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Lane change is one of the important operations in motion of an autonomous vehicle. 

When encountering obstacles or wanting to overtake the vehicle ahead, the autonomous 

vehicle will make a decision and choose the best path to control the trajectory of motion 

to perform lane change. In this article, we will present solutions for lane change 

trajectories, including general path setting, building nonlinear models with states of 

vehicle speed, acceleration and jerk; building a constraint set to avoid collisions with a 

minimum safe distance model, which takes into account the potentially collision angle 

positions during lane change. Simulation results are performed in Matlab simulation 

environment to demonstrate an effective proposed solution and addressed the 

disadvantages in the modeling process for lane-changing operations, in order to improve 

the proactive safety of the motion planning for autonomous vehicles. 
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1. INTRODUCTION

The signals obtained from the equipment of the radar sensor 

system, laser waves, cameras, LiDAR are transferred to the 

processing device to decrypt the information obtained, and 

from which it will be converted into a command for the 

autonomous vehicle to perform actions such as turning and 

entering lanes, overcoming obstacles, which makes it 

convenient to move. 

Lane change is a complex process for motion planning for 

autonomous vehicles. Improper lane change can cause 

accidents and traffic congestion. According to incomplete 

statistics, the number of accidents in which the driver 

manipulates the lane change incorrectly accounts for 5-10% of 

the total number of traffic accidents [1], the safety of the 

transport system is affected by the types of vehicles, location, 

speed, the ability to increase/decrease the speed of vehicles 

when participating in traffic encountering obstacles in the 

moving lane is a problem that needs to be studied.  

In the problem of motion planning for Autonomous vehicles 

(AV), the trajectory is built with many different methods, 

different types of geometric roads with different operational 

characteristics in terms of continuity, smooth and slippery. 

Geometric types of roads are commonly applied when 

building trajectory such as the Bezier line [2-5], the spline [6-

10], the acceleration curve [11-15], and the polynomial curve 

[16-21]. Therefore, choosing a suitable geometric line to 

represent the motion trajectory of the autonomous vehicle in 

complex environmental conditions is very important. 

The disadvantages in this problem are that the models of 

motion trajectory focus only on lane change or automatically 

overtake, ignoring the popularity of the model for lane change 

and overtaking operations. As well as the operating states of 

the Autonomous vehicle are not carefully considered, from 

which it in turn leads to uncontrolled cases so collisions can 

occur. Finally, suppose the surroundings, the speed of vehicles 

or the number of vehicles around them are not suitable, namely 

assuming that the surroundings are static and autonomous 

vehicles operate, or assuming the speed of vehicles involved 

in traffic is constant. In order to overcome the disadvantages, 

in this study, a solution is built to establish a motion trajectory 

based on optimizing the nonlinear model, of which the 

trajectory is established based on the structure of appropriate 

geometric roads and the current traffic state. With constraints 

being the angular points, capable of collision during lane 

change, determining these constraints is carried out to 

determine the actual distance model of autonomous vehicles 

and other vehicles involved in traffic, then with a minimum 

safe distance to make a decision whether to perform lane 

change and avoid obstacles. The purpose of this solution is to 

improve the active safety of the motion planning process for 

autonomous vehicles when participating in traffic. 

The next part of the paper will introduce the vehicle's 

approach to establishing lane motion trajectories, including 

setting a general path, building a nonlinear model with the 

states of velocity, acceleration, and jerk (the variable degree of 

acceleration overtime) of the vehicle, building a set of 

constraints to avoid collisions with the minimum safe distance 

model, which will take into account the angular positions that 

are likely to collide during lane change. Followed is an 

experimental and concluding section with some proposals for 

further research for the autonomous vehicle problem. 
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2. BUILDING AN TRAJECTORY FOR LANE CHANGE 

SOLUTION 

 

Lane change is one of the important operations in the 

movement of the autonomous vehicle. When encountering 

obstacles or wanting to overtake the vehicle in front, the 

autonomous vehicle will make a decision and choose the best 

path to control the trajectory of the movement to perform lane 

change. 

The proposed lane change solution was carried out in four 

Phases (Figure 1), including:  

- Phase 1: Locate the position of the autonomous vehicle 

and surrounding objects through GPS positioning data, sensor 

system installed on the vehicle. 

- Phase 2: Build the trajectory of the initial lane change 

operation. 

- Phase 3: Determine the Target function and the constraints 

to make a decision on how to change lanes ensuring safety, 

avoiding collisions and that the motion trajectory is smooth 

and slippery. 

- Phase 4: Determine the parameters to create the final 

motion trajectory. 

 

 
 

Figure 1. Phases of lane change solutions for autonomous 

vehicle 

 

This article only solves the problem of lane change with the 

case of an autonomous vehicle moving along a straight road 

having a lane line for overtaking, the process of determining 

the trajectory is carried out with the model of road, vehicle 

(Figure 2) and other objects in the overall Cartesian coordinate 

system (x,y), in which x-axis is the vertical direction and the y 

axis is the horizontal direction of the road. Each vehicle and 

other objects are described by their positions (𝑆𝑥 , 𝑆𝑦)  in the 

lane's boundary. Representatives for the system state include 

the directional angle 𝜃𝑟 , distance from the boundary to the 

vehicle 𝑑𝑟 , the reference arc length 𝑆𝑟  and 𝐾𝑟(𝑆𝑟)  are the 

circular arc curvature parameter of the reference curve [22]. 

Therefore, it is necessary to process the geodesy coordinate 

data obtained from GPS devices to Cartesian coordinate data. 

