
GameEmo-CapsNet: Emotion Recognition from Single-Channel EEG Signals Using the 1D 

Capsule Networks 

Suat Toraman1, Ömer Osman Dursun2* 

1 Air Traffic Control Department, School of Aviation, Firat University, Elazig 23119, Turkey 
2 Aircraft Electric-Electronics Department, School of Aviation, Firat University, Elazig 23119, Turkey 

Corresponding Author Email: oodursun@firat.edu.tr

https://doi.org/10.18280/ts.380612 ABSTRACT 

Received: 3 September 2021 

Accepted: 28 November 2021 

Human emotion recognition with machine learning methods through 

electroencephalographic (EEG) signals has become a highly interesting subject for 

researchers. Although it is simple to define emotions that can be expressed physically such 

as speech, facial expressions, and gestures, it is more difficult to define psychological 

emotions that are expressed internally. The most important stimuli in revealing inner 

emotions are aural and visual stimuli. In this study, EEG signals using both aural and visual 

stimuli were examined and emotions were evaluated in both binary and multi-class emotion 

recognitions models. A general emotion recognition model was proposed for non-subject-

based classification. Unlike previous studies, a subject-based testing was carried out for the 

first time on the GAMEEMO dataset. Capsule Networks, a new neural network model, has 

been developed for binary and multi-class emotion recognition. In the proposed method, a 

novel fusion strategy was introduced for binary-class emotion recognition and the model 

was tested using the GAMEEMO dataset. Binary-class emotion recognition achieved a 

classification accuracy which was 10% better than the classification performance achieved 

in other studies in the literature. Based on these findings, we suggest that the proposed 

method will bring a different perspective to emotion recognition. 
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1. INTRODUCTION

Machine learning plays an important role in human life. 

Artificial intelligence (AI) applications based on machine 

learning are used in many engineering and medical fields such 

as disease treatment, healthcare, nuclear industry, and robotics 

[1-4]. Additionally, AI applications that imitate human 

thinking and behavior also contribute to people’s various 

decision-making processes. More to the point, emotions, 

which are abstract concepts, can be interpreted more easily 

thanks to AI technologies. Emotions occur in two ways: 

physical and psychological. While emotions such as gestures 

and facial expressions that are reflected in the external 

environment are reflected physically, emotions such as 

happiness, sadness, boredom, and fear of the person's inner 

world emerge psychologically. Moreover, physical emotions 

such as speech, facial expression, and body language can be 

defined in a simple way, whereas it is more difficult to define 

emotions that arise psychologically. Electroencephalography 

(EEG) signals are widely used to describe emotions expressed 

internally or psychologically [5]. These signals are obtained 

from the brain in the form of electrical waves and are used to 

make sense of emotions with the help of machine learning 

techniques. There are three types of stimuli in emotion 

recognition applications using EEG signals, including aural, 

visual, and aural-visual stimuli. Sound in aural stimuli and 

various pictures in visual stimuli are used as external stimuli 

that allow the subject’s senses to be revealed. Studies show 

that emotions are revealed more effectively when subjects are 

stimulated with aural-visual stimuli [6]. Emotion recognition 

models in the literature are divided into two types: discrete-

category and dimensional. Ekman et al. suggested many 

different categories of emotions, one of which included six 

basic emotions [7]. Plutchik's wheel of emotion suggestion 

and Russel's arousal-valence scale showed that emotion 

should be evaluated dimensionally, not discretely [8, 9]. 

Figure 1 shows the dimensional emotion model. 

Figure 1. Dimensional emotion model 

According to Figure 1, emotion can be expressed in two 

dimensions: valence (horizontal axis) and arousal (vertical 
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axis), whereby the arousal axis is expressed as low and high, 

while the valence axis is expressed as negative and positive. In 

this model, four zones are considered. The first zone includes 

emotions of high arousal positive valence (HAPV): pleased, 

happy, and excited. In the second zone, there are emotions 

with high arousal negative valence (HANV), such as nervous, 

angry, and annoying. In the third zone, there are emotions with 

low arousal and negative valence (LANV): sad, bored, and 

sleepy. Finally, the fourth zone consists of low arousal and 

positive valence (LAPV): relaxed, peaceful, and calm [10]. 

In the proposed study is considered emotions, both binary-

class as negative and positive, and multi-class as LAPV, 

HAPV, LANV, and HANV. 

