determined by the pixel's color. The transition 

rule is specified by the cell's current state and the 

neighborhood's current state. The input picture to be processed 

is the starting configuration of CA, and the output image is the 

final configuration (segmented and filtered). The CA 

progresses from a known beginning configuration to a final 

global state utilizing a limited subset of rules across successive 

iterations. Fitness functions are used to evaluate the quality of 

the produced edge visually and statistically. 

 

4.1 The model 

 

The suggested technique employs a rectangular, two-

dimensional grid L for image processing, with each cell 

representing one pixel in the image. Each cell has a limited 

number of discrete states S = {0, 1,..., k-1}. The grid's initial 

values match to the values in image 𝑆0 ∈ 𝑆. Each cell updates 

its state concurrently in discrete time steps according to a 

transition rule based on its local neighborhood N. We employ 

an outer totalistic transition rule in this study. It is discussed in 

further detail in the next paragraph. 

 

4.2 Outer Totalistic Cellular Automata 

 

Wolfram came up with the concept of a totalistic CA. It is a 

CA whose rules are determined only by the total of the values 

of the cells in a neighborhood, including the core cell. In 

OTCA, the next cell state is determined only by the total of 

neighboring cells (not including the central cell) and the value 

of the center cell [9]. 

The rule number is given by defining the next cell state as a 

binary string based on the sum of cells in the neighborhood. 

There are precisely 210 = 1024 possible rules for a Moore 

neighborhood in Totalistic Cellular Automata, where the total 

might be between 0 and 9. The binary string for the Totalistic 

rule 56 is shown in Table 1, in which the next state of the 

center cell becomes 1 when the total of the neighboring values 

is between 3 and 5. 

 

Table 1. Totalistic rule 56 

 
Neighborhood sum 9 8 7 6 5 4 3 2 1 0 

Next state 0 0 0 1 1 1 1 0 0 0 

 

In contrast to traditional TCA, the state of the central cell 

has a considerable effect on the subsequent state. Because two 

transitions based on the center pixel must be defined for each 

sum of neighborhoods, the search space becomes significantly 

bigger. For a Moore neighborhood, the total can range from 0 

to 8, resulting in 18 unique patterns and 218 = 262144 potential 

rules. Table 2 illustrates OTCA rule 832. The next state of the 

cell is '1' if the total is 3 and the central pixel is '0', and '4' if 

the sum is 3 and the central pixel is '0' regardless of the central 

pixel state. 

 

Table 2. Outer Totalistic rule 832 

 
Neighborho

od sum 
8 7 6 5 4 3 2 1 0 

Central 

pixel value 
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

Next state 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 

 

4.3 Rule selection 

 

Rules are reprogrammable micro-programs that may be 

launched in response to any detected condition or at the push 

of a button. In CA, rules determine how the infinite 

arrangement of cells will be updated from time step to another. 

Time is split into discrete steps, and the rules define how to 

determine a cell's next state depending on its present state and 

its surroundings. All cells repeatedly apply the rule; this 

recursive application results in CA's extraordinary behaviour. 

CA rules may identify relatively strong fluctuations in 

image brightness, colour, or detail and can locate edges using 

this extracted information [33]. With such a huge search space, 

manual rule selection would be challenging and might result 

in the exclusion of potentially significant rules. Thus, a 

thorough survey of the rule space is required to arrive at an 

optimal result [35]. 

Consider the Moore Neighbourhood as a binary picture. The 

whole number of OTCA rules can be thoroughly iterated with 

the quality metric computation in a reasonable amount of time; 

certain rules can be deleted beforehand. The first and last 

pieces of the rule string denote a uniform neighbourhood, 

which is denoted by the absence of an edge. The second bit 

and the one before it reflects the presence of a noise pixel in 

the center. By specifying a value for each of the four stated 

cases, the number of viable rules is decreased from 262144 to 

16384, saving 93.75 % of the time spent searching. 

