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The image classification of remote sensing (RS) plays a significant role in earth observation 

technology using RS data, extensively used in the military and civic sectors. However, the 

RS image classification confronts substantial scientific and practical difficulties because of 

RS data features, such as high dimensionality and relatively limited quantities of labeled 

examples accessible. In recent years, as new methods of deep learning (DL) have emerged, 

RS image classification approaches using DL have made significant advances, providing 

new possibilities for RS image classification research and development. Most of the 

researchers are using CNN to classify remote sensing images, but CNN alone problem with 

sequence data processing. But to get some sense out of the classification of remote sensing 

images. To avoid this in this paper, we use the CNN-LSTM model. The model performed 

ineffective classification of remote sensing images; the experimental results show that the 

proposed model is effective in classifying remote sensing images.  
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1. INTRODUCTION

If you're interested in learning more about how remote 

sensing may help you classify scenes, you'll want to have a 

look at the Remote Sensing Scene Classification section [1]. 

Data from remote sensing images is crucial for understanding. 

The issue may be used in a number of areas, such as 

catastrophe monitoring and vegetation mapping, land resource 

management and urban planning, and traffic. Many distant 

sensors are gathering data with unique characteristics due to 

recent advancements in Earth observation technology, 

including remote sensing [2-6] technologies. It becomes 

difficult or perhaps impossible to manually analyze the data 

after it has been gathered since it is so vast and complicated. 

For example, remote sensors are frequently used to deliver 

data that is multi-source, multi-temporal, and multi-scale in 

nature. 

In contrast, manually exploring them and extracting 

valuable information from them would be excessively time-

consuming, and the performance would suffer. Therefore, the 

remote sensing research community has been concentrating its 

efforts in recent years on developing efficient techniques for 

processing remote sensing pictures [7-9] in combination with 

physics. Many scholars are interested in remote sensing, and 

there has been considerable development in this area. The 

picture below shows how quickly image processing methods 

for enhancement, analysis, and comprehension are developing. 

It is a well-known fact that there are still numerous difficulties 

to overcome in remote sensing, which stimulates new efforts 

and innovations to comprehend remote sensing pictures via 

image processing better. 

Color and form are used in most prior approaches, or mid-

level holistic picture representations [10-11] created by 

encoding hand-crafted visual characteristics are used. 

Computer vision has lately been transformed by Deep CNN, 

which has made significant advances in the domains like 

picture classification [12], object detection/segmentation [13-

15], and action identification [16-19]. Neural networks that 

learn by watching data are known as DCNNs. The use of deep 

learning techniques in satellite image analysis, such as aerial 

scene classification [20] and hyperspectral picture analysis 

[21-25], has been similarly successful. As a general rule, 

DCNN takes a fixed-size picture as input and processes it via 

a convolution sequence, local normalization, and (termed as 

layers). These in-depth features may be utilized for several 

applications related to vision [26], which includes 

categorization of remote sensing scene] in a CNN [27] fully 

connected (FC) final layers. It's common for deep 

convolutional neural networks to be trained using data from 

the vast ImageNet dataset, a collection of RGB pixel values. 

When it comes to feature extraction in categorizing the scenes 

of remote sensing, these CNNs, which have been already 

trained on the dataset of ImageNet, are used by most current 

techniques. Unresolved research questions include studying 

various color spaces and integrating these color spaces for 

remote sensing scene classification. When it comes to vehicle 

color identification, He et al. [28] investigated the use of 

several color spaces; when it comes to super image resolution, 

Tang et al. [29] looked at the usage of YCbCr and RGB color 

channels in face recognition; Tang et al. [30] also proposed 

collaborative facial color feature learning approach that 

covered a variety of color spaces and included This study 

investigates a variety of color properties within the context of 

a deep learning framework for classification of scenes of 

remote sensing. 

A lot of research was done before deep learning on the 
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effects of different color features on object recognition and 

detection. When combined convolutional neural networks 

(CNNs) and long short-term memory (LSTMs) [31] are 

connected, sequential data classification system is created. 

Because of this, most remote sensing scene classification 

techniques utilize a DCNN [32-36] that has previously been 

trained to identify an image. This approach, however, will run 

into the built-in problem of generating a high-dimensional 

final image representation when combining activations from 

several deep-color CNN. An effective classification system 

may be created by combining the properties of CNN with 

those of remote sensing images. The SIRI-WHU data 

collection is used throughout this paper. The rest of the article 

is organized as follows: On section two, you'll see the findings 

of existing models, as seen in Section 3, the suggested model 

is shown. On section 4, you'll find the details of the experiment, 

and on section 5, you'll find a summary.  

