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In this article, we present our work regarding the development of advanced driver-

assistance systems for an electric-powered wheelchair. Our project aims at improving 

the autonomy of people with reduced mobility. After conducting a clinical study, we 

identified several use-cases. In this paper, we introduce the detection, localization and 

tracking of points of interest in the immediate surroundings of the chair in an indoor 

environment, i.e.: doors, handles, light switches, etc. The aim is not only to improve 

perception around the chair but also to enable semi-autonomous driving towards these 

targets. First, we introduce a repurposing of YOLOv3, the object detection algorithm, 

to our use case. Then, we show our use of the Intel Realsense camera for depth 

estimation. Finally, we describe our adaptation of the SORT algorithm to track 3D 

interest points. To validate our approach, we realized several experiments in a 

controlled indoor environment. The detection, distance estimation, and tracking 

pipeline is tested using our custom dataset. This includes corridors, doors, handles, 

and switches. One of the scenarios studied to validate the proposed platform includes 

not only the detection and tracking of objects but also the movement of the wheelchair 

towards one of these points of interest. 
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1. INTRODUCTION

Detection, classification, positioning, and tracking of 

objects are necessary tasks in the field of mobile robotics. 

Nowadays, these tasks often rely on computer vision and are 

carried using various sensor modalities (camera, LIDAR, 

RADAR) and processing algorithms (pattern recognition, 

filters, classification, feature extraction, etc.).  

In this paper, we focused our work on the object detection, 

localization and tracking of interest points on an electric-

wheelchair-type robotic platform. 

Our contribution aims to develop object detection, depth 

estimation, and target tracking for the wheelchair, using deep 

learning approaches. We carried out the learning phases using 

a dataset we created, and then verified our pipeline within 

ESIGELEC's autonomous navigation platform. This article is 

organized as follows. The introduction is presented in section 

I. In section II, we present a state-of-the-art of object detection

and tracking dealing with deep learning approaches. The

architecture of the intelligent wheelchair is presented in

section III. Our approach to object detection, depth estimation,

and tracking is then detailed in section IV. Section V will

conclude the article.

2. RELATED WORK

2.1 Object detection 

Deep-learning methods are currently state-of-the-art for 

object detection tasks. Among these algorithms, methods like 

Fast R-CNN [1], Faster R-CNN [2] and Mask R-CNN [3] are 

generally composed of two stages of a convolutional neural 

network (CNN) [4] (a set of cells called neurons which, 

working together, independently make predictions from the 

network inputs). The first module provides Region of Interest 

(ROI) with attached coordinates, i.e. where an object 

(whatever its nature) would be showing in the image. This is 

the ROI proposal. The second module manages the object 

detection step. It provides a class prediction of the proposed 

region. The YOLOv3 (You Only Look Once) algorithm [5] is 

one of the most powerful deep learning object detection 

algorithms. YOLO is based on the principle of regression 

instead of classification. This means that the entire process of 

locating an ROI encompassing an object and classifying that 

object is done at once. This enables real-time object detection 

on a standard GPU. Similarly to YOLO, the SSD [6] algorithm 

combines methods for classifying and locating ROI. By this 

mean, SSD avoids the feature and pixels extracted for each 

bounding box from the image. In SSD, the VGG-16 [7] 

architecture is used for feature extraction for in the first layers 

of the neural network. The size of the next layers is 

progressively lowered to enable multi-scale detection (unlike 

YOLO). A set of detection prediction is generated by each of 

these layers. 

2.2 Datasets 

For the detection of objects, numerous datasets are freely 

available. We can mention some of them: ImageNet [8] with 

14,000,000,000 instances per image. It includes 1000 classes 

[9], but the accessibility of this game of data remains limited. 
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SIFT10M [10] includes 11 million annotated images. It is 

structured in the form of reference points of known images 

(SIFT method). Open Images [11], which is a community 

dataset with more than 9000000 images. It comprises 7881 

different classes [12], linked to labeled objects with ROIs. This 

dataset represents a wide range of classes, and is frequently 

expanded. COCO [13] contains 1.500.000 images. Objects are 

categorized and labeled. It includes 80 object classes [14]. 