 

1.1 Related work 

 

The EEG signals used in emotion recognition have a non-

linear structure. Non-linear feature extraction techniques are 

used quite frequently when processing EEG signals. Salankar 

et al. used the DEAP (a Database for Emotion Analysis using 

Physiological Signals) dataset, in which they divided the EEG 

signals with the Empirical Mode Decomposition (EMD) 

method and extracted the features during the pre-treatment 

process. The extracted features were evaluated in binary and 

multi-class classifications using support vector machine 

(SVM) and Multilayer Perceptron classifiers, of which 

Multilayer Perceptron achieved a classification performance 

of 100% [11]. Tan et al. performed emotion recognition based 

on spiking neural network (SNN) using spatial-temporal EEG 

signals. The authors used DEAP and MANHOB-HCI 

databases consisting of facial videos. Binary classification was 

made for arousal (high-low) and valence (negative-positive) 

and the classification of arousal provided an accuracy of 

78.97% with DEAP and 79.39% with MANHOB-HCI, while 

the classification of valence provided an accuracy of 67.76% 

with DEAP and 72.12% with MANHOB-HCI [12]. Tuncer et 

al. [13] presented a new fractal pattern feature generation 

using GAMEEMO database for feature extraction by using the 

features extracted from EEG signals and classified the features 

with linear discriminant analysis (LDA), k-nearest neighbor 

(k-NN), and SVM. Of these, SVM showed the best 

classification accuracy (99.82%). Nawaz et al. [14] employed 

a three-dimensional (3D) emotion recognition model and 

recorded the EEG signals of 1-minute-long videos watched by 

the participants. Statistical properties such as power, entropy, 

and fractal dimension were obtained from EEG signals and 

then were classified with SVM, k-NN and Decision Tree (DT) 

using relief-based algorithms and principal component 

analysis (PCA). The accuracy of classification was 77.62%, 

78.96%, and 77.60% for PCA, SVM, and DT, respectively. 

Additionally, the authors suggested that PCA is an effective 

feature selection technique. 

Traditional feature extraction methods have various 

limitations. For instance, the experience of the expert is highly 

important in the feature extraction stages. In addition, the 

selected features or the effect of these features on the 

classification are also remarkably important. With the 

development of hardware technologies, deep learning, which 

is a different machine learning method, has emerged as a 

popular technique for automatic feature extraction from raw 

data. In this method, data that are not used in traditional feature 

extraction methods are used as part of the performance. The 

most widely applied architecture in deep learning is 

convolutional neural networks (CNN) architecture. Among 

the studies using CNN architecture, Er et al. [15] performed 

two-channel multi-class discrete emotion recognition from 

EEG signals using pre-trained deep learning networks: 

AlexNet and VGG16. The authors obtained EEG signals from 

nine participants who regularly listened to Turkish Art, 

Turkish Folk, Turkish Pop, and Turkish Jazz Music. The 

results indicated that VGG16 showed the highest classification 

performance on the beta frequency channel, with an accuracy 

of 73.28%. In a study by Yin et al., a fusion model of long 

short-term memory (LSTM) and graph convolutional neural 

networks (GCNN) was used for emotion recognition. A binary 

classification of arousal-valence was made by using the DEAP 

dataset comparing SVM, DT, random forest, and GCNN. The 

subject-dependent average classification accuracy was found 

to be 90.54% for valence and 90.60% for arousal, while the 

subject-independent average classification accuracy was 

found to be 84.81% for valence and 85.27% for arousal [16]. 

Wang et al. applied electrode-frequency distribution maps 

(EFDMs) with short-time Fourier transform (STFT) to EEG 

signals in the SEED (SJTU Emotion EEG) and DEAP 

datasets. The results were used as an input to CNN and the 

average classification accuracy was found to be 90.59% with 

SEED and 82.84% with DEAP [17]. Chen et al. [3] 

transformed one-dimensional vector EEG vector sequences 

into two-dimensional mesh-like matrix sequences by the EEG 

signals in DEAP dataset for emotion recognition. The authors 

proposed a progressive hybrid convolution recurrent neural 

network and a parallel hybrid convolution recurrent neural 

network and obtained 93% accuracy using both hybrid 

convolutional recurrent neural networks. Cui et al. [18] 

proposed the regional-asymmetric convolutional neural 

network (RACNN) and used an asymmetric difference layer 

for feature extraction. The model was tested with the DEAP 

and DREAMER datasets and provided an accuracy of over 

95% for both datasets. Wei et al. [19] applied the simple 

recurrent units network (SRU) and the ensemble learning 

method based on recurrent neural networks (RNN) using the 

SEED dataset for the EEG signals. The authors divided the 

EEG signals into five sub-bands and performed emotion 

recognition with 78.5% accuracy using SRU and lower EEG 

bands. Sabour et al. [20] proposed a new neural network model 

named capsule networks to overcome the drawback of CNN 

architectures in performing recognition without using the 

location and orientation information of objects. 

Thus, in this study, a new capsule network architecture was 

proposed for GAMEEMO, a new audio-visual stimuli dataset. 

In the suggested method, EEG signals expressing positive and 

negative emotions were classified as binary and multi-class. 