 

 

2. LITERATURE SURVEY 

 

Inspired by the capacity of human vision to identify items 

based on the highlights, which attracts the viewer's attention 

towards the object while disregarding the backdrop, the salient 

object identification technique is used to discover salient 

things. The salient model must captivate their attention to 

attract the attention of grasping items and complete 

segmentation of the objects [18]. Top-down and bottom-up 

techniques of salient item identification are used to detect 

salient objects, respectively. The bottom-up approach focuses 

on distinguishing between things in the background and those 

in the forefront in visual situations. On the other hand, top-

down methods emphasize items unique to a specific category 

within visual sceneries. 

According to Zhang et al. [19], there are two components to 

the salient object identification model. A patch-level cue 

exploration model and an object-level cue exploration model 

make up the model. As an initial stage, the objectless approach 

is used to identify the coarsely localized positions of the 

dominant feature of the image. If you want to know how well 

colors are dispersed in a space, you may use variance to 

estimate how compact it is. However, it didn't matter that the 

model did well in photos with a more plain background. For 

pictures with a conspicuous object and an environment that 

share a similar shade of color, this algorithm does not perform 

as well. As a result; it must be capable of extracting the regions 

and the objects that are distinct from one another in the image 

to enhance salient object. 

Deep learning was utilized in Ref. [20] to concentrate on the 

layered skip structure, which was previously unknown. They 

developed a novel technique by including the holistically 

layered edge detector architecture, connections that are short 

in the skip-layer for the salient have been investigated, which 

was previously unexplored (HED). The VGGNet model and 

the HED model served as the basis for their proposed design. 

The combined characteristics from both the shallow and deep 

side outputs (salient regions) (low-level features) to get the 

best results. The architecture comprises interconnected phases, 

namely, the salient locating stage and the details refining stage, 

respectively. A top-to-bottom technique is introduced in the 

next step after the salient stage has identified salient areas in 

the picture and the clear view has been identified. Creating 

short connections between the two layers is necessary to 

forecast the salient items better. This results in an accurate and 

dense saliency map since the characteristics of both levels may 

be utilized to improve the prediction of the salient objects. 

In an image, a method known as objectless detection creates 

many bounding boxes for every object possible without 

considering the item's category. Objectively, our goal is to 

provide a metric that may be used to generate candidate 

proposal ideas for consideration. The confidence score 

determines a proposal's inclusion or exclusion of an item. Two 

kinds of deep network object identification frameworks exist 

free and regional-based methods. The success of both region-

free and region-based techniques [19] led to the development 

of a methodology [20] that integrates the best features of both 

methods. Several factors went into this, but the two most 

significant were multiscale localization and harmful space 

mining. In the case of localization that can be multiscale, there 

is a chance for objects to be discovered at any place on the 

image; authors have to consider all the locations while 

performing the object detection; on the other hand, it is 

recommended to utilize a reverse connection so that the 

objects may be recognized on the proper Convolutional 

feature-maps are subjected to an objectless prior phase during 

the training phase, which helps to decrease searching time for 

objects by reducing object search space. The Reverse 

connection with objectless previous networks architecture 

may be used to identify objects end-to-end with high precision. 

Convolutional layers are used to gather semantic information, 

which is then used in conjunction with reverse connections to 

create an objectless prior, which serves as a roadmap for 

searching for objects inside an image. Last but not least, the 

multitask loss function is used to complete the optimization 

process. 

It's been demonstrated that data augmentation and harmful 

mining methods may help increase item detection accuracy 

[21]. To prevent exhaustingly looking for large sliding 

windows, there is a growing need for rapid object 

identification, such as moving cars, requiring fewer candidate 

windows to avoid exhaustingly searching for moving cars. 

One research suggested that the quality of the blind proposal 

must be improved by utilizing Union-Over-Intersection and 

Representation and Local Linear Regression (DORLLR) for 

Intersection-Over-Union to be used (IOU). 

