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Technological findings recommend that Electric Vehicles (EVs) play a vital role in the 

road transportation system. EV's are becoming more prominent as formal vehicles have 

a substantial effect on the atmosphere. The rising adoption of EVs will lead to an 

increase in the number of charging stations that would profoundly impact the power 

grid. The inappropriate forecasting of EV Charging Stations (EVCSs) has a detrimental 

effect on the distribution system. Therefore, the selection of the optimum placement of 

EVCS in the power grid is a significant problem. In the proposed approach, an IEEE 33 

Bus system is considered for optimal placement of EV charging station, with the 

account of optimal loads of the buses. The analysis was carried for an IEEE 33 BUS 

system using the Loss Sensitivity Factor (LSF) and power flow by Newton Raphson 

method. LSF was determined for various buses considering the system voltage, load 

(real and reactive power), and losses in the system. Also, the results are compared with 

the conventional method, Particle Swarm Optimization (PSO) and Harris Hawks 

Optimization (HHO) algorithms. Finally, the reliability test was carried out for optimal 

placement of EVCS in an IEEE 33 BUS system. 
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1. INTRODUCTION

In recent years, the consistent advancement of transport has 

strengthened, which accelerates the growth in the automotive 

sector. Various considerations, such as the potential to reduce 

CO2 emissions arising from gasoline combustion in fuel-

powered cars, economic viability, environmental issues, 

renewable properties, and rising oil prices, have made EVs an 

exciting alternative for new urban transport systems. The rapid 

growth of EVs raises additional challenges for the operator of 

the power delivery system to encourage sustainable charging 

facilities for EV consumers in the distribution system. In urban 

areas, high EV penetration needs a broad number of charging 

stations to recharge batteries for EV's. The EVCS is the basis 

of the growth of the electric vehicle industry as the energy 

supplier of electric vehicles. As the pioneering works of EVCS 

development, the selection of the EVCS site is very significant 

in the overall life cycle, which directly affects the quality of 

the service and EVCS operating performance. A major factor 

impact is not just the implementation of EVs but also the 

viability of transportation accessibility and optimum position 

of Charging Stations in the metropolitan environment. 

Furthermore, locating the optimum positions of Charging 

Stations impacts making use of efficient ways and allows EV's 

to charge their batteries during their rides. The location and 

potential of the charging station directly influence the 

operation of the electric grid. Specifically, the bus voltage, 

device load, and power loss will consider the EVs that charge 

their batteries using a charging station. 

Dong et al. [1] proposed a genetic algorithm-based 

approach to develop the charging infrastructure to optimize the 

position and simulate the actions of the car owner and explore 

the aspects that affect the refueling. Mohseni et al. [2] 

introduce a new simulation technique for optimized part of 

dimensioning in an island micro-grid, and per the fulfillment 

of a reliability index for load fulfillment. A mechanism for 

demand-side control focused on the model reduction strategy 

is often used to mitigate the computational expense, and a 

deferrable load program is introduced. Boonraksa et al. [3] 

presented a case study to analyze the impact of an EV charging 

station on the IEEE 33 bus test system. The author has 

proposed E-bus charging with the distributed generation (DG) 

system to maintain the constant voltage. Xiong et al. [4] have 

proposed the game theoretical framework topology for the 

optimal allocation of the fast EV charging station. The author 

has validated the proposed topology by comparing it with 

conventional optimal algorithms. The evaluation of 

parameters suggests optimizing an eleCtric vEhicle chArging 

statioN (OCEAN) to determine the optimum charging station 

distribution. Zeb et al. [5] proposed a novel technique for 

optimum sizing in the active power grid of industrial and 

residential entities and offices and homes and positioning 

various types of EV charging stations. In addition, using 

probabilistic distributions placed with actual data, the 

unpredictable car owner's action was modeled, and parking 

space restrictions were considered into account. Hongcai 

Zhang et al. [6] examined the optimum scheduling of fast-

charging PEV stations, taking into account the 

interconnections between electricity and transit networks. For 

PEV fast-charging station scheduling, the model is formulated 

as a mixed-integer linear programming model. They 

incorporate both transport and electrical constraints based on 
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(Capacitated-flow Refueling Location Model) CFRLM that 