Furthermore, a novel fusion strategy was introduced for the 

two-class emotion recognition problem. According to the 

results, it was shown that the presented method is an effective 

method for binary and multi-class emotion recognition. The 

flowchart of the proposed method is shown in Figure 2. 

 

1.2 Motivation 

 

Over the last decade, AI applications have gained the ability 

to examine much larger datasets through novel hardware 

architectures that have emerged in parallel with the 

developments in the game industry. As a result of these 

developments, deep learning architectures, which are 

algorithms motivated by AI and are used for analyzing raw 

information or information fusion, have become highly 

popular and remarkably effective in understanding, 
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recognizing, and analyzing emotions. Human emotions can be 

understood from physical movements such as facial 

expressions, speech, and gestures. In these physical 

movements, however, people can intentionally or 

unintentionally hide their true emotions. In psychological 

signals (i.e. EEG signals), human emotions can be defined as 

more objective and reliable and these signals are more 

sensitive and also can respond to emotional situations in real 

time. Therefore, EEG signals can be more effective in 

determining people’s emotional states. Moreover, EEG-based 

emotion recognition has recently attracted the attention of 

many researchers, and many techniques have been proposed 

for this subject. In the present study, an emotion recognition 

method is proposed for determining the mood of gamers using 

a single channel EEG signal. The emotions of the individuals 

were examined in binary and multi-class emotion recognition. 
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Figure 2. Block diagram representing the flowchart of the proposed method 

 

 

2. MATERIALS AND METHODS 

 

2.1 The dataset  

 

EEG signals were obtained from 28 healthy people aged 20-

27 years in Firat University Technology Faculty Software 

Engineering Department, Elazig, Turkey [10]. 16-channel 

EEG data was obtained with 128 Hz sampling frequency. Two 

channels (P3, P4) were used as reference. A wearable EMOTV 

EPOC + Mobile EEG device were used to obtain 14-channel 

EEG data (see Table 1). The signals were obtained while the 

subjects were playing four different games. 14-channel EEG 

data is shown in Figure 3. 
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Figure 3. 14-channel EEG data obtained from the subjects 

 

In addition, EEG signals for binary and multi-class emotion 

recognition were examined in both subject-based and non-

subject-based testing, both of which used a single EEG 

channel. In doing so, it was investigated as to whether an 

effective emotion recognition can be performed from a single 

EEG channel. The channel chosen for this study was AF4, 

mainly because the authors of the original article achieved the 

highest classification success with this channel [10]. All the 

experiments were carried out with a Linux Server (Ubuntu 

16.04.4) with NVIDIA GTX 1080 GPU using Python Keras 

library. 

 

2.2 Preprocessing 

 

The GAMEEEMO dataset was examined for both binary 

and multi-class classification. In the first phase, the EEG 

signals in the LAPV and HAPV zones, which are known as 

positive emotion signals, were fused with the novel fusion 

strategy for binary emotion recognition. Likewise, negative 

emotion signals (LANV, HANV) were also fused (see Figure 

4). With the new fusion method, a new EEG signal was 

obtained instead of the EEG signals, expressing two separate 

positive emotions. This process was carried out by taking the 

average of the EEG signals that defined the negative emotion. 

In the second phase, EEG signals in LAPV, HAPV, LANV 

and HANV zones were used for multi-class emotion 

recognition. Before these processes, the data were normalized. 

Then, the Z score normalization method was used for 

normalization. Thus, Z score has facilitated the convergence 

of the classifier more quickly. While normalizing the data with 
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Z score, mean (μ) and standard deviation (σ) are considered. Z 

score is given in Eq. (1). Here, x represents the EEG signal. 

 

𝑧 =
𝑥 − 𝜇

𝜎
 (1) 

 

EEG signals were segmented using the sliding window 

technique and each signal had a length of 38252 data-points. 

The signals were divided into segments of 100 units using the 

10-unit sliding window method and a total of 3815 x 100 

segments were obtained for each EEG signal. Thus, a total of 

7630 x 100 segments, positive and negative EEG signals, were 

obtained in binary-class emotion recognition. This procedure 

was repeated for 28 subjects (for channel AF4). Positive and 

negative emotions were used for non-subject-based testing 

with binary-class emotion recognition to feed the capsule 

networks (2 x 106820) x 100 segments (28 x 3815 = 106820). 

The signal preprocessing steps that perform binary-class 

emotion recognition are shown in Figure 4. In the multi-class 

emotion recognition model (LAPV, HAPV, LANV, HANV) 

(4 x 3815) x 100 segments were used as input data for subject-

based classification. For non-subject-based classification, 

106820 x 100 segments were used as inputs for each class. 

