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In this paper, the scenario leading to chaos in natural convection of Cu-water nanofluid inside 

an inclined square enclosure with the aspect ratio equal to unity is numerically investigated. 

The enclosure is heated from one part of the side and cooled through two other opposite half 

sides. The governing equations and the corresponding boundary conditions are solved 

numerically using the finite difference method. The effect of Rayleigh number and the volume 

fraction on natural convection flow are analyzed. The obtained results indicate that the mode 

of fluid flow which is initially stationary, passes by a periodic mode across a supercritical Hopf 

bifurcation, then quasi periodic at two incommensurable frequencies, before reaching the final 

stage of chaotic convection for both pure fluid and nanofluid. The sequences of bifurcation are 

presented graphically; it was found that the presence of suspended nanoparticles inside the 

base fluid causes significantly the delay of this transition. 
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1. INTRODUCTION

Transient natural convection inside the closed enclosures 

containing pure fluids has many practical engineering 

applications, the cases of electronic components cooling and 

especially the heat exchangers are among the most referenced 

applications. In all cases of the proposed topic, experimental 

studies and numerical computations aimed to clarify the flow 

regime and to determine the temperature field with both stable 

and instable boundary conditions. It should also to characterize 

the scenario leading to chaos and turbulence in relation with 

the nature of the fluid, the geometrical configuration of the 

enclosure and the initial and boundary conditions. In this 

context, we note the existence of some excellent research 

works related to this subject, which spans over sixty years. 

Nevertheless, the low thermal conductivity of fluids limits the 

performance of heat transfer inside enclosures. However, it 

should be noted that the presence of metal, metallic oxide or 

non-metallic nanometer-sized particles (referred to as MNS-

particles, MONS-particles or NMNS-particles for 

convenience) in the fluid (named nanofluid firstly by Choi, 

1995 [1]) contributes substantially to increase the heat transfer 

rate. 

As far as we know, turbulent or chaotic natural convection 

in closed enclosures containing nanofluids has not been 

studied sufficiently, although this regime of flow seems to be 

very interesting. This implies that the solid particles neither 

settle at the bottom of a fluid nor in clustering. 

Sadik et al. [2] summarize some important published works 

on the effect of MNS-particles, MONS-particles and NMNS-

particles suspended in the base fluid on the forced convection 

heat transfer inside the enclosures. In the literature they 

include analytical models that agree with experimental data of 

several physical properties such as thermal conductivity, 

effective viscosity, density and effective heat capacity. 

In the same way, Motevasel et al. [3] investigate 

experimentally at low concentration the effect of MgO-

nanoparticles aggregation on the nanofluid’s thermal 

conductivity and viscosity and a relatively good agreements 

was found between the proposed fractal models and the 

experimental values. 

Oztop et al. [4] considered rectangular enclosures partially 

heated and filled with nanofluid in natural convection. The 

finite volume method was used to solve the governing 

equations. For different types of nanoparticles: Cu, Al2O3 and 

TiO2, an increase in the mean Nusselt number was found with 

respect to the volume fraction andwith Rayleigh number inthe 

range of 1000-500000. Also, by using nanofluids, the heat 

transfer is more pronounced at low aspect ratio than at high 

ones, a value of 25 % can be reached. 

Maiga et al. [5] studied numerical thermal forced 

convection of water/Al2O3 and ethylene-glycol/Al2O3 

nanofluids inside cylindrical configuration with uniform heat 

flux at borders. For the turbulent flow, a Launder-Spalding k-

 model was used with specific combined thermal and physical 

properties of the base fluids and nanoparticles. The solutions 

were validated by experimental data, it is noticed that the 

presence of particles affects the wall friction, this latter 

increases with the particle volume fraction. 