 

4.4 Fitness functions 

 

With a total of 16384 rules remaining, it is difficult to 

visually check the optimal rule. It is necessary to select a well-

defined metric for quantitative evaluation. Despite the obvious 

benefits of a unified quantitative approach, no agreement has 

been reached and several alternative measures have been 

offered. Whichever optimization approach is employed, an 

objective function is necessary, and the quality of the objective 
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function obviously has a significant impact on the final 

outcomes. Two fitness functions were considered: the 

Structural Similarity Index (SSIM) and the Root Mean Square 

Error (RMSE). These functions are used to determine the 

difference in picture quality between the generated image and 

the reference image. For each test picture, the RMSE and 

SSIM values were determined. 

 

4.4.1 The Root Mean Square Error 

The Root Mean Square Error (RMSE) is a widely used 

metric for comparing expected values by a model or estimator 

to observed values. The RMSE is used to aggregate the 

magnitudes of prediction errors across many time periods into 

a single measure of predictive capacity. It is a measure of 

accuracy between the original and distorted images. Eq. (1) 

calculates the RMSE value.  

 

𝑅𝑀𝑆𝐸 = √ 
1

𝑛𝑥𝑛𝑦

∑  

𝑛𝑥−1

0

∑ [𝐸(𝑥, 𝑦) − 𝑂(𝑥, 𝑦)]2

𝑛𝑦−1

0

 (1) 

 

where: 

• x and y denote pixel positions, 

• 𝑛𝑥 and 𝑛𝑦 denote the width and height of the image, 

• E represents the edge image, and O the original image. 

 

4.4.2 The Structural Similarity Index 

The Structural Similarity Index (SSIM) aims to assess the 

visually discernible difference between a distorted image and 

a reference image. The method defines structural information 

in a picture as those qualities that accurately describe the 

structure of the objects in the scene, regardless of their average 

brightness or contrast. The index is calculated by comparing 

brightness, contrast, and structure. The comparisons are 

performed on the image's local windows, and the overall index 

is calculated as the mean of all these local windows. A reduced 

SSIM value implies that the difference between the original 

and processed images is as little as possible. Between two 

pictures x and y, the SSIM metric is defined as [41]: 

 

𝑆𝑆𝐼𝑀 =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 (2) 

 

where: 

• μx , μy , are the mean of x and the mean of y,  

•  σ𝑥
2  , σ𝑦

2 , 𝜎𝑥𝑦 are the variance of x, the variance of y 

and the covariance of x and y, 

• C1 is set to (0.01 ∗ 255)2 and C2 = (0.03 ∗ 255)2. 

 

 

5. OTCA ALGORITHM FOR EDGE DETECTION 

 

Our objective in this study is to perform edge detection on 

images using an OTCA. The OTCA rules are iterative, starting 

with the picture to be segmented and ending with the contour 

image. The RMSE and SSIM fitness functions are used to 

determine the quality of this contour. The procedure is 

depicted in algorithm 1 to provide further information about 

the OTCA method's implementation. 

 

 

6. EXPERIMENTAL RESULTS AND EVALUATION 

 

6.1 Dataset 

 

Experiments were conducted on a variety of images from 

Berkeley University's database (BSDS500) [42]. The data-set 

consists of 500 natural images, ground-truth human contours 

and benchmarking code. 

Among this huge set of test images, we selected a few 

subsets to validate our method. Our strategy is validated using 

a large collection of diverse images. The complexity of the 

images reflects a wide range of edge types that is invested to 

draw valuable conclusions from the result. The experiments 

are done on a large set of images, in this paper, we only 

illustrate some results. 