COCO has been extended in COCO-stuff [15] and contains 

1,800,000+ images with 181 classes [16]. PASCAL VOC [17] 

focuses on the detection of pedestrians and counts 500,000 

labeled images with 20 classes [18]. CIFAR-100 [19] regroups 

more than 60000 images and includes 100 [20] different 

classes. INRIA [21] is another pedestrian detection database. 

So is also Caltech [22]. In general, these data sets are fairly 

rich in terms of the classes representation in urban 

environment (cars, bicycles, pedestrians, buses, etc.). The 

COCO dataset is one the reference in terms of object detection 

and is ideal for comparing different object detection models. 

The latter offers different databases adapted to the training 

phases and the inference of neural networks. Yolov3, for 

example, uses ImageNet to train the first 53 layers of its 

network and establish the reference databases. As this data set 

is very dense, it was a wise choice to prepare for Yolov3's 

training. This model then uses other databases for detection 

and classification, such as COCO for example. 

 

 

3. ARCHITECTURE OF THE WHEELCHAIR-BASED 

PLATFORM 

 

The robotic electric wheelchair of the IRSEEM laboratory 

is an Invacare, Bora model, which was stripped down from all 

the original electronics. We then added: 1. an embedded PC 

running Linux Ubuntu 16.04 LTS, 2. a Roboteq engine driver, 

3. an Xbox controller, which can handle a USB or Bluetooth 

connection to the wheelchair computer, 4. a WIFI router to 

provide a wireless access point on the wheelchair, 5. an 

embedded HMI with a touch screen. 

 

 
Figure 1. IRSEEM's electric and robotic wheelchair 

 

All the software developments were carried out using the 

ROS robotic middleware, which seamlessly handles the 

multithreaded communication between the various software 

modules. The wheelchair hardware architecture is depicted in 

Figure 1. The on-board computed runs Ubuntu 16.04 OS, and 

works with a 250GB SSD and 8GB of RAM.  

The wheelchair allows two ways of interaction. The added 

touch-screen is directly connected via HDMI to the embedded-

computer, and provides a GUI with a visual feedback of the 

detected objects. 

We rely on the Roboteq engine driver to control the motors. 

For connectivity purposes, the wheelchair can use its own Wi-

Fi router. An Xbox One controller can also be used to control 

the wheelchair. We use Intel RealSense D435 camera to 

provide color and depth images to the perception software 

modules. 

 

 

4. DEEP-LEARNING-BASED DETECTION, 

LOCALIZATION, AND TRACKING 

 

4.1 Object detection 

 

To carry out object detection, we based on the powerful 

neural network YOLOv3. In the ADAPT project framework, 

the detection and classification of indoor environment-specific 

features (such as doors, door handles, and switches) is an 

essential part of the essential point. Since these classes are 

under-represented in the YOLOv3 training dataset (i.e. 

ImageNet [23]), we composed a custom dataset that we used 

to perform network training. We extracted 755 door images 

from the MCIndoor20000 dataset [24], which consists of 

labeled images containing various indoor environment objects. 

 

 
 

Figure 2. An example of doors and door handles object 

detection in an indoor environment 

 

In the literature, it is very difficult to find an open dataset 

including sufficient representation of switches, segmented and 

labeled door handles. For this reason, we developed our 

custom dataset within ESIGELEC, consisting of 1885 images, 

which we combined with the door images from the 

MCIndoor20000 dataset. We supervised the labeling of 2640 

images from two combined datasets by using a semi-automatic 

labeling tool we developed. Finally, we proceeded to re-train 

the YOLOv3 model for the required classes. For this transfer 

learning process, we trained only the classification layers of 

the neural network. The qualitative results of the detection 

process after re-training the YOLOv3 model on the 

recognition of doors, door handles, and light switches are 

shown in Figure 2. 
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4.2 Object tracking 

 

Using the combination of the position and associated depth 

with each item detected in the scene by the object detection 

algorithm, we use the Simple Online and Real-time Tracking 

(SORT) algorithm [25, 26] to track the different objects in the 

scene while the wheelchair is in motion. Door handles, 

switches, and door objects are detected from a video stream 

and assigned a given distance. 