In another study, Maiga et al. [6] considered two systems 

uniformly heated with Dirichelet and Neumann boundary 

conditions: the structure consists of a tube and parallel coaxial 

disks. They used two types of nanofluids in laminar forced 

convection flow regime, namely water/Al2O3 and ethylene-

glycol/Al2O3. They noticed that this last nanofluid provides a 

better heat transfer. The presence of nanoparticles in the base 

fluid increases the wall shear stress substantially. The authors 

proposed two correlations for the averaged Nusselt number in 

relation with Reynolds number and Prandtl number to analyze 

the heat transfer in a tube using water as base fluid. In the same 
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geometrical configuration of uniformly heated tube, Maiga et 

al. [7] explored numerically the effect of Al2O3 volume 

fraction on the hydrodynamic and thermal behavior of 

turbulent flow regime. The mathematical model based on the 

non-linear and coupled momentum of the energy and mass 

equations has been solved by a finite difference algorithm. The 

differential equations are discretized over a control volume. 

They supposed a single phase approach (e.g. fluid phase and 

particles in thermal equilibrium and move with the same 

velocity) and it was found that the wall shear stress increases 

with particle volume fraction and Reynolds number. 

Elahmer et al. [8], on the effect of nanofluids in forced 

convective heat transfer in a tube, concludes thatethylene-

glycol/CNT-Ag hybride nanofluid seems to be more 

advantageous for the enhancement of convective heat transfer 

than ethylene-glycol/CNT nanofluid. 

The case of two-phase approach (each phase with his own 

velocity) has been used to study both forced and mixed 

convection of nanofluid in a tube [9-10] and in inclined square 

cavity [11]. Some of the researchers consider that it is the 

appropriate approach to investigate in this novel kind of fluids. 

But there are some parameters which appear when using 

nanofluids, like gravity, Brownian motion, nanoparticles 

clustering and the friction between the fluid and the particles. 

Due to the lack of appropriate theoretical studies and 

experimental data in the literature to investigate in this issue, 

the existence of macroscopic two-phase approach is not 

applicable for analyzing heat transfer process [12-14]. 

Moreover, the single-phase approach is less complicated for 

modeling and more computationally efficient. 

In order to maintain a nanofluid in homogeneous state and 

to maximize their capacity to evacuate heat, it is essential to 

maintain the nanofluid in the chaotic state. The aim of the 

present numerical study is to investigate on the different ways 

leading to chaos for Cu-water nanofluid in order to improve 

heat transfer by natural convection throughout closed 

enclosure and to avoid nanoparticles clustering and 

sedimentation. In this paper it is supposed that the fluid and 

the nanoparticles are in a single phase and homogeneous state. 

We consider an inclined closed square enclosure heated 

partially from one side and cooled at two opposite walls, while 

the rest of boundaries are adiabatic. 

 

 

2. MATHEMATICAL FORMULATION 
 

The geometry of the present study is an inclined enclosure 

filled with a Cu-water nanofluid, this is shown in Figure 1. It 

consists of an H and L as enclosure dimensions. 

The half wall located at 𝑥 ′ = 0  and the opposite one 

located at 𝑥 ′ = 𝐿  are maintained at the constant cold 

temperature 𝑇𝑐, whereas one part of wall located at 𝑦′ = 0 is 

maintained at a constant hot temperature 𝑇ℎ, while the other 

borders of enclosure are adiabatic.  

The nanofluid in the cavity is considered to be newtonian, it 

is incompressible and laminar with constant physical 

properties except the density variation due to the Boussinesq 

approximation. The thermo-physical properties of the base 

fluid and the Cu-nanoparticles are listed in Table 1. It is 

considered that the viscous dissipation, thermal radiation and 

the work due to the volume expansion are negligible. 

 

 
 

Figure 1. Geometry of the problem and coordinate system. 