 

 
 

Figure 2. Vehicle model and reference curve 

 

2.1 Locating position of the objects from GPS data 

 

The GPS system provides three-dimensional coordinates of 

the geodetic coordinate system including: latitude B, longitude 

L and altitude H. These coordinates are calculated according 

to the WGS-84 coordinate system, which makes it difficult for 

the data obtained from the GPS to directly reflect the vehicle's 

movement in the Cartesian coordinate system, the one that this 

article uses to solve the given problem. Therefore, in order for 

the data obtained from the GPS device to accurately describe 

the movement of a human-controlled vehicle, it needs to 

convert the coordinates of the geodetic coordinate system (B, 

L, H) into Cartesian coordinate system (X, Y, Z) (Figure 3). 

 

 
 

Figure 3. Relationship between coordinate systems 

 

The data obtained from the GPS device includes values (B, 

L, H), to convert between geocentric coordinates XYZ and 

geocentric coordinates xyz, we use the following formula [23]: 
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(2) 

 

where: B, L, H are geodetic coordinates of the grid center point 

or the origin of the selected geographical coordinate system 

such that x, y, z are always positive; N is the first vertical 

radius of curvature passing through the origin of the geocentric 

coordinate system. 

 
2

2 2 2 2cos sin

a
N

a B b B
=

+

 (3) 

 

where: a is the radius of the large axis and b is the radius of the 

small axis of the Ellipsoid WGS-84 (a = 6378137.0000 and b 

= 6356863.0188); e is the first false mind of Ellipsoid; X, Y, 

Z are the coordinates perpendicular to the geocentric space of 

the point to be shifted; x, y, z are the coordinates perpendicular 

to the geospatial space of the point to be converted. 

Due to the problem locating the motion trajectory only 

focuses on the plane coordinate components (X, Y) and (B, L) 

(but not on the altitudes Z and H), the formulas converting 

coordinates will not mention the altitude Z and H. Therefore, 

at a point of geodetic coordinates (B, L) when converting into 

the coordinates of the right angle (X, Y), it will be calculated 

by the formula [22]: 

 

( ) cos cos

( )cos sin

X N H B L

Y N H B L

= +


= +
 (4) 
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2.2 Building a lane change trajectory equation 

 

The trajectory motion is a common problem in the operation 

control of the autonomous vehicle. To complete the given 

motion planning problem, the vehicle must move in the correct 

trajectory. In other words, trajectory is the basic element to 

describe the operation of the autonomous vehicle. The design 

of the moving trajectory will provide input data for the control 

system, and also be the direct basis for the operation control of 

the autonomous vehicle. 

The problem of building the motion trajectory will involve 

issues of dynamics and dynamics, which include the geometric 

elements of the moving path, along with the time elements 

performing motion such as acceleration and velocity. 

Therefore, in this study, we select the Quintic polynomial 

equation to build the original lane change trajectory. We use 

this polynomial function because the third derivative equation 

will create a continuous, smooth and slippery trajectory.  

Polynomial curve is used to build lane change trajectory 

with the polynomial equations is set as follows: 

 
5 4 3 2

5 4 3 2 1 0( )y x b x b x b x b x b x b= + + + + +  (5) 

 

where: x represents the vertical position and y represents the 

horizontal position of the vehicle in the XY coordinate axle 

system. 𝑏5, . . . , 𝑏0  are unknown values and need to be 

calculated. 

In the road structure (Figure 4), the road system is 

determined by adjacent lanes of arbitrary shape and curvature. 

In this article, for the convenience of performance, we assume 

and consider the (𝑙𝑎𝑛𝑒𝑖) to be a path defined by the left (𝐵𝐿𝑖) 
and right border (𝐵𝑅𝑖). Such a path is defined as a polyline and 

a combination of all lanes at a certain time period 
(𝑙𝑎𝑛𝑒(𝑠) =∪𝑖 𝑙𝑎𝑛𝑒𝑖), and know in advance the relationship 

between adjacent lanes. 

 

 
 

Figure 4. Road system model 

 

For lane change, with the information received from the 

sensor, from GPS ..., the equation representing the horizontal 

position yst, vertical position xst, cst derivative point is the first 

derivative of yst and the curvature kst is the second derivative 

of the current lane yst in the Cartesian coordinate system, the 

starting position for the construction of the lane change 

trajectory established as follows: 

 
5 4 3 2

st 5 st 4 st 3 st 2 st 1 st 0y = b x +b x +b x +b x +b x +b  (6) 

 
4 3 2

5 4 3 2 15 4 3 2st st st st stc b x b x b x b x b= + + + +  (7) 

 
3 2

5 4 3 220 12 6 2st st st stk b x b x b x b= + + +  (8) 

 

And the equation representing horizontal position 𝑦𝑒𝑑 , 

vertical position 𝑥𝑒𝑑 , derivative point 𝑐𝑒𝑑  is the first derivative 

of 𝑦𝑒𝑑  and curvature 𝑘𝑒𝑑  is the second derivative 𝑦𝑒𝑑  of the 

next lane at the end position of the lane change trajectory set 

as follows: 

 
5 4 3 2

5 4 3 2 1 0ed ed ed ed ed edy b x b x b x b x b x b= + + + + +  (9) 

 
4 3 2

5 4 3 2 15 4 3 2ed ed ed ed edc b x b x b x b x b= + + + +  (10) 

 
3 2

5 4 3 220 12 6 2ed ed ed edk b x b x b x b= + + +  (11) 

 

From the Eqns. (6)-(11), with the establishment of 𝑏5, 𝑏4, 

𝑏3, 𝑏2, 𝑏1, 𝑏0 values will create the corresponding lane change 

trajectory for the motion planning process of the autonomous 

vehicle. 

For obstacle trajectory, the implementation solution is 

similar to creating a lane change trajectory, but the different 

point of the obstacle trajectory will be a combination of 2 lane 

change trajectory (Figure 5).  