 

Algorithm 1: OTCA Edge Detection 

 

Variables: 

//The Original Image should be in binary representation 

Input: Original Image (Im×n), OTCARule   

// A Moore neighborhood   

Consider Neighbors = {Moore 3×3} (radius=1) as a set of 

available neighborhood types of CA  

Output: Result Image (Jm×n = [0] m×n) 

Result Image: Construct a CAm×n identical to Im×n 

 

Begin 

// creating a new image where every pixel is empty, it has the 

same size input of the binary image 

Result Image = create Empty Image (Size of the Original 

Image) 

//OTCARule: The rule is 18 bits and it's filled with the rule 

number -named OTCARule - that we entered as an input. The 

number is thus converted into a binary sequence then filled 

into the rule array from right to left, the rest of bits are filled 

with 0 */ 

rule = [int(j) for j in list('{0:0b}'. format (OTCARule, "18b"). 

zfill (18))]  

        // looping from the first line over each pixel 

 for Each pixel(k) in Im×n do 

               // get the sum of 8 surrounding neighborhood  

            count = 0 

            for Pixel(k) in ((row - 1, col), (row + 1, col), (row, col 

- 1), 

                                 (row, col + 1), (row - 1, col - 1), (row - 1, 

col + 1), 

                                 (row + 1, col - 1), (row + 1, col + 1)) 

                                if not (0 <= Pixel(row) < Im×n and 0 <= 

Pixel(column) < Im×n) 

                                 // Out of bounds 

                                                continue 

                                 if grid[x][y] == 1: 

                                  CountMooreNeighbours += 1       

            Sum of Neighbors = CountMooreNeighbours  

              //Get the sum of a Moore neighborhood and the value 

of current state 

                       if Sum of Neighbors == 8 and Central pixel 

== 1 then 

                        Pixel(k) of Result Image = rule [0] 

                       if Sum of Neighbors == 8 and Central pixel 

== 0 then 

                        Pixel(k) of Result Image = rule [1] 
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                       if Sum of Neighbors == 7 and Central pixel 

== 1 then 

                        Pixel(k) of Result Image = rule [2] 

                       if Sum of Neighbors == 7 and Central pixel 

== 0 then 

                        Pixel(k) of Result Image = rule [3] 

             … 

             // Continue till reached all the table rule [] 

  if Sum of Neighbors == 0 and Central pixel == 0 then 

Pixel(k) of Result Image = rule [17] 

   Return Result Image /* The end of For loop */ 

           //Compare the Result Image with their ground truth by 

using SSIM and RMSE functions 

          SSIM of the Result Image= SSIM (Result Image, 

Ground Truth) 

          RMSE of the Result Image= RMSE (Result Image, 

Ground Truth) 

          Display (SSIM of the Result Image, RMSE of the Result 

Image) 

End 

 

6.2 Best packet of rules 

 

In this work, a considerable effort has been made to extract 

the subset of best OTCA rules. During thousands of trials, we 

applied 16384 rules for dozens of images from BSDS500 and 

compared them with their ground truth, using the objective 

functions. We finally managed to extract all the possible rules 

for each tested image. From all the resulting rules, we choose 

the subset that appears most frequently. 

Through the visual inspection, there are many rules which 

provide the best results in term of edge continuity, thickness 

and accuracy. For image 8068, some of the best rules obtained 

are: 756, 2221, 2232, 2280, 2297, 2732, 3008, 3012, 3024, 

10996, 10212, 11200, 11196. The correspondent edges are 

illustrated in Figure 4. 

The OTCA rules can generate extremely thin lines (as Rule 

3008, 11200) or extremely thick lines (as Rule 11196), 

depending on the rules used. While the remaining rules have 

varying degrees of thickness, they give a far better degree of 

continuity and smoothness. 

Five rules are chosen in this paper: 672, 688, 736, 3008, and 

3012, from the subset of best rules. Numerous alternative rules 

may work better for a particular sort of picture. However, in 

this study, we focus on those that consistently deliver the 

greatest outcomes over a wide variety of changes. It is critical 

to highlight that once the optimal rules are identified, they may 

be applied directly to an image, resulting in the desired output. 

 

6.3 Visual results 

 

This section discusses the outcomes of applying the 

extracted OTCA rules on a variety of images. They have 

demonstrated their efficiency in offering accurate edge 

detection. Experiments were conducted on a variety of 

different test images. Figure 4 illustrates some of the findings. 

Figure 5 displays the identification of edges using several 

OTCA rules. The original images are represented by (a, d, g, 

and j). The ground truth pictures are (b, e, h, and k). (c, f, i and 

l) represent the results of applying OTCA rules, accordingly 

(3008,10212,688,736). The visual results indicate that the 

OTCA rules provide accurate and clean edges. 