can be overcome by deterministic station planning. Hashemian 

et al. [7] (MILP) model is proposed to assess the optimal 

placement and capability of Plug-in Electric Vehicle Fast-

Charging Stations (PEVFCSs), taking into account the transit 

systems and conventional system. The suggested technique 

determines the optimum position and capability of the 

PEVFCSs in such a manner that, to minimize the distance-time 

of the PEVs to access the PEVFCS, the waiting time for the 

transport network charging facility is reduced. Wang et al. [8] 

identify the EV charging stations with coordinated planning 

strategy in a coupled electrical traffic network. The 

Unconstrained traffic assignment model (UTAM) is applied in 

the transportation network to directly identify the distribution 

of traffic flows in a steady state. An analogous mixed-integer 

linear programming model with UTAM constraints is 

implemented to achieve a globally optimal solution for 

structured scheduling. Dogan [9] proposed a hybrid algorithm 

to find the Optimum PV positions and capacities, the essence 

of time dependence for DGs, EVCSs, and machine load ESSs. 

To mitigate overall loss, a weighted sum multi-objective 

function is created based on the voltage level and total 

installation capability of PVs, WTs, EVCSs, and ESSs in the 

delivery system. Xie et al. [10] proposed a two-stage approach, 

of developing a standalone charging station that runs on green 

energy. The structure for the means of transport is computed 

and the proposed DRO model takes into account inaccuracies 

in the probabilities of road traffic and distributed generation. 

MILP and LP of the risk hypothesis are linked to 

reformulations, which emphasize model precision and 

numerical tractability in various ways. 

From the recent studies, it is identified that Optimal 

Topologies are needed for the optimal allocation of EV 

charging stations in the Distribution system. This paper 

proposes a new approach for the optimum placement of 

charging stations for EVs. In the proposed approach, an IEEE 

33 BUS system was considered for optimal placement of EV 

charging station, with the account of system voltage, load (real 

and reactive power) and losses for various buses are 

considered. The analysis is carried out using LSF with hybrid 

PSO, and HHO algorithms for identifying the optimal 

placement of EVCS with various constraints on the buses are 

taken into consideration. 

The remaining portion of the paper is formulated as follows. 

The methodology of the proposed approach is in Section 2, 

followed by the Meta-heuristic algorithms approach for 

optimal placement of EVCS in Section 3. The result with 

discussion is carried in Section 4 and finally ends with the 

conclusion and future scope in the last section 5. 

 

 

2. METHODOLOGY 

 

The escalating concern about the depletion of fossil fuels 

and environmental degradation, the electrification of the 

transport industry, has caused increasing anxiety around the 

world. Electrification of the transport industry is potentially 

the most promising solution to reduce transport pollution, so 

the rise of plug-in electric vehicles (PEV) is projected to 

accelerate significantly over the coming generations. The 

rising prevalence of electric vehicles leads to a growth in the 

number of charging stations, which have a huge influence on 

the power grid. The positioning of the EVCS specifically 

influences the operation of the electric grid, so there is an 

important concern with the optimum position of the EVCS in 

the power grid. In the proposed approach, an IEEE 33 BUS 

system was considered for optimal placement of EVCS, with 

the account of optimal loads of the buses being considered. 

 

2.1 Newton Raphson method for power flow calculation 

 

A Power flow study aims to determine the voltages for a 

particular load, generator, and network state. (Magnitude and 

angle). Once all bus voltages are defined, it is easy to measure 

line flows and losses. It has quadratic properties of 

convergence. The conventional works were carried out for 

IEEE 33 BUS system data and power flow run by Newton 

Raphson method. The convergence is very quick, and the 

number of iterations will be unaffected by the device's length. 

High-precision methods will almost often be used in two to 

three iterations for both small and large implementations. The 

power flow equation that was used in the process of resolving 

a network issue uses Voltage and Power equations. 

In any power system, the power equations in bus k apply to 

the voltage and current. 

 

Si=ViIi (1) 

 

where, Vi is the voltage at bus i; Ii is the current at bus i. 

The input current can be obtained from: 

 

Ii=
𝑃𝑖+𝑗𝑄𝑖

Vi
 (2) 

 

The Newton-Raphson approach is used to solve the power 

flow equation, will be shown in the following equations. 