 

 
 

Figure 5. Lane change trajectory 

 

Thus, with the information obtained from the surrounding 

environment, the decision on lane change or obstacle 

overtaking behavior will be made with the trajectory created 

by the Quintic polynomial Equation curve as presented; the 

unknown parameters 𝑏5 , 𝑏4 , 𝑏3 , 𝑏2 , 𝑏1 , 𝑏0of the trajectory 

equation will be the first values of the system. These values 

will change to suit the different operating environment, the use 

of polynomial Equation to create a path trajectory to exploit 

the advantage of continuous derivatives and curvature of the 

line created by this method achieves smooth and slippery. In 

addition, creating this lane change trajectory can also apply 

different types of roads and methods depending on the traffic 

situation. 

 

2.3 Identifying object functions 

 

In the process of building a solution to establish a motion 

trajectory, factors need to be calculated and considered such 

as dynamics systems, constraint set in the operation of the 

vehicle, environmental limitations such as the structure of the 

road system, obstacles. The goal of the problem is to find a 

safe and viable trajectory. In this article, we propose an 

approach solution that uses Model Predictive Control (MPC) 

to carry out motion trajectory planning, in which the trajectory 

is expected to be updated in the next stages of the model and 

the construction of the cost function with collision avoidance 

constraints for the problem of creating optimal trajectory 

motion. 

The first part of the nonlinear vehicle model with state 

vectors including: 𝑠(𝑥)  reference location, 𝑗(𝑥)  jerk, 𝑎(𝑥) 
acceleration and 𝑣(𝑥)  vehicle velocity is recommended as 

follows: 
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5 4 3 2

5 4 3 2 1 0( )s x b x b x b x b x b x b= + + + + +  (12) 

 

( ) ( )v x s x=  (13) 

 

( ) ( )a x s x=  (14) 
 

 

( ) ( )j x s x=  (15) 

 

Corresponding to: 

 
4 3 2

5 4 3 2 1( ) 5 4 3 2v x b x b x b x b x b= + + + +  (16) 

 
3 2

5 4 3 2( ) 20 12 6 2a x b x b x b x b= + + +  (17) 

 
2

5 4 3( ) 60 20 6j x b x b x b= + +  (18) 

 

where, the parameters 𝑏5, . . . , 𝑏0 are unknown and need to be 

determined. 

At the starting position of the lane change trajectory, the 

initial values of 𝑠(0) the reference position, 𝑎(0) acceleration, 

and 𝑣(0) velocity at the base of the coordinate system are 

calculated as follows: 

 

(0) 0s =  (19) 

 

(0) 0v =  (20) 

 

(0) 0a =  (21) 

 

The solution in this paper is to build a time-bound 

optimization that is commonly discrete at m time step and 𝑡𝑘 

used to denote the end of each time period, with a time limit 

𝜏 = ∑ 𝛥𝑡𝑘
𝑚
𝑘=1 . 

At the initial time 𝑡0 = 0, 𝑠0 = 0 the position of the vehicle 

on the coordinate axis system is determined at the point 

(𝑥0, 𝑦0) , then at the time 
it  the vehicle position at (𝑥𝑖 , 𝑦𝑖) 

coordinates and the 𝑠𝑖 reference value on the coordinate axis 

system is described by a discrete time model with calculus 

integral as follows: 

 
2

0
1

ix

i

dy
s dt

dx

 
= +  

 
  (22) 

 

In order to achieve the optimal motion trajectory, it is 

necessary to process the cost function to the minimum value 

and at the same time the constraints need to be separated from 

each other. For lane change and obstacle overtaking operations 

in this study, the idea of handling was to ensure the vehicle's 

speed of motion and jerk at optimal value. Moreover, the 

collision avoidance warning situation and also the constraint 

to decide whether to perform a lane change or obstacle 

overtaking should be activated before the autonomous vehicle 

is too close to the obstacle, if in the case of the vehicle has 

come too close, the ability to miscalculate the cognitive 

coefficient and forecasting will be uncertain, and if the 

deviation is small both in position and direction from the 

reference curve will minimize the possibility of collision with 

the vehicles ahead, helping the autonomous system to control 

the trajectory motion.  

As such, the J cost function will be built by combining 

components including acceleration, jerk for a limited time 

period   and   divided into the following I time periods: 

 

2 2 2

1 1

1 1
min

m m

i ii i
J a j

m m


= =
= + +   (23) 

 

where: 𝑎𝑖 is the acceleration and 𝑗𝑖 is the jerk of the vehicle at 

the time 𝑡𝑖, 𝜏 is the limited amount of time of the entire process 

of performing lane change. 

To avoid possible collisions, autonomous vehicles must 

maintain a safe distance from surrounding vehicles during lane 

changes or overtaking. However, in order to improve the 

effectiveness of the solution, the constraint set before making 

a lane change decision needs to be considered as potentially 

collision angle locations, thereby determining the real distance 

model of the autonomous vehicle and surrounding vehicles. 

The minimum safety distance and the risks that will occur 

during the lane change will be analyzed, and the motion 

planning process will adjust the state to improve the vehicle's 

active safety. 

 

2.4 Building a minimum safe distance model to avoid 

collisions 

 

When changing lanes or overtaking the vehicle in front, 

there are 04 possible collisions (Figure 6): a) collision with the 

vehicle in the lower left corner, b) collision with the vehicle in 

the front left corner, c) collision with the vehicle in the right 

rear corner and d) collision with the vehicle in the front right 

corner. The cause of the collision is: i) the speed of the vehicle 

in front decreases suddenly and ii) the speed of the vehicle 

behind is greater than the speed of the vehicle in front. 