When employed in real-time object detection [22], it may 

be utilized to evaluate the quality of a sliding window that 

generates suggestions for the object detection task. Many 

attempts have been made to enhance the quality of the 

proposals via the use of blind estimates, and these efforts have 

proven fruitful. There are two possible explanations for the 

blind quality proposal evaluation. Because the foreground 

regions are believed to have more information than the 

background areas. It is regarded as a background and 

foreground segmentation problem when it comes to blind 

proposal quality. That's all it does. The segmentation method 

differentiates between the proposal quality at the back and the 

proposal quality. Instead of looking at scores and rankings 

based on particular visual cues, the first technique looks at the 

scores and ranks of the window function. An evaluation model 

for blind proposal quality (BPQA) has been created due to 

these factors to choose a greater number of proposals 

according to (BPQA). Both deep objectless representation and 

local linear regression are used during training. CNN-based 

feature extraction is utilized to mention the details of the deep 

objectless, and the local linear regression model is used to 

guess the quality of each recommendation. 

In research [23], the model named hierarchical objectless 
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network model was developed, which can identify object and 

proposal creation, among other things. They considered the 

most important aspects of object identification, such as 

accuracy, multi-scale, and computing cost, while developing 

their model. The model operates in three stages, with the CNN 

extracting the features from the picture in the first stage. The 

last step in which the stripe objectless is used to cut down the 

list of potential recommendations. It predicts a saliency map 

that may be used to search for objects. The Objectless stripes 

offer border objectless, in-out objectless, and in-out objectless, 

all contributing to the model's accuracy. They provide an 

object border and a score regarding the confidence in the 

suggested placement locations. Vertical and horizontal stripes 

have been added to the proposal to show the object border 

probability or object itself appearing in the vertical and the 

horizontal lines. To get high-level semantic information, it is 

essential to reverse the sequence of the deep and shallow 

convolutional layers. As a result of these qualities, a wide 

variety of resolution information is available for objects when 

seen at. Using just one saliency map, less memory is utilized, 

and less computation time is required. 

Shen et al. [35] proposed a model for timeseries remote 

sensing pictures, we suggested a semi-supervised 

convolutional Long Short-Term Memory neural network 

(SemiLSTM) that was verified on three data sets with various 

time distributions in this research. By using a limited number 

of labelled samples in conjunction with a large number of 

unlabeled samples, it is possible to accomplish accurate and 

automatic land cover categorization. Aside from that, it is a 

very reliable classification technique for timeseries optical 

pictures with cloud covering, which minimises the need for 

cloudless remote sensing images and may be used broadly in 

places that are often hidden by clouds, such as subtropical 

areas. 

Unnikrishnan et al. [36] proposed a two-band AlexNet 

architecture with a decreased number of filters was used to 

train the model in this study, and high-level features derived 

from the tested model were able to correctly categorise the 

various land cover classes available in the dataset. A 

comparison is made between the suggested architecture and a 

benchmark, and estimates are made on the outcomes in terms 

of accuracy, precision, and the total number of trainable 

parameters. 

Most of the existing literature works are concentrated on 

classification of remote sensing images based on different 

deep learning models. And CNN model is used for 

classification of images it has a drawback of letting few 

features. If we consider all features will give better 

classification results. 

 

 

3. PROPOSED WORK 

 

The full method for detecting things in a scene is shown in 

Figure 1, which is broken into many phases. It was necessary 

to submit raw remote sensing images to the preprocessing 

pipeline before they could be processed in the final processing 

pipeline. Data resizing, shuffling, and normalisation 

operations were performed on the data in the preprocessing 

channel. Following that, the preprocessed data set is separated 

into two parts: a training set and a large number of testing 

instances. Following the training data, we trained the CNN and 

CNN- We estimated the accuracy and loss for each phase of 

training. The system's performance was evaluated using 

measures such as sensitivity, accuracy, AUC based on ROC, 

confusion matrix, and F1-score to establish its effectiveness. 

 

 
 

Figure 1. Proposed model architecture 

 

3.1 CNN model 

 

Backpropagation is the only method for getting all the 

parameters trained by their weights and biases in a 

convolutional neural network. Here's a quick rundown of what 

the algorithm is all about. In hidden layers, the function of cost 

concerning each unique training. For, example (x, y) may be 

expressed as follows: 

 

𝐽(𝑄, 𝜃; 𝑒, 𝑓) =
1

2
||ℎ𝑦, 𝜃(𝑒) − 𝑓||2 

 

 

Now, errors period A to the layer P, the equation is given as: 

 

𝐴(𝑃) = ((𝑄(𝑃))𝐵𝐴(𝑃+1)). 𝑖′(𝑎(1))  

 

where the error for A(P+1)th layer is (A+1) whose cost 

function is J(Q, θ;e,f). i(a((1))) represents the derivative of 

activation function. 