 

PGi -PDi=vi ∑ vj

NB−1

i=1
 (Gij cosδij+Bij cosδij) (3) 

 

QGi -QDi=vi ∑ vj

NPQ

i=1
 (Gij sinδij+Bij sinδij) (4) 

 

At the bus, real and reactive power is fed into the system i 

as PGi and QGi, The Demand of active power and reactive 

power are given by PDi and QDi respectively. The angle for the 

i and j bus Voltage is given by δij. The number of buses and 

loads are given by NB and NPQ. The conductance and 

susceptance at the feeder ij are given by Gij and Bij. 

Active Power loss in kth line is given by [Ik
2]*Rk: 

 

𝑃𝑙𝑖𝑛𝑒𝑙𝑜𝑠𝑠[𝑗] =
(𝑃2[𝑗]+𝑄2[𝑗]) 𝑅[𝑘]

(𝑉[𝑗])2   (5) 

 

Similarly, the Reactive Power loss is given by:  

 

𝑄𝑙𝑖𝑛𝑒𝑙𝑜𝑠𝑠[𝑗] =
(𝑃2[𝑗]+𝑄2[𝑗])𝑋[𝑘]

(𝑉[𝑗])2   (6) 

 

where, P and Q are the Effective active and reactive power at 

bus j. 

Loss sensitivity factor is given by: 

 
𝜕𝑃𝑙𝑖𝑛𝑒𝑙𝑜𝑠𝑠

𝜕𝑄
=

(2∗𝑄[𝑗]∗𝑅[𝑘])

(𝑉[𝑗])2   (7) 

 

The order in which buses are considered for compensation 

placement is determined by the Loss Sensitivity factor, and the 

normalized values of voltages determine whether a specific 
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bus requires compensation or not. In this paper, the proposed 

algorithm chooses the optimal location of EVCS based on the 

Loss sensitivity factor approach.  

 

 

3. METAHEURISTIC ALGORITHMS 

 

Metaheuristic optimization is concerned with the use of 

metaheuristic algorithms to solve optimization problems. 

Effective search or optimization algorithms are necessary to 

obtain the optimal solution. Numerous optimization 

algorithms can be categorized in several ways based on their 

intent and requirements. Particle Swarm Optimization and 

Harris Hawks Optimization are some of the available search 

algorithms used for the optimal placement of EVCS. 

Particle Swarm Optimization (PSO) is a method of 

evolutionary computation that relies on the swarm's 

intelligence. The PSO process begins by arbitrarily initializing 

a series of possible solutions, after which it repeats the quest 

for the best solution. The best particles are followed in the PSO 

algorithm to find the optimum location represented by the PSO 

flowchart as shown in Figure 1. Here, the particle's velocity is 

operated by the Loss Sensitivity factor (LSF). Compared to 

Evolutionary Algorithms (EAs), PSO has a broad intellectual 

context and is easier to implement. 

 

 
 

Figure 1. PSO algorithm flowchart 

 

Harris' hawks in nature use a cooperative movement and 

chase style of ambush pounce, which is the primary source of 

inspiration for Harris Hawks Optimization (HHO). Several 

hawks work together to ambush prey by pouncing it from 

distinct viewpoints due to the complex nature of situations and 

the prey's fleeing habits. The Harris hawk is one of nature's 

most sophisticated and esteemed threat birds, with unique 

mutual chasing skills trying to trace, surround rinsing and 

catch the potential food animal (rabbit) in a mob. The initial 

population is thought to be a group of hawks that use a random 

pounce to chase the desired rabbit (optimization problem 

solution) from various directions. The leader hawk attempts to 

catch the prey at first; if it fails due to its dynamic disposition 

and fleeing behavior, the swapping strategies are used. The 

other party members (hawks in the group) strike the escaping 

prey before it is caught. The primary aspect of this cooperative 

strategy is that the birds track down the pointed rabbit by 

puzzling and exhausting the fleeing prey. Here the birds select 

to catch the nearest rabbit based on LSF represented by the 

HHO flowchart as shown in Figure 2. The Harris Hawks are 

the applicant solutions in HHO, while the expected prey is the 

best/global solution. 