 

 

 

 

 
 

Figure 4. Results of various OTCA rules on image 8068 

 

 

 

 

 
Figure 5. Application of various OTCA rules on images 

(b) Ground truth  (c) Rule 756 (a) Original Image 
8068 

(e) Rule 2221 (f) Rule 2280 (d) Rule 2232 

(h) Rule 3008 (i) Rule 3012 (g) Rule 3024 

(k) Rule 11196 (l) Rule 11200 (j) Rule 10996 

(b) Ground Truth  (c )OTCA Rule 3008 (a) Original Image 
8068 

(e) Ground Truth (f) OTCA Rule 
10212 

(d) Original Image 
201080 

(h) Ground Truth (i) OTCA Rule 688 (g) Original Image 
176035 

(k) Ground Truth (l) OTCA Rule 736 (j) Original Image 
35008 
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❖ The Analysis 

Figure 6 displays the results of six selected OTCA rules, 

applied on image “48017.jpg”. 

 

 
(a)Original image 

 
(b) Ground truth 

 
(c) Binary image 

 
(d) OTCA rule 3012 

 
(e) OTCA rule 3008 (f) OTCA rule 736 

 
(g) OTCA rule 688 

 
(h) OTCA rule 2232 (i) OTCA rule 10212 

 

Figure 6. Results of selected rules on image “48017.jpg” 

 

We observe that OTCA rules ensure that all edges are 

smooth and true. They provide fine, continuous borders. 

Additionally, depending on the rules set, the OTCA rules are 

capable of producing both very thin and clean lines. Moreover, 

OTCA rules provide more contrast than any other algorithm. 

The results are more appropriate for future investigation. 

 

6.4 Numerical results 

 

Image quality measurement is a crucial step in image 

processing applications. Indeed, the visual result is not 

sufficient to judge the quality of a contour. In the following, 

we use objective functions: RMSE and SSIM to evaluate the 

quality of the edges, extracted by OTCA rules. 

 

❖ The SSIM Evaluation 

Table 3 shows a comparative study of various edge 

detection methods with SSIM function. The best values are 

highlighted in bold. The similar results are indicated in green, 

while red color signifies the worst result. Taken as an example 

image 8068, all the rules indicate the highest value among all 

of the other methods. The result of rules 672, 688 and 736 are 

similar to Roberts and better than Scharr, Sobel, Prewitt and 

Canny results. For all the tested images, we can conclude that 

the OTCA rules give very good results, better or equivalent to 

the standard edge detectors. 

 

Table 3. Performance evaluation of different edge detection 

methods using SSIM 

 
Images 48017 8068 201080 176035 35008 

Roberts 0.71 0.73 0.743 0.723 0.721 

Scharr 0.672 0.718 0.721 0.709 0.711 

Sobel 0.669 0.718 0.719 0.708 0.709 

Prewitt 0.665 0.717 0.717 0.706 0.707 

Canny 0.689 0.724 0.731 0.726 0.721 

CA672 0.736 0.73 0.78 0.729 0.722 

CA3012 0.73 0.731 0.791 0.734 0.725 

CA3008 0.731 0.732 0.8 0.737 0.725 

CA736 0.735 0.73 0.779 0.728 0.721 

CA688 0.736 0.73 0.78 0.729 0.722 

Overall, we can perceive that the majority of the rules give 

the best results compared with the other methods. Taken as 

example image 48017, the rules 672 and 688 indicate the 

highest value among all of the other methods. In the case of 

image 35008, the result of rule 736 is similar to Roberts and 

Canny, and highest comparing with Scharr, Sobel and Prewitt. 

So on for all the tested images. The OTCA rules outperform 

classical edge detectors. 

Figure 7 shows a graph comparison of SSIM values for the 

five images using OTCA rules and classical edge detectors. 