This paper, based on the principle of dynamic modeling of 

autonomous vehicles, will build a model of the minimum safe 

distance between vehicles to handle 04 situations stated above. 

The minimum safety is known to be the necessary distance 

between vehicles to avoid collisions.  

To solve this problem, we need to make the following 

assumptions:  

- The vehicles in front and behind of autonomous vehicles 

(VIH_LF, VIH_RF, VIH_LB, VIH_RB) move vertical the 

road, in the same direction as the autonomous vehicle 

(VIH_AV) and the speed of these vehicles is constant. 

The coordinates of the objects are determined by the 

surrounding rectangle and the position of the object is the 

center of the corresponding rectangle (Figure 7). 

The process of performing lane change or overtaking is 

calculated in the Cartesian coordinates system, O(0,0) the root 

coordinates at the center of the vehicle the last obstacle (Figure 

6). 

 

 
 

Figure 6. Vehicle model in Cartesian coordinate system and 

collision states 

254

https://vi.wiktionary.org/wiki/calculus


 

 
 

Figure 7. The location of the vehicle's defining coordinates 

 

The speed of each vehicle is likely to change during the 

movement, so the start time of lane change will be determined 

as the first time with a value of zero. Therefore, the location of 

each vehicle and the parameters used in the calculation are as 

follows: 

Autonomous vehicle (VIH_AV): The vehicle's current 

location (𝑥𝑎𝑣 , 𝑦𝑎𝑣), the vehicle initial position (𝑥0_𝑎𝑣 , 𝑦0_𝑎𝑣), 
vehicle length 𝐿𝑎𝑣 , vehicle width 𝑊𝑎𝑣 , current and initial 

speed of vehicle 𝑣𝑎𝑣 , 𝑣0_𝑎𝑣 and the acceleration of the vehicle 

𝑎𝑎𝑣 .  

With the current position (𝑥𝑎𝑣 , 𝑦𝑎𝑣):  
 

0 _ 0 _ , ,

0 _ 0 _ , ,

( )

( )

av av av x av x

av av av y av y

x x v a dt dt

y y v a dt dt

= + +

= + +

 

 
 (24) 

 

Coordinates of the 4 rectangular corners surrounding the 

vehicle VIH_AV:  

 

1,

W
,

2 2

av av
av av av

L
B x y

 
− − 

 

, 
2,

W
,

2 2

av av

av av av

L
B x y

 
− + 

 
, 

3,

W
,

2 2

av av

av av av

L
B x y

 
+ − 

 

, 
4,

W
,

2 2

av av

av av av

L
B x y

 
+ + 

 
. 

 

The front vehicle on the right (VIH_RF): The current 

position of the vehicle (𝑥𝑟𝑓 , 𝑦𝑟𝑓), the initial position of the 

vehicle (𝑥0_𝑟𝑓 , 𝑦0_𝑟𝑓), the length of the vehicle 𝐿𝑟𝑓, the width 

of the vehicle 𝑊𝑟𝑓, the current and init velocity of the vehicle 

𝑣𝑟𝑓, 𝑣0_𝑟𝑓; and the acceleration of the vehicle 𝑎𝑟𝑓.  

With the current position (𝑥𝑟𝑓 , 𝑦𝑟𝑓): 

 

0 _ 0 _ , ,

0 _ 0 _ , ,

( )

( )

rf rf rf x rf x

rf rf rf y rf y

x x v a dt dt

y y v a dt dt

= + +

= + +

 

 
 (25) 

 

Coordinates of the 4 rectangular corners surrounding the 

vehicle VIH_RF: 

 

1,

W
,

2 2

rf rf

rf rf rf

L
B x y

 
− − 

 

, 
2,

W
,

2 2

rf rf

rf rf rf

L
B x y

 
− + 

 

, 

3,

W
,

2 2

rf rf

rf rf rf

L
B x y

 
+ − 

 

, 
4,

W
,

2 2

rf rf

rf rf rf

L
B x y

 
+ + 

 

. 

 

The front vehicle on the left (VIH_LF): The current position 

of the vehicle (𝑥𝑙𝑓 , 𝑦𝑙𝑓), The initial position of the vehicle 

(𝑥0_𝑙𝑓 , 𝑦0_𝑙𝑓), the length of the vehicle 𝐿𝑙𝑓 , the width of the 

vehicle 𝑊𝑙𝑓, the current and initial velocity of the vehicle 𝑣𝑙𝑓, 

𝑣0_𝑙𝑓 ; and the acceleration of the vehicle 𝑎𝑙𝑓.  

With the current position (𝑥𝑙𝑓 , 𝑦𝑙𝑓): 

 

0 _ 0 _ , ,

0 _ 0 _ , ,

( )

( )

lf lf lf x lf x

lf lf lf y lf y

x x v a dt dt

y y v a dt dt

= + +

= + +

 

 
 (26) 

 

Coordinates of the 4 rectangular corners surrounding the 

vehicle VIH_LF:  

 

1,

W
,

2 2

lf lf

lf lf lf

L
B x y

 
− − 

 

, 
2,

W
,

2 2

lf lf

lf lf lf

L
B x y

 
− + 

 

, 

3,

W
,

2 2

lf lf

lf lf lf

L
B x y

 
+ − 

 

, 
4,

W
,

2 2

lf lf

lf lf lf

L
B x y

 
+ + 

 

. 

 

The behind vehicle on the right (VIH_RB): the current 

position of the vehicle (𝑥𝑟𝑏 , 𝑦𝑟𝑏), the initial position of the 

vehicle (𝑥0_𝑟𝑏 , 𝑦0_𝑟𝑏), the length of the vehicle 𝐿𝑟𝑏, the width 

of the vehicle 𝑊𝑟𝑏 , the current and original velocity of the 

vehicle 𝑣𝑟𝑏, 𝑣0_𝑟𝑏; and the acceleration of the vehicle 𝑎𝑟𝑏.  