 

𝛻𝑦(𝑃)𝐽(𝑄, 𝜃; 𝑒, 𝑓) = 𝐴(𝑃+1)(𝑗(𝑃+1))𝐵  

 

𝛻𝜃(𝑃)𝐽(𝑋, 𝜃; 𝑒, 𝑓) = 𝐴(𝑃+1)  Where I is information, such 

that i((1)) is the information for the 1st layer (it is the correct 

input) and i((L)) is the information for the L-th layer.  

The calculation for error of the sub-sampling layer Error is 

as: 

 

∆𝑠(𝑃) = 𝑢𝑛𝑠𝑎𝑚𝑝𝑙𝑒((𝑊𝑠
(𝐿))𝐵𝐴𝐾

(𝑃+1)). ℎ′(𝑎𝑠
(𝑃)|)  

 

In this case, q represents the number of filters in the layer. 

If mean pooling is utilized, the mistake must be cascaded 

oppositely in the subsampling layer. For example, when mean 

pooling is employed, upsampling equally shares the error for 

the preceding input unit. Finally, the gradient concerning the 

feature maps: 

 

𝛻𝑦𝑚
(𝑃)𝑛(𝑋, 𝜃; 𝑒, 𝑓)

= ∑

𝑏−1

(𝑖𝑡
(𝑃))

∗ 𝑟𝑜𝑡90(𝐴𝑚
(𝑃+1), 2) 

 

 

𝛻𝜃𝑚
(𝑃)(𝑋, 𝜃; 𝑒, 𝑓) = ∑

𝑖,𝑗

(𝐴𝑠
(𝑃+1))𝑖,𝑗.  
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Algorithm 

 

Backpropagation Algorithm in CNN 

1. The weights are initialized to randomly (small) 

generated value.  

2. The rate of learning is set to a small positive value. 

3. The value of r is set to 1, and iteration begins. 

4. for r<maximum iteration OR if the criteria Cost 

function is met, do 

5. for the values of n_1 to n_i, do 

6. The propagation is forwarded through CL, PL, FCL. 

7. The cost function is derived for the input. 

8. Now, the error term A^((P)) concerning the weight of 

each layer. 

9. The error must be propagated from one layer to 

another layer in the sequence given below: 

10. FC layer where FC= fully connected 

11. P layer where P=Pooling 

12. C layer where C= Convolution 

13. Now, Calculate the gradient 𝛻𝑦𝑠
(𝑃)  and 

𝛻𝜃𝑠
(𝑃) 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝛻𝑦𝑠

(𝑃)  and bias 

respectively for each layer. 

14. The Gradient is calculated in the sequence given 

below:  

15. i. C layer 

16. ii. P layer 

17. iii. FC layer 

18. Now, update the weights 

19. 𝑤𝑑𝑗
(𝑃) ← 𝑤𝑑𝑗

(𝑃) + 𝛻𝑤𝑑𝑗
(𝑃)   

20. Update bias 

21. 𝜃𝑑
(𝑃) ← 𝜃𝑑

(𝑃) + 𝛻𝜃𝑑
(𝑃)

 

 

3.2 LSTM model 

 

The following are the primary components of the LSTM 

unit: 

1. First, the LSTM unit accepts the prevailing input 

vector indicated by rb and the output vector designated by ib1 

from the previous time step (as obtained via the recurrent 

edges). In this step, the weighted inputs are added together and 

sent via tanh activation, which results in ab. 

 

𝑎𝑡 = tanℎ(𝑋2𝑟𝑏 + 𝐷2𝑖𝑏−1 + 𝑑𝑎)  

 

2. To begin with, the input gate reads two numbers, rt 

and ht-1, computes the weighted total, and adds sigmoid 

activation to it. Because of the ab factor, the result is multiplied 

by ab, resulting in the input streaming into the memory. 

 

𝑗𝑏 = 𝜎(𝑋𝑗𝑟𝑏 + 𝐷 𝑖𝑏−1
𝑗

+ 𝑑𝑗)  

 

From this process, LSTM learns how to re-establish the 

contents of its memory when they become obsolete and can no 

more serve a useful purpose. In such a case, the network would 

have to start processing a new set of instructions from scratch 

by employing a sigmoid activation, the forget gate, which is rt 

and ht1, activates inputs with weighted inputs. Once multiplied 

by the previous time step, it gives us the result jd. This allows 

us to delete any unnecessary memory content. 