 

Table 1. Thermophysical properties of the fluid and the 

nanoparticles, from [4] 

 
Physical 

properties 
Fluid phase 

(water) 
Copper (Cu) 

𝑐𝑝(𝐽𝑘𝑔
−1𝐾−1) 4179 385 

𝜌(𝑘𝑔.𝑚−3) 997.1 8933 
𝑘(𝑊.𝑚−1. 𝐾−1) 0.613 400 
𝛼(𝑚2𝑠−1) 1.47 × 10−7 11.631 × 10−5 
𝛽 (𝐾−1) 21 × 10−5 1.67 × 10−5 

 

Regarding the above assumptions, the dimensional 

governing equations using the vorticity stream-function 

formulation can be written in Cartesian coordinates as follows: 

 
𝜕2𝜓′

𝜕𝑥′2
+

𝜕2𝜓′

𝜕𝑦′2
= −𝜔′                            (1) 

 

𝜕𝜔′

𝜕𝑡′
+

𝜕

𝜕𝑥′
(𝑢′𝜔′ −

𝜇𝑛𝑓

𝜌𝑛𝑓

𝜕𝜔′

𝜕𝑥′
) +

𝜕

𝜕𝑦′
(𝑣′𝜔′ −

𝜇𝑛𝑓

𝜌𝑛𝑓

𝜕𝜔′

𝜕𝑦′
) 

= (
𝜑𝜌𝑠𝛽𝑠+(1−𝜑)𝜌𝑓𝛽𝑓

𝜌𝑛𝑓
) 𝑔 (𝑐𝑜𝑠𝜃

𝜕𝑇′

𝜕𝑥′
− 𝑠𝑖𝑛𝜃

𝜕𝑇′

𝜕𝑦′
)            (2) 

 
𝜕𝑇′

𝜕𝑡′
+

𝜕

𝜕𝑥′
(𝑢′𝑇′ − 𝛼𝑛𝑓

𝜕𝑇′

𝜕𝑥′
) +

𝜕

𝜕𝑦′
(𝑣′𝑇′ − 𝛼𝑛𝑓

𝜕𝑇′

𝜕𝑦′
) = 0 (3) 

 

With the appropriate initial and boundary conditions: 

For 𝑡′ = 0 : 

 

{
𝑢′ = 𝑣′ = 0

𝑇′ =
1

2
(𝑇𝑐 + 𝑇ℎ)

                             (4) 

 

For 𝑡′ > 0: 

 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

{
𝑢′ = 𝑣′ = 0
𝜕𝑇′

𝜕𝑦′
= 0

  𝑎𝑡 

[
 
 
 
 
 {

𝑦′ = 𝐻

0 ≤ 𝑥′ ≤ 𝐿

𝑎𝑛𝑑 {

𝑦′ = 0

𝑥′ < 𝑥𝑝
′ − ℎ′/2

𝑥′ > 𝑥𝑝
′ +

ℎ′

2

{
𝑢′ = 𝑣′ = 0
𝜕𝑇′

𝜕𝑥′
= 0

  𝑎𝑡 {
𝑥′ = 0, 𝑥′ = 𝐿
0 ≤ 𝑦′ < 𝐻/2

{
𝑢′ = 𝑣′ = 0
𝑇′ = 𝑇ℎ

𝑎𝑡 

{
 

 
𝑦′ = 0

𝑥′ > 𝑥𝑝
′ −

ℎ′

2

𝑥′ < 𝑥𝑝
′ +

ℎ′

2

{
𝑢′ = 𝑣′ = 0
𝑇′ = 𝑇𝑐

 𝑎𝑡 {
𝑥′ = 0, 𝑥′ = 𝐿  
𝐻/2 ≤ 𝑦′ ≤ 𝐻

         (5) 
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where 

 

𝛼𝑛𝑓 =
𝑘𝑒𝑓𝑓

(𝜌𝐶𝑝)𝑛𝑓
                                     (6) 

 

The effective thermal conductivity of the nanofluid 𝑘𝑒𝑓𝑓  is 

approximated by Maxwell-Garnetts model as cited in [2, 23], 

see Table 1 for calculations: 