 

 
 

Figure 7. Evaluation of edge detection methods with SSIM 
 

❖ The RMSE Evaluation 

The comparison of edge detection methods utilizing the root 

mean square error (RMSE) is shown in Table 4. It is performed 

on five representative images. We can see that the RMSE vary 

between all the given methods. Some of the proposed rules 

have the best result, others are similar, and even there are some 

worst cases according to the recent method. 
 

Table 4. Performance evaluation of different edge detection 

methods using RMSE 
 

Images 48017 8068 201080 176035 35008 

Roberts 58.8 37.98 60.79 44.23 44.00 

Scharr 54.64 34.5 50.38 39.41 42.29 

Sobel 52.95 33.62 48.21 37.9 41.21 

Prewitt 51.81 33.00 46.78 36.88 40.43 

Canny 67.65 40.63 69.49 48.6 46.88 

CA672 53.68 37.58 56.10 44.08 45.13 

CA3012 56.38 38.31 54.55 43.87 44.74 

CA3008 56.20 37.8 52.45 42.88 44.5 

CA736 54.53 38.4 57.78 45.73 45.92 

CA688 54.08 38.84 58.11 45.39 45.51 

 

Figure 8 shows a graph comparison of RMSE values for the 

five images using several methods. 

 

 
 

Figure 8. Evaluation of several edge detection methods with 

RMSE 
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❖ Computational Time 

In the following, we have evaluated the execution time of 

OTCA rules and the most common algorithms in edge 

detection. The OTCA rules show superior improvement in 

terms of execution time. 

 

Table 5. Execution time comparison between several methods 

 
Images 48017 8068 201080 176035 35008 

Roberts 0.0312 0.0156 0.0791 0.025 0.0310 

Scharr 0.0313 0.0312 0.0350 0.0313 0.0240 

Sobel 0.0313 0.0312 0.0250 0.0313 0.0240 

Prewitt 0.0312 0.0312 0.0270 0.0313 0.0330 

Canny 0.1249 0.1250 0.2884 0.111 0.1121 

CA672 0.0157 0.0156 0.0160 0.0156 0.0150 

CA3012 0.0156 0.0156 0.0160 0.0220 0.0290 

CA3008 0.0156 0.0313 0.0180 0.0120 0.0150 

CA736 0.0156 0.0156 0.0160 0.0156 0.0160 

CA688 0.0156 0.0156 0.0150 0.0156 0.0150 

 

Table 5 indicates the values of execution time for several 

edge detectors, and OTCA rules. Five images have been used 

to calculate the consuming edge detection time. The 

conclusion that emerges from the analysis of the data is: 

 The time consumed of manipulating the edge is 

differentiated from image to another due to the size and 

the quality of the input image. Also, it ranges from a 

method to another. 

 The run time of Sobel, Prewitt and Scharr is very similar 

and less than Canny and Roberts edge. They have 

difficulty to reach real time response, we can note this as 

one of the disadvantages observed for these two methods 

in this work.  

 The OTCA rules have the least time consuming, and vary 

from rule to another. It can be considered one of the most 

powerful advantages performed in this work. 

 

Figure 9 shows a graphical comparison of computational 

time between different edge detection methods using the five 

images. 

 

 
 

Figure 9. Execution time of edge detection methods 

 

It is clear that the execution times for OTCA rules are the 

lowest. They are represented by the lowest lines, all the values 

are below the limit of 0.032 s. The execution time values are 

reconciled for all rules. The blue line representing Canny, 

shows the worst results for all images (time greater than 0.11 

s). We note that Canny and Roberts give the highest execution 

time for the image “201080.jpg”. The lines of Prewitt, Scharr 

and Sobel are very close. 

7. EXPERIMENTS ON NOISY IMAGES 
 

A robust solution that is adjustable to the different noise 

levels in images requires an effective edge detection method. 

Additionally, it facilitates in the differentiation of real picture 

contents from visual artifacts generated by noise.  

Traditionally used edge detectors frequently fail to handle 

images with a poor object outline or a high level of noise [43]. 

The purpose of this section is to evaluate the efficacy of OTCA 

rules on noisy images. To the original picture, a salt and pepper 

noise is applied. We use OTCA rules and compare them to 

traditional edge detectors. 
 