 

2.3 Capsule networks 

 

Convolutional Neural Networks (CNN) architectures are 

highly successful in the field of image/signal processing 

thanks to the convolution layer structure added one after the 

other [21-23]. CNN models extract a feature map in each layer 

and transfer it directly to the next layer or reduce the data by 

pooling to the next layer. However, performing pooling 

transfers important information in the data to the next layer, 

while the other data is viewed as unimportant and these data 

are not transferred to the next layer. As a result, the network is 

prevented from learning the small details [24]. In capsule 

networks, pooling is not used and this little information is used 

while training the network. In addition, capsule networks carry 

information to give the positions and orientations of the 

objects in the image thanks to the capsule structure. Another 

feature of the capsule networks is that it uses ‘squashing’ as 

the activation function, as shown in the following equation 

[20]: 

 

𝑣𝑗 =
‖𝑠𝑗‖

2

1 + ‖𝑠𝑗‖
2 .

𝑠𝑗

‖𝑠𝑗‖
 (2) 

 

where, 𝑣𝑗 is the output of capsule j and 𝑠𝑗 is the total entries of 

the capsule. 𝑣𝑗suppresses the long vectors towards one if there 

is an object in the image, while the image narrows the short 

vectors towards zero if there is no object [20, 24]. In capsule 

networks, a different margin loss is proposed to determine 

whether there are objects in a class (see Eq. (3)). 

 

𝐿𝑛 = 𝑇𝑛 max(0, 𝑚+ − ‖𝑣𝑛‖)2 + 𝜆(1 −
𝑇𝑛)max(0, ‖𝑣𝑛‖ − 𝑚−)2  

(3) 

 

Here, 𝑇𝑛 = 1 , 𝑚+ = 0.9  and 𝑚− = 0.1  is selected. The 

direction of the vector depends on the object’s size, pose, and 

orientation [25, 26]. 

 

Table 1. Attributes of the GAMEEMO dataset 

 
Data type Information 

Signal  EEG 

Subject  

Number of subjects: 28 subjects from students of Firat University Technology 

Faculty Software Engineering Department 

Age of subjects: 20-27 

Device 

EEG device type: 14-channel EMOTIV EPOC+ Mobile EEG device 

EEG electrodes location: 16 different scalp zones 

Connectivity: Wifi 

Sampling rate: 128 Hz 

Bandwidth: 0.16 Hz – 43 Hz 

Operating systems: Windows, Mac, IOS and Android 

Game  
Game type: 4 different games (funny, boring, horror, calm) 

Game recording time: 5 minutes (20 minutes in total for 4 games) 

 

 
 

Figure 4. EEG signal preprocessing steps for binary-class emotion recognition 
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2.4 The proposed network architecture 

 

A new network model with four convolution layers is 

proposed for 100 × 1 signal classification. Capsule networks 

have more computational load than traditional CNN 

architectures and require more powerful hardware. In addition, 

the size of the data to be given as input to the capsule network 

directly affects the system's speed. Therefore, a smaller and 

more efficient feature map was given as input to the primary 

layer by adding four convolution layers before the primary 

capsule layer. Figure 5 shows the structure of the proposed 

network architecture. 

Details of the original capsule network and proposed 

network architecture are given in Table 2 and 3. The first two 

layers contain 16 and 32 kernels with size 5×5 and a stride of 

1. Maximum pooling with a stride of 2 is applied to the second 

layer output. The third layer contains 128 filters with size 9×1 

and a stride of 1. The fourth layer is the primary capsule and 

contains 32 different capsules, with each capsule applied a 

filter with size 9×1 and a stride of 1. The label capsule layer 

contains two size 16 capsules representing the positive and 

negative EEG signal classes in the binary-class model. 

Capsule networks can carry various features in signals in a 

single vector, thanks to their high dimensionality. Capsule 

networks also perform better on relatively small data than 

image data, such as the EEG signal [27]. 

ReLU activation function is used for all layers. The ReLU 

function takes zero value for neurons that produce negative 

values. Therefore, the ReLU function works faster and more 

efficiently than Tangent, Sigmoid, etc. [28]. 