 

 
 

Figure 3. 3D local semantic map 

 

SORT analyzes the detected objects and determines 

whether a given object is newly seen, or if the object’s 

movement is a consequence of the wheelchair's movements. 

This Kalman filter-based algorithm finally provides a unique 

identification number to each newly detected object. SORT 

keeps track of multiple objects simultaneously and filters out 

the positions of noisy objects associated with moving 

boundary boxes. 

Finally, we use the odometry data from the T265 RealSense 

camera to estimate the wheelchair’s displacement. We 

combine this information with the object position to visualize 

a 3D semantic map of the environment. Figure 3 shows an 

example of a 3D semantic map containing detected and 

tracked objects in real-time.  

 

 
 

Figure 4. Arrangement of the doors in the validation dataset 

 

 

5. EXPERIMENTAL VALIDATION 

 

To validate our different developments, we have recorded 

an experimental dataset in the IRSEEM laboratory. The 

validation scenario includes an environment with four-doors 

having handles of different shapes and colors. The 

environment is instrumented with a Vicon motion capture 

system. The doors as well as the wheelchair (equipped with 

reflective markers necessary for localization) are localized by 

the Vicon motion capture system, which provides their 

position and orientation with millimeter accuracy at a 

frequency of 100Hz [27]. 

 

Table 1. Depth estimation error 

 
Median (cm) 15.6 

Average (cm) 18.1 

Standard deviation (cm) 13.5 

Median (%) 3.2 

Average (%) 3.8 

Standard deviation (%) 2.6 

 

The Vicon motion capture system provides the ground truth 

and enables the distance error measurement between the 

wheelchair and the doors at high speed. 

Our door set has been placed along a circular arc (see Figure 

4), with a view to assessing the capacity detection when 

multiple elements are present simultaneously on an image. In 

this use case, the wheelchair moves around the stage and, in 

changing direction, is repeatedly found on the different doors. 

The error between the estimated distance after detection by 

YOlOv3, and the ground truth provided by the Vicon motion 

capture system. Figure 5 shows the different quantitative 

results of the actual distance and the distance estimated by the 

D435 RealSense camera, as well as the difference between 

these two values. The comparison takes into account a total of 

650 door detections. Table 1 summarizes the numerical results 

of this experiment. It shows an average error of 18.1 cm 

representing an error of 3.8% in the object’s distance 

estimation. However, these values remain lower than the data 

provided by the manufacturer. 

 

 
 

Figure 5. Quantitative results of depth estimation by the 

RealSense D435 camera. The measured distance between 

door and camera based on depth images (orange), ground 

truth (blue), and the difference between both ground truth 

and camera measurement (green) 

 

 

6. CONCLUSION 

 

In this paper, we presented objects detection, depth 
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estimation, localization, and tracking-based deep learning for 

wheelchair smart mobility. Object detection is based on the 

YOLOv3 approach. We measured the distance estimation 

error with the detected objects. Finally, we have improved a 

version of the SORT algorithm to perform object tracking. 

Object position estimation is improved by using the extended 

Kalman filter. To validate the whole of our developments, our 

models have been re-trained using an open and internal dataset 

composition: MCIndoor20000 and ESIGELEC datasets. 

Object detection and tracking were evaluated using the 

ESIGELEC dataset to validate the wheelchair object detection, 

localization, and tracking in an indoor environment. Bu having 

YOLOv3 re-trained on our own dataset, we get good 

performance in the wheelchair's indoor environment. All 

developments are integrated on the smart wheelchair platform 

via an Nvidia Jetson TX2 board playing the role of the main 

computer. All deep learning algorithms such as object 

detection, distance estimation, and tracking sun on this same 

embedded platform.  

In future studies, we will develop a new approach-based 

semantic segmentation to make a good analysis and 

understanding of the wheelchair outdoor environment. For this, 

we need to develop a new dataset of the wheelchair outdoor 

environment of street scenes taken from viewpoints located on 

sidewalks. It will be the first dataset for wheelchair smart 

mobility on pathways. We will also develop a new architecture 

of CNN with temporal processing to improve tracking 

accuracy. 
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