With the current position (𝑥𝑟𝑏 , 𝑦𝑟𝑏):  
 

0 _ 0 _ , ,

0 _ 0 _ , ,

( )

( )

rb rb rb x rb x

rb rb rb y rb y

x x v a dt dt

y y v a dt dt

= + +

= + +

 

 
 (27) 

 

Coordinates of the 4 rectangular corners surrounding the 

vehicle VIH_RB: 

 

1,

W
,

2 2

rb rb

rb rb rb

L
B x y

 
− − 

 

, 
2,

W
,

2 2

rb rb

rb rb rb

L
B x y

 
− + 

 
, 

3,

W
,

2 2

rb rb

rb rb rb

L
B x y

 
+ − 

 

, 
4,

W
,

2 2

rb rb

rb rb rb

L
B x y

 
+ + 

 
. 

 

The rear vehicle on the left (VIH_LB): (𝑥𝑙𝑏 , 𝑦𝑙𝑏)  is the 

current position of the vehicle, (𝑥0_𝑙𝑏 , 𝑦0_𝑙𝑏)  is the initial 

position of the vehicle, 𝐿𝑙𝑏  is the length of the vehicle, Wlb
 is 

the width of the vehicle, 𝑣𝑙𝑏 , 𝑣0_𝑙𝑏  the current and original 

velocity of the vehicle; and 𝑎𝑙𝑏  is the acceleration of the 

vehicle.  

With the current position (𝑥𝑙𝑏 , 𝑦𝑙𝑏):  
 

0 _ 0 _ , ,

0 _ 0 _ , ,

( )

( )

lb lb lb x lb x

lb lb lb y lb y

x x v a dt dt

y y v a dt dt

= + +

= + +

 

 
 (28) 

 

Coordinates of the 4 rectangular corners surrounding the 

vehicle VIH_LB: 

 

1,

W
,

2 2

lb lb

lb lb lb

L
B x y

 
− − 

 

,
2,

W
,

2 2

lb lb

lb lb lb

L
B x y

 
− + 

 
, 

3,

W
,

2 2

lb lb

lb lb lb

L
B x y

 
+ − 

 

, 
4,

W
,

2 2

lb lb

lb lb lb

L
B x y

 
+ + 

 
. 

 

During lane change, the steering angle of the autonomous 

vehicle H_AV will change (Figure 8), the parameters of the 

corners are calculated as follows: 

 

0 _ , ,,

, 0 _ , ,

arctan arctan
av y av yav y

av x av x av x

v a dtv

v v a dt


 + 
 = =    +   




 (29) 
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arctan av

av

W

L


 
=  

 
 (30) 

 

where: 𝛼 is the original steering wheel angle and 𝛽 is the angle 

of movement and shape parameter of the vehicle. 

 

 
 

Figure 8. Description of the lane change angle of 

autonomous vehicle 

 

Coordinates of the 4 rectangular corners surround the 

vehicle VIH_AV, when changing the steering angle is as 

follows (Figure 8): 𝐶1(𝑥𝐶1, 𝑦𝐶1), 𝐶2(𝑥𝐶2, 𝑦𝐶2), 𝐶3(𝑥𝐶3 , 𝑦𝐶3) and 

𝐶4(𝑥𝐶4, 𝑦𝐶4). During lane change, these 𝐶1, 𝐶2, 𝐶3 and 𝐶4 are 

angular point locations that are likely to collide between the 

autonomous vehicle and surrounding objects. 

The coordinates of the points are calculated specifically as 

follows: 

Point 𝐶1(𝑥𝐶1, 𝑦𝐶1) 
 

( )
1

2 2

cos
2

av av

C av

L W
x x  

+
= + −  (31) 

 

( )
1

2 2

sin
2

av av

C av

L W
y y  

+
= + −  (32) 

 

Point 𝐶2(𝑥𝐶2, 𝑦𝐶2) 
 

( )
2 2

2 cos
2

av av

C av

L W
x x  

+
= − +  (33) 

 

( )
2 2

2 sin
2

av av

C av

L W
y y  

+
= − +  (34) 

 

Point 𝐶3(𝑥𝐶3, 𝑦𝐶3) 
 

( )
2 2

3 cos
2

av av

C av

L W
x x  

+
= − −  (35) 

 

( )
2 2

3 sin
2

av av

C av

L W
y y  

+
= − −  (36) 

 

Point 𝐶4(𝑥𝐶4, 𝑦𝐶4) 
 

( )
2 2

4 cos
2

av av

C av

L W
x x  

+
= + +  (37) 

 

( )
2 2

4 sin
2

av av

C av

L W
y y  

+
= + +  (38) 

In addition, the position of the point of collision between the 

autonomous vehicle and the surrounding objects is located at 

the edges [𝐶1, 𝐶2] , [𝐶2, 𝐶3] , [𝐶3, 𝐶4]  and [𝐶4, 𝐶1]  of the 

surrounding rectangle, which is calculated as follows:  

Edge position [𝐶1, 𝐶2]:  
 

   21 2, ,CC C av rf
x x x= +  (39) 

 

  21 2
,, B rfC C

y y=  (40) 

 

    ( ), ,
cot

av rf av rf
x y  =   (41) 

 

  2 2,, B rf Cav rf
y y y = −  (42) 

 

Edge position [𝐶2, 𝐶3]:  
 

   22 3 ,, C rb avC C
x x x= +  (43) 

 

  42 3
,, B rbC C

y y=  (44) 

 