7.1 Under salt and pepper 10% 

 

 

 

 

 

 
 

Figure 10. Experiments on noisy image with different edge 

detectors (salt and pepper 10%) 

 

Figure 10 presents experiments on a noisy image with 

different edge detection methods under 10% Salt and Pepper 

noise. It clearly shows the effectiveness of OTCA rules to 

perform edge detection even on noisy images. The results 

show a small variation due to the noise edges. The edges of 

Roberts, Sobel, Scharr, and Prewitt are less continuous 

comparing with Canny and the OTCA rules due to the noise 

pixels present in the resulting image. 

Table 6 indicates the evaluation of several edge detection 

(b) Binary Image (c) Ground Truth 
Image 

  (a) Original Image 

          (d) Roberts             (e) Scharr        (f) Sobel 

       (h) Canny (i)OTCA  rule 672       (g) Prewitt 

  (j) OTCA rule 3012 
 

         (k) OTCA rule 3008 
 

  (l) OTCA rule 736 
 

(m) OTCA  rule 688 

 

(n) OTCA rule 2232 

 

(o) OTCA rule 10212 
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methods using SSIM and RMSE with run time computation 

under 10% Salt and Pepper noise, on Plane image. 

 

Table 6. Evaluation of several edge detection methods on a 

noisy image with 10% salt and pepper noise 

 
Methods SSIM RMSE Time 

Roberts 0.15337731 108.072859 0.03802776 

Scharr 0.08764633 73.897366 0.02601743 

Sobel 0.08401032 67.1350391 0.03902721 

Prewitt 0.07936585 63.791198 0.03203011 

Canny 0.07020513 149.751714 0.30710697 

CA672 0.67409452 49.2556559 0.01503539 

CA3012 0.67024881 48.0975436 0.01601172 

CA3008 0.68371942 44.4847335 0.02001452 

CA736 0.67194186 50.588171 0.01504016 

CA688 0.67388888 50.8091482 0.02802038 

 

The OTCA rules achieve the best results in comparison with 

other classical edge detectors. For SSIM fitness, the best 

values are obtained for the OTCA rules, the minimum is 0.67, 

while for conventional methods, it does not exceed 0.15 

(Roberts). For RMSE fitness, the minimum values, so the best 

were achieved by the OTCA rules, the best is 44.48. the 

minimum value achieved by conventional detectors is 63.79, 

while the worst fitness goes up to 149.75 (Canny). The 

numerical evaluation reinforces the visual inspection made in 

Figure 10.  

Figure 11 illustrates a graph comparison of SSIM and 

RMSE for the edge detection methods with 10% of noise. 

This graph clearly shows the superiority of OTCA rules 

over conventional detectors. The SSIM values for OTCA rules 

significantly exceed those obtained for traditional methods. 

 

 

 
 

Figure 11. SSIM and RMSE evaluation for a noisy image 

under 10% Salt and Pepper noise  

 

7.2 Under salt and pepper 20% 

 

By increasing the noise level to 20% (Figure 12), the results 

indicate a quick decline in the quality value for each of the 

approaches presented. Roberts, Sobel, Scharr, and Prewitt 

produced discontinuous edges and obliterated the object's 

borders with noise. The image is covered with short false edge 

lines as a result of the Canny edge detector's results. OTCA 

rules have a reasonably high level of resistance to increased 

noise levels. Although the picture has the potential to attenuate 

areas with cumulated noise, it begins to introduce 

discontinuities in the edges. 
 

 

 

 

 

 
Figure 12. Experiments on noisy image with different edge 

detection method (20% Salt and Pepper) 
 

Table 7 mentions the evaluation of several edge detection 

methods using SSIM and RMSE with run time computation 

under 20% Salt and Pepper noise.  
 