 

 
 

Figure 2. HHO algorithm flowchart 

 

 

4. RESULTS AND DISCUSSION 

 

In the proposed approach, an IEEE 33 BUS system was 

considered for optimal placement of EVCS, the variations in 

the Loss Sensitivity factor concerning buses, System, and 

Nominal Voltage for various loads were obtained. 

 

4.1 IEEE 33 bus system 

 

An IEEE 33 bus system was considered for optimal 

placement of EVCS, the bus system's configuration in all 33 
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radials is given by Number of lines: 32, Slack bus number: 1, 

Base Voltage: 12.66 kV, MVA: 100 MVA. The Active and 

Reactive Power ratings of the Loads are given in the following 

Table 1. 

 

Table 1. Active and Reactive Power rating of the Loads. 

 
Nature of Load Active Power Reactive Power 

Base Load 201.58 kW 134.45 kVAR 

Load a 223.34 kW 149.06 kVAR 

Load b 258.10 kW 172.33 kVAR 

Load c 275.97 kW 184.64 kVAR 

 

The following Figure 3 shows an IEEE 33 bus system in a 

single line diagram. 

 
 

Figure 3. Conventional IEEE 33 bus system 

 

 
 

Figure 4. Loss sensitivity factor variation for various loads in conventional IEEE 33 bus system 

 

 
 

 Figure 5. System voltage variation for conventional and using HHO 
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Figure 6. Nominal voltage variation for conventional and using HHO 

 

 
 

Figure 7. System voltage variation for conventional and using PSO 

 

 
 

Figure 8. Nominal voltage variation for conventional and using PSO 
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Figure 9. Probability of EV location placement 

 

The above Figure 4 shows the Base Load and corresponding 

increase in the Loads a, b and c with the variation in the System 

and Nominal voltages for IEEE 33 bus system. Figures 5, 6 

gives the interpretation of System voltage and Nominal 

voltage for conventional and HHO to Loss Sensitivity factor, 

showing the increase in the Voltage profile using HHO. 

Whereas Figures 7, 8 gives the variation of System voltage and 

Nominal voltage for conventional and PSO to Loss Sensitivity 

factor, showing the increase in the Voltage profile for IEEE 33 

bus system. 

The EVCS location for the strong buses is identified in the 

IEEE 33 bus system based on the LSF component. In Figure 

9, where 1 represents a need for the placement of EV and 0 

indicates no need for EV placement. From the conventional 

system, 21 buses are obtained for optimal placement of EVCS 

in the IEEE 33 bus system. The HHO algorithm reduces the 

siting location for the placement of EVCS, identified 12 strong 

buses, and further PSO algorithm also uses IEEE 33 bus 

system to implement it, reduced to 10 buses for optimal 

location compared with the conventional system. Finally, a 

reliability test has been done and compared with the 

conventional, HHO and PSO for optimal placement of EVCS 

in an IEEE 33 bus system. 

Finally, from the Probability of EV location, it is clear that 

buses 7,12,17, and 31 are identified as the strong buses for the 

optimal placement of EV in the IEEE 33 bus system shown in 

Figure 10. 

 

 
 

Figure 10. Optimal location of IEEE 33 bus system 

 

 

5. CONCLUSION AND FUTURE SCOPE 

 

A novel technique has been used in this article for 

examining the best location of EVCS on the IEEE 33 bus 

system, also analyzed the impact of the system's voltage 

stability, reliability, and power losses for optimal placement of 

EVCS. The Newton-Raphson method was used to quantify the 

power flow. PSO and HHO algorithms are chosen for the 

optimal siting of EVCS, the simulation results were compared 

with the conventional system, showing the variation of LSF 

for various buses concerning Nominal and System Voltages. 

The bus location sequence will be determined by the 

descending order of the values for the LSF component to 

locate the best position vector. Finally, a reliability test 

comparison was made for conventional, PSO and HHO for 

IEEE 33 bus system and concluded that the buses 7, 12, 17 and 

31 total of four buses were identified as the strong buses for 

the optimal placement of EVCS, which can balance the 

corresponding buses based on their load demand (during off 

and peak loads). The research work can be carried out further 

by the Integration of Distributed Generations (DG) in the IEEE 

33 bus system and due to the intermittent nature of DG like 

solar, wind etc. will be better to analyze the optimal allocation 

of Energy management strategy in the system for the reliable 

operation of the grid during the peak demands. 
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