 

 

Figure 5. Capsule network structure proposed for automated 

emotion recognition 

 

Table 2. Original capsule network architecture 

 
Layers Filter Kernel size Stride Output 

Input - - - 28, 28 

Conv1 256 9 1 20, 20 

PrimaryCaps 32x8 9 2 32, 8, 6, 6 

Digit capsule - - - 16, 10 

Output - - - 10 

 
Table 3. Details of layers and parameters of capsule network 

architecture for binary-class emotion recognition 

 
Layers Filter Kernel size Stride Output 

Input - - - 100, 1 

Conv1 16 5 1 100, 16 

Conv2 32 5 1 100, 32 

Maxpooling   2 50, 32 

Conv3 128 9 1 50, 128 

PrimaryCaps 256 9 1 1600 ,8 

Label capsule - - - 16, 2 

Output - - - 2 

 

Table 4. Details of layers and parameters of capsule network 

architecture for multi-class emotion recognition 

 
Layers Filter Kernel size Stride Output 

Input - - - 100, 1 

Conv1 16 5 1 100, 16 

Conv2 32 5 1 100, 32 

Maxpooling   2 50, 32 

Conv3 64 5 1 50, 64 

Maxpooling   2 25, 64 

Conv4 128 9 1 25, 128 

PrimaryCaps 256 9 1 800 ,8 

Label capsule - - - 16, 4 

Output - - - 4 

 

One convolution (128 kernels) and max pooling (2 of stride) 

layers were added to the binary-class capsule network 

architecture proposed for multi-class emotion recognition 

(Table 4). The reason for adding these layers was that the 

binary-class architecture performs poorly in recognizing 

multi-class datasets. In other words, while an efficient feature 

map was created with 3 convolution layers in a binary-class 

architecture, a multi-class architecture was also insufficient. 

That is, the increase in the number of classes increased the 

sensitivity. Therefore, deeper feature extraction was 

performed by adding a new convolution layer. The 

performance was increased with the addition of the layers. 

Comparative results are given in section 3.2. 

 

2.5 Performance evaluation 

 

The performance of the method was evaluated according to 

the most widely known indicators in the literature, including 

Accuracy, Sensitivity, Specificity, Precision, and F1 score. 

Additionally, True positive (TP), True negative (TN), False 

positive (FP), and False negative (FN) were used for the 

calculation, whereby TP indicated the positive emotions that 

were described correctly by the method, TN indicated the 

negative emotions that were described correctly by the method, 

FN indicated the positive emotions that were described 

incorrectly by the method, and FP indicated the negative 

emotions that were described incorrectly by the method. 

 

𝐴𝑐𝑐 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁) (4) 

 

𝑆𝑒𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (5) 

 

𝑆𝑝𝑒 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) (6) 

 

𝑃𝑟𝑒 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (7) 

 

𝐹1 = 2𝑇𝑃/(2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁) (8) 

 

 

3. EXPERIMENTAL RESULTS 

 

An emotion recognition model was applied using the EEG 

signals of subjects while playing four different computer 

games. Information about the environment and equipment 

used for the experiment was delineated in the study by Alakus 

et al. [10]. The emotions of the subjects were classified into 

two and four classes and the emotions were identified in 

binary-class (positive, negative) or multi-class (LAPV, HAPV, 

LANV and HANV) comparisons [10]. 
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3.1 Binary-class emotion recognition 

 

Positive and negative emotions were analyzed in two ways. 

In the original article, the authors performed a general 

classification using all 14-channel EEG signals [12]. In the 

method proposed in the present study, a single channel was 

used to examined how successful a single channel would be in 

emotion recognition. In addition, a subject-based examination 

was also carried out in the present study, unlike in the original 

article. Considering the person-to-person nature of EEG 

signals, it is considered that it would be more efficient to 

compare the results of this examination with those of general 

signal analysis. In the proposed model, ReLU is used as the 

activation function. The learning rate (lr) was examined in the 

range of 10-2, …, 10-4 and the best performance was obtained 

with binary-class recognition (0.001). Additionally, 5-fold 

cross validation was performed for subject-based assessment 

(Figure 6). Table 5 presents the parameter results for all 28 

subjects. Accordingly, Subject #26 had the lowest (90.22%) 

and Subject #01 had the highest value (99.99%) and the 

average accuracy rate for 28 subjects was 98.11%. 

 

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Test Train

%80 %20

 
 

Figure 6. Graphical representation of training and test data 

 

Table 5. Classification results for subject-based testing with 

binary-class emotion recognition (channel AF4) 

 

Subject 
Acc 

(%) 

Pre 

(%) 

Sen 

(%) 

Spe 

(%) 

F1 

score 

(%) 