Table 7. Evaluation of several edge detection methods on a 

noisy image with 20% of salt and pepper noise 
 

Methods SSIM RMSE Time 

Robert 0.02748159 142.048855 0.02601981 

Scharr 0.01183269 96.1329276 0.02602005 

Sobel 0.01274323 86.9824602 0.03602552 

Prewitt 0.01246828 82.4232013 0.03104734 

Canny 0.0229231 155.899538 0.21615362 

CA672 0.60168757 69.5031391 0.01500821 

CA3012 0.45255388 89.1974676 0.01500988 

CA3008 0.46481212 85.8998185 0.01604176 

CA736 0.57875446 74.6796182 0.01600671 

CA688 0.60022728 73.526359 0.01604176 

(b) Binary Image (c) Ground Truth 

Image 

(a) Original  Image 

  (d) Roberts     (e) Scharr (f) Sobel 

 (h) Canny (i) OTCA 672 (g) Prewitt 

(j) OTCA3012 

 

         (k) OTCA3008 

 
(l) OTCA736 

 

(m) OTCA688 (n) OTCA2232 (o) OTCA10212 
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We can extract from the data that OTCA rules takes a large 

benefit over the classical methods. It gained the best SSIM and 

RMSE with less consuming time. For SSIM fitness, the 

highest value is provided by rule 672 (0.601). The best score 

for RMSE was achieved by rule 688 (73.52). Regarding 

execution time, we note that the best times are recorded for 

OTCA rules (of the order of 0.01), while conventional 

detectors record higher times. 

The results reveal that the quality value of all approaches is 

rapidly decreasing. Nevertheless, OTCA rules retain their 

advantage over the classical edge detectors. They produce the 

highest quality value with noise comparing to the other 

methods besides the less consuming time. Figure 13 illustrates 

a graph comparison of the methods with 20% of noise. 

Figure 14 illustrates a run time graph comparison of 

different methods. 

It can be seen, that for both cases of 10% and 20% noise, 

the runtime obtained for all OTCA rules is better than those of 

the classic methods, noting that the highest peak was achieved 

by Canny detector. 

 

 
 

Figure 13. Fitness values for different edge detection methods under 20% Salt and Pepper noise 

 

 
 

Figure 14. A run time graph comparison for different edge detection methods under 10%, 20% Salt and Pepper noise 

respectively 

 

 

8. CONCLUSION 

 

In this article, we have provided a novel and efficient 

approach for edge detection. It is based on an Outer Totalistic 

Cellular Automata. The best transition rules are extracted and 

provided very satisfactory results. The proposed approach is 

validated and tested on images from Berkeley dataset. 

Comparison is made with classical edge detectors like Canny, 

Sobel, Prewitt… etc. Numerical performance is provided by 

fitness functions: RMSE and SSIM. Execution time is also 

compared. Cellular Automata have been found to be efficient 

for image processing, as edge detection is one of the most 

difficult image processing problems.  OTCA rules provide best 

accuracy while ensuring a lowest execution time. 

Additional experience dealing with noisy images, showed 

that the OTCA rules perform better than classical edge 

detectors, it is striking to note, that where other edge detectors 

fail, a simple rule of our OTCA provide very good results, in 

terms of edge quality and time execution. 

OTCA rules were shown to be extremely competitive, 

robust, and outperformed classical algorithms. 

The outcomes are promising. It is feasible to derive some 

effective rules for performing complex image processing tasks 

like edge detection. The obtained rule sets are extremely 

simple as they contain only a single rule with the performance 

and  efficiency  up to the mark. The result of the learned rules 

has also been compared with some standard  edge detectors, 

and it has been found that in most cases its performance is 

better than the  standard edge detectors. Specifically, in the run 

time process, the rules give an effective faster  time. Besides 

that, the OTCA rules have a large advantage when they deal 

with noised images. This attests the robustness of our OTCA. 

Future work can focus on the study of other kinds of cellular 

automata for different image enhancement tasks, and finding 
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more efficient methods to deal with the problem of optimizing 

the large set of transition rules. 

Furthermore, some advanced concepts related to CA can be 

inculcated to improve the performance and it is conceivable to 

modify the CA rules in order to address additional challenges. 

The Deep Learning concepts should be explored for 

optimization of rules. 
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