 

𝑣𝑏 = 𝜎(𝑋𝑣𝑟𝑏 + 𝐷 𝑖𝑏−1
𝑣 + 𝑑𝑣)  

 

There are four types of memory cells: CEC, which has a 

repeating edge with unit weight, as well as an unweighted. By 

eliminating the unnecessary information (if any) from the 

preceding time step and accepting correct information (if any) 

from the present input, it is feasible to compute the current cell 

state sb. 

 

𝑢𝑏 = 𝜎(𝑋𝑢𝑡𝑑 + 𝐷𝑢𝑖𝑏−1 + 𝑑𝑢)  

 

Output gate: LSTM unit's output gate takes the weighted 

sum of xt and ht1 and uses the sigmoid activation to coordinate 

the data sent out from LSTM. 

 

ℎ𝑏 = 𝑎𝑏 ⊙ 𝑗𝑏 + ℎ𝑏−1 ⊙ 𝑣𝑏   

 

Output: To calculate the output of the LSTM unit (ht), the 

cell state st must be sent through an inverter (tanh) and 

multiplied by the output gate (out). It is possible to describe 

the operation of the LSTM unit using a series of equations 

similar to the following. 

 

𝑖𝑏 = tanℎ(ℎ𝑏) ⊙ 𝑢𝑏  

 

(1) The data needed for CNN-LSTM training must be 

entered first (see step one). 

(2) Data standardization: As we have a significant gap in the 

data, the z-score standardization technique is used to 

normalize the input data to improve the model's training 

performance. The formula for this method is as follows: 

 

𝑘𝑖 =
𝑟𝑗 − 𝑟

ℎ
 

 

 

𝑟𝑖 = 𝑘𝑗 ∗ ℎ + 𝑟  

 

If the standardized value (Yi), data taken as input (xi) is the 

average, and s represents the standard deviation of input data 

(xi) is the average and s means standard 

(3) The biases and weights of each layer of the CNN-LSTM 

should be set to their initial values. 

(4) A succession of feature extraction layers is applied to 

the input data before being transferred to the final convolution 

and pooling layers. 

(5) It's also possible to use an LSTM algorithm to compute 

the CNN layer's output data, which can then be used to 

determine the output value.  

(6) A comparison is made in step 6 of this process between 

the value generated computed by the layer that produces 

output and the actual number of the group data, and the 

inaccuracy is determined. 

(7) This error is found when the output value computed by 

the output layer is compared to the actual value of the group.  

(8) Error in the calculation: Eighteen) the forecasting must 

finish a certain number of cycles, the weight must be below a 

specific threshold, and the forecasting miserror rate must be 

below a certain point. Otherwise, the procedure will continue 

to step 9 if one or more conditions for completion are met. If 

one of the criteria for completion is met, training is complete, 

the CNN-LSTM network is updated, and step 10 is 

Backpropagation of computed errors. 

(9) The biases and weights of every layer are updated, then 

go to step 4 to continue training the network. 

(10) The forecasting model is saved. 

(11) Input data: enter the data that will be used in the 

forecasting process, if any. 
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(12) Standardization of input data: The input data is 

standardized by a formula (8).  

(13) To forecast, feed the standardized data into the CNN-

LSTM trained model, and you'll get a predicted value. 

(14) The model of CNN-LSTM generates a standardized 

value as an output, which is subsequently returned to its 

original value. Using the formula below (9). Where is the 

standard deviation of data, and x is the average value of input 

data. 

(15) Finalise the forecasting process by presenting the 

corrected results. 

 

 

4. EXPERIMENTAL RESULTS AND DISCUSSIONS 

 

DATASET 

 

The RSIDEA group has compiled a collection of Google 

images of China's major cities (Remote Sensing Intelligent 

Data Retrieval, Interpretation, and Application). 

In all, SIRI-WHU has 2,400 pictures and 12 situations. With a 

spatial resolution of 2 m, each class contains 200 images 

scaled at 200 pixels [29]. In addition to agriculture, enterprises, 

harbors [30], idle soil, production, wildlife, parks, and 

residential wetlands, the 12 land-use groups also include water 

and residential wetlands. Sample of 12 class Google image 

dataset of SIRI-WHU: (a) water; (b) river; (c) residential; (d) 

pond; (e) park; (f) overpass; (g) meadow; (h) industrial; (i) idle 

land; (j) harbor; (k) commercial; (l) agriculture. Here Figure 2 

represents sample images from SIRI-WHU data set. 