s01 
99.99 ± 

0.03 

99.97 ± 

0.05 

100.0 ± 

0.00 

99.97 ± 

0.05 

99.99 ± 

0.03 

s02 
99.96 ± 

0.08 

99.92 ± 

0.16 

100.0 ± 

0.00 

99.92 ± 

0.16 

99.96 ± 

0.08 

s03 
99.91 ± 

0.15 

99.82 ± 

0.30 

100.0 ± 

0.00 

99.82 ± 

0.31 

99.91 ± 

0.15 

s04 
99.97 ± 

0.05 

99.95 ± 

0.10 

100.0 ± 

0.00 

99.95 ± 

0.10 

99.97 ± 

0.05 

s05 
98.07 ± 

1.05 

97.48 ± 

1.55 

98.72 ± 

0.52 

97.43 ± 

1.62 

98.09 ± 

1.03 

s06 
98.82 ± 

0.40 

99.16 ± 

0.62 

98.48 ± 

0.69 

99.16 ± 

0.63 

98.82 ± 

0.40 

s07 
96.26 ± 

1.67 

96.20 ± 

3.27 

96.51 ± 

3.05 

96.02 ± 

3.61 

96.28 ± 

1.65 

s08 
99.48 ± 

0.51 

99.63 ± 

0.33 

99.32 ± 

0.75 

99.63 ± 

0.33 

99.47 ± 

0.52 

s09 
93.54 ± 

1.50 

94.05 ± 

2.36 

93.05 ± 

2.69 

94.02 ± 

2.67 

93.50 ± 

1.51 

s10 
97.27 ± 

1.65 

98.02 ± 

1.34 

96.51 ± 

3.04 

98.03 ± 

1.38 

97.23 ± 

1.72 

s11 
98.81 ± 

1.36 

99.25 ± 

0.42 

98.35 ± 

2.47 

99.27 ± 

0.40 

98.79 ± 

1.40 

s12 
94.88 ± 

0.90 

94.69 ± 

0.56 

95.10 ± 

2.19 

94.65 ± 

0.68 

94.88 ± 

0.96 

s13 
99.83 ± 

0.10 

99.79 ± 

0.20 

99.87 ± 

0.20 

99.79 ± 

0.20 

99.83 ± 

0.10 

s14 
99.38 ± 

0.49 

99.25 ± 

0.79 

99.53 ± 

0.20 

99.24 ± 

0.80 

99.39 ± 

0.49 

s15 
99.96 ± 

0.05 

99.92 ± 

0.10 

100.0 ± 

0.00 

99.92 ± 

0.10 

99.96 ± 

0.05 

s16 
99.84 ± 

0.18 

99.84 ± 

0.19 

99.84 ± 

0.31 

99.84 ± 

0.19 

99.84 ± 

0.18 

s17 
99.83 ± 

0.12 

99.82 ± 

0.13 

99.84 ± 

0.15 

99.82 ± 

0.13 

99.83 ± 

0.12 

s18 
99.95 ± 

0.08 

99.90 ± 

0.15 

100.0 ± 

0.00 

99.99 ± 

0.15 

99.95 ± 

0.08 

s19 
98.03 ± 

1.38 

97.67 ± 

1.43 

98.43 ± 

1.66 

97.64 ± 

1.45 

98.04 ± 

1.39 

s20 
97.39 ± 

0.86 

98.50 ± 

0.77 

96.25 ± 

1.09 

98.53 ± 

0.76 

97.36 ± 

0.87 

s21 
97.47 ± 

0.68 

98.00 ± 

2.02 

96.99 ± 

1.38 

97.96 ± 

2.12 

97.46 ± 

0.66 

s22 
99.76 ± 

0.18 

99.84 ± 

0.10 

99.69 ± 

0.32 

99.84 ± 

0.10 

99.76 ± 

0.18 

s23 
91.40 ± 

1.40 

91.68 ± 

2.95 

91.22 ± 

1.97 

91.59 ± 

3.32 

91.40 ± 

1.31 

s24 
98.39 ± 

0.88 

97.50 ± 

1.51 

99.34 ± 

0.52 

97.43 ± 

1.57 

98.41 ± 

0.86 

s25 
99.53 ± 

0.25 

99.22 ± 

0.43 

99.84 ± 

0.13 

99.21 ± 

0.44 

99.53 ± 

0.25 

s26 
90.22 ± 

1.76 

88.75 ± 

3.10 

92.32 ± 

2.53 

88.13 ± 

4.02 

90.44 ± 

1.62 

s27 
99.66 ± 

0.21 

99.56 ± 

0.46 

99.76 ± 

0.24 

99.55 ± 

0.47 

99.66 ± 

0.21 

s28 
99.58 ± 

0.13 

99.56 ± 

0.21 

99.61 ± 

0.19 

99.55 ± 

0.21 

99.58 ± 

0.13 

Mean ± 

SD 

98.11 ± 

2.58 

98.11 ± 

2.70 

98.16 ± 

2.48 

98.07 ± 

2.80 

98.12 ± 

2.56 
Acc: Accuracy, Pre: Precision, Sen: Sensitivity, Spe: Specificity, SD: 
Standard deviation 

 

After performing subject-based testing, the AF4 channel 

data of 28 subjects were combined for a general recognition 

model to perform a non-subject-based classification and to 

examine whether a general emotion recognition model could 

be obtained. Table 6 presents the classification results of non-

subject based data following the administration of 5-fold cross 

validation. Accordingly, the AF4 channel differentiated 

positive and negative emotions with 98.89% accuracy, 98.58% 

sensitivity, and 99.19% specificity. 