    ( ), ,
tan

rb av rb av
x y  =   (45) 

 

  4 2,, B rb Crb av
y y y = −  (46) 

 

Edge position [𝐶3, 𝐶4]:  
 

   43 4 ,, C lb avC C
x x x= +  (47) 

 

  33 4
,, B lbC C

y y=  (48) 

 

    ( ), ,
cot

lb av lb av
x y  =   (49) 

 

  4 3 ,, C B lblb av
y y y = −  (50) 

 

Edge position [𝐶4, 𝐶1]:  
 

   14 1, ,CC C av lf
x x x= +  (51) 

 

  14 1
,, B lfC C

y y=  (52) 

 

    ( ), ,
tan

av lf av lf
x y  =   (53) 

 

  1 1,, B lf Cav lf
y y y = −  (54) 

 

where: 𝛥𝑥  and 𝛥𝑦  are the distances from the autonomous 

vehicle to another object in the directions 𝑂𝑋 and 𝑂𝑌. 

From (29)-(54), the real-life distance from autonomous 

vehicle to other objects is calculated as follows: 

Distance [VIH_AV - VIH_RF] 

 

 

2 1 1 1 2

2 1 2 2 21 2
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,

, , ,,

,
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B rf C C B rf B rf

av rf

B rf C B rf C B rfC C

x x if y Y y
S
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  −   
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−  

 (55) 
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Distance [VIH_AV - VIH_LF] 

 

 

2 1 1 1 2

2 1 1 4 14 1

, , ,

,

, , ,,

,

,

B lf C C B lf B lf

av lf
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  −   
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−  

 (56) 

 

Distance [VIH_AV - VIH_RB] 
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Distance [VIH_AV - VIH_LB] 

 

 

3 3 3 3 4
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av lb
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 (58) 

 

The safety distance model is built on the real-life distance 

between the rear and front vehicles, to ensure safety when 

performing lane change and obstacle course, the actual 

distance between the vehicles must be within the 

corresponding minimum safety distance.  

In addition, due to the speed of the vehicles can change, 2 

situations that will occur collision: i) the moving vehicle in 

front performs a slowing down/brake folding, ii) the rear 

vehicle moves at a greater speed than the vehicle in front. 

Therefore, the safety distance model is built in combination 

with the real-life distance and the principle of dynamics of the 

vehicle. The principle of dynamics considered in this problem 

includes the braking time of the vehicle (including braking 

coordination time, braking response time and continuous 

braking time), acceleration and speed of the vehicle, with the 

following 2 models: Safety distance model when the vehicle 

in front performs a slowing/braking reduction and safety 

distance model when rear vehicle adjusts to slow down. 

 

2.4.1 Safety distance model when the vehicle in front performs 

a slowing/braking reduction 

With the principle of braking in each vehicle type is 

different [24, 25] and the maximum average braking 

acceleration horizontally of the direction the vehicle moves is 

7𝑚/𝑠2 [26, 27]. As well as, the rear vehicle (VIH_BK) will 

perform the rear braking process of the front vehicle 

(VIH_FR), which has resulted in the brake speed of the rear 

vehicle changing will be later than the vehicle in front. 

Therefore, the braking distance (𝐿𝑏𝑘)  of the rear vehicle 

and the braking distance (𝐿𝑓𝑟) of the front vehicle to perform 

the brakes to slow down are: 

 
2

2

max_

max_

1

2 24 2

bk bk

bk bk r bk bk

bk

t v
L v t a t

a

 
= + − + 

 
 (59) 

 
2

2
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1 1

2 24 2
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fr fr fr fr fr

fr

v
L v t a t

a
= − +  (60) 

 

where: 𝑣𝑏𝑘 is the speed of the vehicle behind, 𝑣𝑓𝑟  is the speed 

of the vehicle front; 𝑎𝑚𝑎𝑥_𝑏𝑘  is the maximum braking 

acceleration of the rear vehicle, 𝑎𝑚𝑎𝑥_ 𝑓𝑟  is the maximum 

braking acceleration of the rear vehicle; 𝑡𝑟1 , 𝑡𝑏𝑘 , 𝑡𝑓𝑟  are 

respectively the processing time periods, the time to respond 

to the brake operation of the rear vehicle and the time to 

respond to the brake operation of the vehicle in front. 

Similarly, the braking distance from the autonomous 

vehicle to the vehicles behind the left and right is calculated as 

follows: 

 
2

2

_ max_
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1

2 24 2
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av bk av r av bk

av
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L v t a t
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 (61) 
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L bk

vt
L v t a t

a
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 (63) 

 

where: 𝑎𝑚𝑎𝑥_𝑎𝑣 , 𝑎𝑚𝑎𝑥_ 𝑅_𝑏𝑘 , 𝑎𝑚𝑎𝑥_ 𝐿_𝑏𝑘  are respectively the 

maximum braking acceleration of the autonomous vehicle, the 

vehicle behind the right and the vehicle behind the left; 𝑣𝑎𝑣 , 

𝑣𝑅_𝑏𝑘 , 𝑣𝐿_𝑏𝑘  are respectively the speed of the autonomous 

vehicle, the vehicle behind the right and the vehicle behind the 

left. 

And the braking distances from the autonomous vehicle to 

the vehicles in front left and right are calculated as follows: 

 
2

2

_ max_

max_

1 1

2 24 2
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av fr av fr av fr
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where: 𝑎𝑚𝑎𝑥_𝑎𝑣 , 𝑎𝑚𝑎𝑥_ 𝑅_𝑓𝑟 , 𝑎𝑚𝑎𝑥_ 𝐿_𝑓𝑟  are respectively the 

maximum braking acceleration of the autonomous vehicle, the 

vehicle in front of the right and the vehicle in front of the left; 

𝑣𝑎𝑣 , 𝑣𝑅_𝑓𝑟 , 𝑣𝐿_𝑓𝑟  respectively the speed of the autonomous 

vehicle, the vehicle in front of the right and the vehicle in front 

of the left. 