 

 
 

Figure 2. Images from SIRI-WHU data set 

 

The positive true (e), positive false (f), negative true (g), or 

negative false(h) prediction are all possible outcomes in a 

binary classification issue (h). Where e indicates instances that 

are positive and expected to be positive, f denotes positive 

situations, and they are predicted to be negative, g means 

conditions that are negative and anticipated to be harmful, and 

h denotes problems that are negative and expected to be 

positive. 

The most straightforward way to assess classification 

performance is to look at accuracy, the ratio of the number of 

adequately guessed situations to the total number of predicted 

instances. Then, using the language that has been presented, 

accuracy A may be calculated using the equation: 

Accuracy is easy to understand, and it is used for both 

binary and multiple-class classification problems. However, 

accuracy could give an unfair representation of classification 

performance in imbalanced data sets. For example, in a binary 

classification problem where 90% of the samples are of the 

same class, simply assigning all cases to that class would 

already achieve an accuracy of 90%. 

Therefore, we introduce three other metrics, which will be 

used to assess the per-class classification performance: 

precision, recall, and the F1-score. Accuracy indicates how 

many of the positive predicted cases are correctly expected, 

and recall expresses the fraction of all positive cases which are 

correctly predicted. These metrics are captured within the F1 

metric, the harmonic mean of precision and recall. Precision 

(P), memory (R), and the F1-score (F1) are obtained by 

respectively: 

Accuracy= (e+f)/(e+f+g+h) 

Sensitivity= e/(e+h) 

Specificity=f/(f+g) 

F1-score=(2*e)/(2*e+g+h) 

 

 
 

Figure 3. Accuracy 

 

There are a lot of data points that can be appropriately 

calculated out of all the data. It's a little more complicated than 

that. Still, the number of true positives and real negatives is 

computed as dividing the number of positives true by the total 

number of positives actual. Positive, adverse facts are counted 

separately, with positive and negative falsehoods and negative 

truths separated. As you can see in Figure 3, the SIRI-WHU 

data set has an accuracy of identifying objects on top of that, 

the proposed CNN-LSTM and current models are 

differentiated to find the accuracy of object identification in 

the SIRI-W In Figure 3, we can see how well suggested and 

recent models have fared in terms of detecting. As a result, the 

presented model is more accurate in detecting the items than 

current. 

 

 
 

Figure 4. Precession 

 

When it comes to pattern detection (also known as machine 

learning), accurate information (also known as positive 

predictive value) is the percentage of relevant examples 

among the retrievals. In contrast, rescue (sensitivity) 

fragments all related instances found. The precession of 

objects detected in SIRI-WHU data collection is shown in 
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Figure 4. Besides, the suggested and existing models with 

various things are used to assess the precession of the detection 

of objects in the SIRI-WHU data set. A comparison between 

suggested and current models may be seen in Figure 4. The 

suggested model outperforms the current one in terms of 

objective observation. 

 

 
 

Figure 5. Recall 

 

In statistics, a model's capacity to recognize every important 

instance in a dataset is known as a reminder. Remembrance 

may be defined as the addition of positive true, and harmful 

false. As you can see in Figure 5, the recall rate of identifying 

objects in the SIRI-WHU Apart from that, the proposed and 

current models with different things assess the recall of the 

SIRI-WHU dataset detection of objects remembrance. It is 

shown in Figure 5 that a recall of suggested and current models 

is carried out. 

 

 
 

Figure 6. F-Score 

 

Using the F-measure, the harmonic mean of accuracy and 

remembrance is determined. A single rating may be utilized to 

determine the output of the model and differentiate it to the 

consistency and reminder. The F1-score for identifying objects 

in the SIRI-WHU data set is shown in Figure 6. In addition, 

the proposed and current models with various items are used 

to assess the accuracy of the detection of objects in the SIRI-

WHU data collection. A comparison of proposed and current 

models' F1 scores for detecting objects is shown in Figure 6.  

 

 

5. CONCLUSIONS 

 

With the purpose of categorising remote sensing photos 

using CNN-LSTM deep learning methods, we investigated the 

effect of colour in a CNN-LSTM deep learning system that 

was used to classify remote sensing photographs. Combining 

deep colour features with varied levels of information provides 

more efficient remote sensing scene categorization by 

expanding the number of categories available. The high 

dimensionality of deep colour feature fusion was also 

addressed, with the result that a dense final picture description 

was achieved without significant degradation in the five 

challenging remote sensing scene classification datasets that 

we used to evaluate the performance of our technique. Several 

of us believe that the strategy that has been described has 

shown to be really effective. 
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