 

Table 6. Classification results for non-subject-based testing 

with binary-class emotion recognition (channel AF4) 

 
Fold Acc 

(%) 

Pre 

(%) 

Sen 

(%) 

Spe 

(%) 

F1 score 

(%) 

Fold 1 98.99 98.89 99.09 98.89 98.99 

Fold 2 98.88 98.84 98.92 98.84 98.88 

Fold 3 98.43 99.35 97.50 99.36 98.41 

Fold 4 98.94 99.54 98.33 99.54 98.93 

Fold 5 99.19 99.30 99.09 99.30 99.19 

Mean ± 

SD 

98.89 ± 

0.25 

99.18 ± 

0.27 

98.58 ± 

0.61 

99.19 ± 

0.27 

98.88 ± 

0.26 
Acc: Accuracy, Pre: Precision, Sen: Sensitivity, Spe: Specificity, SD: 

Standard deviation 

 

3.2 Multi-class emotion recognition 

 

Initially, the capsule network structure used for binary-class 

emotion recognition (see Table 3) was applied for multi-class 

emotion recognition, which provided a low accuracy (Figure 

7a). Subsequently, the network structure given in Table 3 was 

applied for lr values (0.001 and 0.0001). Thus, an 

improvement in the results was observed (Figure 7b). The 

values 88.07% and 91.93% respectively were obtained for 
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Subject #01. Finally, as a result of parameter determination 

performed using the brute force method, the training-loss 

graphs shown in Figure 8 were reached (see Table 4). Table 7 

shows the parameters of the capsule network architecture used 

for binary and multi-class emotion recognition and Table 8 

presents the accuracy rate achieved for multi-class emotion 

recognition for all 28 subjects. 

 

a

 

b

 
 

Figure 7. Application of the two-class model structure to the 

multi-class dataset according to (a) lr = 0.001, (b) lr = 0.0001 

 

 

 

 

 
 

Figure 8. Sample folds of training and loss graphics (top: 

binary-class, bottom: multi-class) 

 

a

 

b

 
 

Figure 9. Confusion matrices of testing, a) binary-class, b) 

multi-class
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Table 7. Hyper parameters of capsule network architectures 

 

 Routing Optimizer lr Loss weight Batch size Epoch Time (s) (per epoch) 

2 class 3 Adam 0.001 0.392 16 25 16 

4 class 3 Adam 0.0001 0.392 32 10 23 
lr: Learning rate 

 

Table 8. Capsule network results for the multi-class subject-

based testing 
 

Subject Accuracy (%) 

s01 99.76 ± 0.18 

s02 99.99 ± 0.01 

s03 99.99 ± 0.01 

s04 99.37 ± 1.24 

s05 98.49 ± 0.63 

s06 98.36 ± 0.82 

s07 98.77 ± 0.68 

s08 96.81 ± 1.21 

s09 92.17 ± 2.75 

s10 97.53 ± 0.81 

s11 98.22 ± 0.58 

s12 94.33 ± 2.10 

s13 97.49 ± 3.27 

s14 99.12 ± 0.29 

s15 99.61 ± 0.44 

s16 99.79 ± 0.31 

s17 99.98 ± 0.03 

s18 99.98 ± 0.03 

s19 99.81 ± 0.11 

s20 99.52 ± 0.47 

s21 98.58 ± 0.65 

s22 96.24 ± 2.06 

s23 99.26 ± 0.31 

s24 98.05 ± 0.47 

s25 98.41 ± 1.40 

s26 97.64 ± 1.09 

s27 98.96 ± 0.40 

s28 98.59 ± 0.81 

Mean ± SD 98.38 ± 1.75 

 

Table 9. Capsule network results for the multi-class the non-

subject based testing 
 

Fold Accuracy (%) 

Fold1 90.31 

Fold2 90.31 

Fold3 90.53 

Fold4 89.81 

Fold5 90.73 

Mean ± SD 90.37 ± 0.31 

 

In non-subject-based recognition, an average accuracy rate 

of 90.37% was achieved with 5-fold cross validation results 

(Table 9). 

Another component used to evaluate system performance is 

confusion matrix. Figure 9 presents the binary- and multi-class 

confusion matrices of a subject (#04). As seen in Figure 9a, 

only 2 out of the 3815 signal parts belonging to positive 

emotions were classified incorrectly, while all of the signal 

parts belonging to negative emotions were recognized 

correctly. In multi-class classification, however, a highly 

effective definition was obtained. 