 
𝑘𝑒𝑓𝑓

𝑘𝑓
=

𝑘𝑛𝑓

𝑘𝑓
=

𝑘𝑠+2𝑘𝑓−2𝜑(𝑘𝑓−𝑘𝑠)

𝑘𝑠+2𝑘𝑓+𝜑(𝑘𝑓−𝑘𝑠)
                    (7) 

 

We considered a spherical shape of copper nanoparticles [2, 

4, 14, 22, 23]. This model is well adapted to evaluate the 

enhancement of the heat transfers. Other models exist in the 

literature, such as: the model of Hamilton-Crosser and the 

model of Yu-Choi, cited in [2], which takes into account the 

nonspherical form of the particles. For our case the use of the 

equation (7) is relatively satisfactory. 

The specific heat of the nanofluid is expressed as [12, 15]: 

 

(𝜌𝑐𝑝)𝑛𝑓 = 𝜑(𝜌𝑐𝑝)𝑠 +
(1 − 𝜑)(𝜌𝑐𝑝)𝑓                  (8) 

 

The effective viscosity can be defined as follows [4]: 

 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)2.5
                                  (9) 

 

Concerning the velocity field, it is related to the stream 

function by: 

 

{
𝑢′ =

𝜕𝜓′

𝜕𝑦′

𝑣 ′ = −
𝜕𝜓′

𝜕𝑥′

                                   (10) 

 

By introducing the following dimensionless variables: 

 

{
(𝑥, 𝑦) = (

𝑥′

𝐻
,
𝑦′

𝐻
)  ;  𝑡 =

𝑡 ′𝛼𝑓

𝐻2
  ;  (𝑢, 𝑣) = (

𝑢′𝐻

𝛼𝑓
,
𝑣′𝐻

𝛼𝑓
)

𝜓 =
𝜓′

𝛼𝑓
  ;  𝜔 =

𝜔′𝐻2

𝛼𝑓
   ;     𝑇 =

𝑇′−𝑇𝑐

𝑇ℎ−𝑇𝑐

    (11) 

 

The governing equations (1)-(3) can be rewritten in 

dimensionless form as: 

 
𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
= −𝜔                       (12) 

 
𝜕𝜔

𝜕𝑡
+
𝜕

𝜕𝑥
(𝑢𝜔 − 𝑃𝑟𝑚

𝜕𝜔

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑣𝜔 − 𝑃𝑟𝑚

𝜕𝜔

𝜕𝑦
) = 

𝑅𝑎. 𝑃𝑟. 𝑃𝑛𝑓𝑟 (𝑐𝑜𝑠𝜃
𝜕𝑇

𝜕𝑥
− 𝑠𝑖𝑛𝜃

𝜕𝑇

𝜕𝑦
)                 (13) 

 
𝜕𝑇

𝜕𝑡
+

𝜕

𝜕𝑥
(𝑢𝑇 − 𝑡𝑑𝑟

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑣𝑇 − 𝑡𝑑𝑟

𝜕𝑇

𝜕𝑦
) = 0   (14) 

 

With the corresponding boundary conditions  

For 𝑡 = 0: 

 

{
𝑢 = 𝑣 = 0

𝑇 =
1

2

                                (15) 

 

For 𝑡 > 0 : 

 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

{
𝑢 = 𝑣 = 0
𝜕𝑇

𝜕𝑦
= 0 𝑎𝑡

[
 
 
 