From (59)-(66), the safe distance model when the vehicle in 

front performs a speed reduction/folding brake is calculated as 

follows: 
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2.4.2 Safety distance model when rear vehicle adjusts to slow 

down 

In case, if the speed of the vehicle in front 𝑣𝑓𝑟  is greater than 

the speed of the vehicle behind 𝑣𝑏𝑘, then the actual distance 

between the two vehicles will increase over time and there will 

be no collision, which results in the minimum safety distance 

model that will be in value 𝐿_𝑆𝑃𝐸𝐸𝐷[𝑏𝑘,𝑓𝑟] = 0. Conversely, 

if the speed of the rear vehicle 𝑣𝑏𝑘 is greater than the speed of 

the vehicle in front 𝑣𝑓𝑟 , then the minimum safety distance 

𝐿_𝑆𝑃𝐸𝐸𝐷[𝑏𝑘,𝑓𝑟] = 0 will be calculated as follows: 

 

 

2 2
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Similarly, the minimum distance values between the 

autonomous vehicle and the front vehicles, rear vehicles, the 

left and right vehicles are calculated as follows: 
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Case _R bk avv v :
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Case _L bk avv v  : 
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Case _L bk avv v :
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Thus, based on the defined possible collision points, we will 

determine the real distance and safe distance to avoid 

collisions among vehicles. This safe distance model, which 

can ensure lane change and overtaking without collisions, or 

limit possible dangerous situations in the motion planning of 

autonomous vehicles. 

 

2.5 Establishing a motion trajectory 

 

The motion trajectory in this paper is established with 

phases taken as follows: 

 

Phase 1: Determining the position of the objects (position 

of an autonomous vehicle and surrounding vehicles) 

Processing GPS positioning data and sensor systems, 

locating objects on the Cartesian coordinate system, 

calculating the distance among objects. 

Phase 2: Building an initial trajectory 

Based on the information obtained from phase 1, we build 

the initial motion trajectory using a quintic polynomial curve 

to perform lane change or obstacle course. 

Phase 3: Identifying the target function and checking the 

constrain condition 

We consider the constraint conditions of safe distance and 

identify as a target function to establish an optimal nonlinear 

model to make decisions on how to change lanes or overtake 

obstacles to ensure safety, avoid collisions and ensure smooth 

and slippery trajectory. 

Phase 4: Lane change trajectory planning or obstacle 

overtaking 

The vehicle determines the parameters to create the final 

motion trajectory. If it finds a possible solution, it will perform 

lane change planning or obstacle overtaking. In the opposite 

case, if there is not a possible solution, the autonomous vehicle 

will continue to move on the current lane and continue to 

repeat the steps until it finds a possible trajectory. 

 

 

3. EXPERIMENTAL RESULTS 

 

To test and evaluate the proposed solution, we conduct an 

experimental simulation of processes in a Matlab environment. 

At the same time, in order to ensure objectivity and reliability 

when evaluating, we conduct simulations with different 

scenarios, including obstacle avoidance scenarios and free 

lane change scenarios, the speed of movement of vehicles in 

the simulation is conducted with 2 values including 40𝑘𝑚/ℎ 

and 60 km/h. The experimental road is a straight road, with 

width according to lane standards, 𝐷𝑙𝑎𝑛𝑒_𝑤𝑖𝑑𝑡ℎ = 3.5𝑚  with 

this standard size, the maximum speed of movement is 80 km/h 

and the two autonomous cannot overtake each other if the 

latter does not switch to the next lane; The distance from the 

autonomous vehicle to the vehicle in front when starting to 

perform lane change is 40 m. 

The input variables will be processed using experimental 

data obtained from GPS devices, the process of selecting data 

conducted from the driving behavior of drivers that meet the 

conditions set by the problem. Therefore, the input data 

ensures the creation of a safe motion process, the reference 

path and the left bl and right br boundary lines are designed 

and determined in accordance with the road system. During 

the experiment, the calculations use the SI measurement 

system, the trajectory transfer to the I/O controller with a room 

tissue time cycle of 0.005 s. 

The specific parameters of the objects (including an 

autonomous vehicle and other vehicles in traffic) are used in 

the simulation as follows: Wheelbase of the vehicle 𝐿 =
4600𝑚𝑚 , wheel width of the vehicle 𝑊 = 1700𝑚𝑚 , 

minimum rotation radius 𝑟 = 5300𝑚𝑚  (the measurement 

calculated based on the way the vehicle rotates in place, then 

calculated from the center of the circle to the outermost wheel), 

the speed of the vehicle 𝑣 ∈ [0,80]𝑘𝑚/ℎ, acceleration of the 

vehicle 𝑎 ∈ [−3,3]𝑚/𝑠2, jerk of the vehicle 𝑗 ∈ [−3,3]𝑚/𝑠3, 

number of time intervals 𝐼 = 30.  

Scenario 1: At the beginning, the autonomous vehicle is 

moving in lane 1, located behind the vehicle in the next lane 

(lane 2). The autonomous vehicle will perform lane change to 

overtake the vehicle in front (Figure 9). To change lane 

successfully, it must pass the vehicle in the next lane and 

changes lane, then change the next lane to overtake the 

obstacle vehicle in front. The original coordinates of the 

vehicles in the Cartesian coordinate system (x,y) are as follows: 
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𝑉𝐼𝐻_𝐴𝑉(85,2) , 𝑉𝐼𝐻_𝑅𝐵(20,1.5) , 𝑉𝐼𝐻_𝐿𝐵(130,5) , 

𝑉𝐼𝐻_𝑅𝐹(180,2) and 𝑉𝐼𝐻_𝐿𝐹(250,5). 
 