 

 

4. DISCUSSION 
 

To date, various applications for emotion recognition from 

EEG have been performed using traditional feature extraction 

methods. In these applications, traditional features of EEG 

signals such as EMD, entropy, and gray-level co-occurrence 

matrix (GLCM) have been extracted [11, 29-32]. However, 

with the emergence of deep learning architectures, automatic 

feature extraction methods have begun to replace the 

traditional feature extraction methods. With deep learning, in 

particular, more effective feature extraction can be made from 

raw signals [5]. Many datasets on emotion recognition using 

deep learning architectures are available, with the best-known 

ones including DEAP, SEED, MANHOB-HCI, and 

DREAMER. Additionally, CNN, RNN, LSTM, and deep 

belief networks are some of the deep learning architectures 

used for these datasets [16, 17, 19, 33]. However, to our 

knowledge, no deep learning architecture has yet been tried on 

the GAMEEMO dataset created for physical and spiritual 

emotion recognition. The applications performed on this 

dataset are given in Tables 10 and 11. As seen in Table 10, the 

authors initially implemented binary-class emotion 

recognition for positive and negative emotion prediction from 

the dataset and then performed multi-class emotion 

recognition for four-zone prediction (LANV, HANV, HAPV, 

and LAPV) (see Table 11). 

Alakus et al. performed statistical, chaotic, and time-

frequency analysis from these sub-signals and classified the 

extracted features with three different classifiers (k-NN, SVM, 

MLPNN) [12]. 

In another study, Turker et al. performed feature extraction 

from each EEG channel with the help of Tunable Q wavelet 

transform. The EEG signal was split into 30 subbands for 

feature extraction, 1024 features were extracted from each 

subband, and a total of 31744 feature vectors were obtained 

for one EEG channel. Since the feature vector was remarkably 

large, features were reduced with the IChi2 feature selector. 

The reduced features were then classified with k-NN, SVM, 

and LDA [13]. 

In both of the studies conducted on the GAMEEMO dataset, 

the authors divided the EEG signals into subbands and 

extracted features from these subbands. The extracted features 

were classified with different classifiers. Moreover, the 

authors applied traditional feature extraction methods which 

are both time-consuming and require serious processing load. 

In our study, however, no feature extraction was made from 

EEG signals and the features were automatically acquired and 

classified by the deep learning architecture. In doing so, a 

direct result was obtained from the raw data with an end-to-

end method, thus eliminating the deficiencies encountered in 

traditional feature extraction methods or errors arising from 

the expert’s experience. 

Significant contributions of this study are as follows: 

●Capsule network, a new neural network model, was used 

instead of traditional feature extraction methods.  

●In the proposed study, feature extraction and feature 

selection by separating EEG signals into sub-bands were not 

needed. 

●Raw EEG signals were used in the proposed method, 

which led to less processing load and also saved time. 

●High-accuracy emotion recognition was performed from a 

single EEG channel (AF4).  
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Table 10. Binary-class classification comparison results for GAMEEMO dataset 

 

Channel 
Alakus et al. Proposed method (PM) 

kNN SVM MLPNN PM1 PM2 

AF4 75% 88% 87% 98.11% 98.89% 

 

Table 11. Multi-class classification comparison results for GAMEEMO dataset 

 

Channel 
Alakus et al. Tuncer et al. Proposed method (PM) 

kNN SVM MLPNN kNN SVM LDA PM1 PM2 

AF4 55% 50% 75% 98.39% 99.64% 95.54% 98.38% 90.37% 
PM1: Average accuracy of subject-based AF4 channel 

PM2: Average accuracy of non subject-based AF4 channel 

 

●The proposed capsule network architecture was tested for 

28 subjects.  

●The GAMEEMO dataset was examined using subject-

based testing for the first time. 

●The proposed method achieved a classification accuracy 

which was 10% better than the classification performance 

achieved in other studies in the literature. 

In previous studies, the authors focused on general emotion 

recognition from the EEG signal. Using all channels both 

increases the processing load and the total duration of the 

procedure. Additionally, separating all channels into their 

subbands further increases the processing load. In the 

proposed method, the only preprocessing to classify raw EEG 

signals with capsule networks is Z score normalization. The 

advantages of the proposed capsule network are given above. 

The limitation of the study was that it examined a single EEG 

channel. Further studies may examine other EEG channels 

with capsule networks. 

 

 

5. CONCLUSIONS 

 

Emotion recognition was carried out using two different 

scenarios. In the first, the emotions were examined for binary 

and multi- class emotion recognition. In the second, subject-

based recognition was performed, which, to our knowledge, 

had never been applied on this dataset in the literature. The 

results indicated that subject-based recognition was more 

successful than non-subject-based recognition, i.e. a general 

EEG model. Considering that each person’s characteristics 

such as personal, psychological, or physical features are 

different, we suggest that creating personalized EEG datasets 

will play a more effective role in increasing emotion 

recognition performance. 
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