 
 

Figure 9. Simulation scenario 1 

 

Scenario 2: Similar to Scenario 1, the autonomous vehicle 

is moving in lane 1 and is located in front of the vehicle in the 

next lane (lane 2). It will perform a lane change to overtake the 

vehicle in front (Figure 10). The original coordinates of the 

vehicles in the Cartesian coordinate system (x,y) are as follows: 

𝑉𝐼𝐻_𝐴𝑉(120,2) , 𝐼𝐻_𝑅𝐵(20,1.5) , 𝑉𝐼𝐻_𝐿𝐵(60,5) , 

𝑉𝐼𝐻_𝑅𝐹(180,2) and 𝑉𝐼𝐻_𝐿𝐹(250,5). 
To verify the feasibility and effectiveness of the solution, 

the simulation process is conducted with 100 cases of lane 

change and obstacle overtaking. The initial trajectories are 

randomly initiated. 

 

 
 

Figure 10. Scenario 2 simulation 

 

Through the proposed model, the experimental results are 

as follows: 

Scenario 1: 80 out of 100 test cases were determined to find 

a viable obstacle trajectory with lane change and obstacle 

overtaking times in the range of 7-10 s (Figure 9). In which: 

the shortest time period is 𝑡𝑚𝑖𝑛 = 3.2𝑠, the longest period is 

𝑡𝑚𝑖𝑛 = 13.4𝑠  and the average time period for the cases is 

𝑡𝑚𝑒𝑎𝑛 = 7.8𝑠 , the change speed 𝛥𝑣 = |𝑣𝑚𝑎𝑥 − 𝑣0| =
4.16𝑘𝑚/ℎ , maximum acceleration |𝑎𝑚𝑎𝑥| = 2.78/𝑠2 , 

maximum jerk |𝑗𝑚𝑎𝑥| = 2.95/𝑠3.  

Scenario 2: It was identified that 85 out of 100 test cases 

found a viable obstacle trajectory with lane change and 

obstacle overtaking times in the range of 5-9s (Figure 10). In 

which: the shortest period of time is 𝑡𝑚𝑖𝑛 = 3.5𝑠, the longest 

period is 𝑡𝑚𝑖𝑛 = 12.5𝑠  and the average time period for the 

case is 
m 6.2eant s= , the change speed 𝛥𝑣 = |𝑣𝑚𝑎𝑥 − 𝑣0| =

3.21𝑘𝑚/ℎ , maximum acceleration |𝑎𝑚𝑎𝑥| = 1.42/𝑠2 , 

maximum jerk |𝑗𝑚𝑎𝑥| = 1.81𝑚/𝑠3. 

With the input parameters of the vehicle model and the 

experimental results in 2 scenarios, we can see that the average 

time to change lanes and overtake obstacles in scenario 1 
(𝑡𝑚𝑒𝑎𝑛 = 7.8𝑠)  is greater than the corresponding value in 

scenario 2 (𝑡𝑚𝑖𝑛 = 3.5𝑠) since autonomous vehicle must have 

time to overtake the vehicle in the next lane. At the same time, 

with the values of speed change, maximum acceleration and 

maximum jerk are located at a low level have ensured the lane 

change trajectory and obstacle overtaking to achieve smooth 

and slippery criteria. 

If the traffic participation status of the surrounding vehicles 

changes (increased/decreased velocity, lane change), the 

trajectory of motion of the autonomous vehicle will be reset to 

avoid a possible collision. The reset of motion will be 

considered as the original trajectory, the process of changing 

lanes to overtake and avoid obstacles can still be created using 

the model proposed in this study. 

Thus, with the experimental process as presented has 

demonstrated the feasibility of the solution, it is possible to 

respond in most traffic situations, including emergency 

situations with the process of changing the speed or changing 

lanes of other vehicles involved in the surrounding traffic. 

 

 

4. CONCLUSION 

 

This article proposes a solution for lane change planning 

and obstacle overtaking for autonomous vehicles by creating 

an trajectory in the Cartesian coordinate system (x,y) 

connecting from the original position to the target position of 

the traffic-taking state. In which the optimal nonlinear model 

built including the operating status of autonomous vehicles 

and other road participants has created different lane-changing 

and obstacle-taking trajectories. At the same time, the 

trajectory created during lane change must ensure the element 

of collision avoidance, smoothness, slipperiness, which are the 

criteria to create a constraint set for the optimal trajectory 

selection process. 

Results of experimental simulations in Matlab 

environments have demonstrated that autonomous vehicles 

can effectively avoid potential collisions with the process of 

selecting safe trajectories and conditions by building a 

minimum safe distance model to avoid collisions. Finally, lane 

change trajectory and obstacle overtaking can be established 

in different traffic situations. 

The main idea of this technical solution will support the 

design of a safe stop-alone autonomous vehicle, no matter 

what the current control of the vehicle is. The experimental 

simulation section with the scenarios given shows that safety 

factors can be achieved by calculation to consider all possible 

possibilities of other vehicles participating in traffic.  

In the future, to increase the reliability of this solution, the 

simulated settings will be transferred to the real-life 

environment with the experimental vehicle fully equipped 

with sensors. And when it is experimented in real life, it will 

add some factors to analyze the stability of the system so that 

the traffic behavior of the vehicles will be predicted more 

accurately. The widespread implementation of this solution for 

semi-autonomous or fully autonomous vehicles in vehicle 

control systems will be able to minimize the large number of 

damages as well as create a safe motion plan for the future. 
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