 
 {

𝑦 = 1
0 ≤ 𝑥 ≤ 𝐴

𝑎𝑛𝑑 {

𝑦 = 0
𝑥 < 𝑥𝑝 − ℎ/2

𝑥 > 𝑥𝑝 +
ℎ

2

{
𝑢 = 𝑣 = 0
𝜕𝑇

𝜕𝑥
= 0

𝑎𝑡 {
𝑥 = 0, 𝑥 = 𝐴
0 ≤ 𝑦 < 1/2

{
𝑢 = 𝑣 = 0
𝑇 = 1

𝑎𝑡 {

𝑦 = 0

𝑥 > 𝑥𝑝 −
ℎ

2

𝑥 < 𝑥𝑝 +
ℎ

2

{
𝑢 = 𝑣 = 0
𝑇 = 0

𝑎𝑡 {
𝑥 = 0, 𝑥 = 𝐴
1/2 ≤ 𝑦 ≤ 1

             (16) 

 

The dimensionless parameters appearing in the equations 

(13-14) are defined as 

 

𝑡𝑑𝑟 =
𝛼𝑛𝑓

𝛼𝑓
=

𝑘𝑛𝑓

𝑘𝑓

1

(1−𝜑)+𝜑
(𝜌𝑐𝑝)𝑠
(𝜌𝑐𝑝)𝑓

;           

𝑃𝑟𝑚 =
𝑃𝑟

(1−𝜑)2.5((1−𝜑)+𝜑
𝜌𝑠
𝜌𝑓
)

; 

𝑅𝑎 =
𝑔𝛽∆𝑇𝐿3

𝜈𝑓𝛼𝑓
; 

𝑃𝑛𝑓𝑟 =
1

1 +
1−𝜑𝜌𝑓

𝜑𝜌𝑠

𝛽𝑠
𝛽𝑓
+

1

1 +
𝜑𝜌𝑠

1−𝜑𝜌𝑓

 

 

For the estimation of the intensities of the heat transfers, the 

calculation of Nusselt number related to its local evaluation 

through the hot wall and its global evaluation along this wall. 

While referring to [4] and [16], it can be written as: 

 

𝑁𝑢𝑙𝑜𝑐𝑎𝑙(𝑥) = −
𝑘𝑛𝑓

𝑘𝑓

𝜕𝑇

𝜕𝑦
)
ℎ𝑜𝑡 𝑤𝑎𝑙𝑙

                   (17) 

 

Concerning the calculation of the averaged Nusselt number, 

this can be given as: 

 

𝑁𝑢𝐴𝑣𝑔 = ∫ 𝑁𝑢(𝑥)𝑑𝑥
ℎ𝑜𝑡 𝑤𝑎𝑙𝑙

                     (18) 

 

 

3. NUMERICAL METHOD 

 

The vorticity and energy equations are transformed into 

their finite difference equations by employing the ADI-method, 

which is adapted for the transient solutions. This formulation 

leads to a tri-diagonal matrix at each half time step that is 

solved using a TDMA algorithm. For this method, it is 

possible to use a relatively large time steps, in this case the 

numerical stability conditions are easy to satisfy. 

To solve the stream function equation, the SOR-method is 

used. First of all, to satisfy the mass continuity, the 

convergence criterion of the stream function (e.g. the relative 

gap between the previous stream function at each point and 

their new values) is chosen less than 10-5. Secondly, the 

velocity components are computed with a central finite-

difference approximation of the stream function. In the past, 

computational method has been tested for different mesh sizes 

(more than 121x121 nodes) and different time steps, thereafter, 

the validity of the computer program was tested for pure fluid 

in steady state by simulating the bench mark numerical 
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solution [17]. All results were considered to be very 

satisfactory (the relative gap less than 1 %). Other tests were 

carried out in oscillatory regimes and good agreement of 

frequencies is obtained. In addition, the results obtained by the 

present algorithm concerning the study of a nanofluid in a 

closed cavity with horizontal thermal walls are in good 

agreement with those presented by Oztop et al. [4]. 

 

 

4. VALIDATION 

 

To test the accuracy of the present numerical study, the 

average values of Nusselt number for wide range of Rayleigh 

numbers are given in Table 2 and compared with previous 

works. As it can be seen, the obtained results are in good 

agreements with those given by the literature. 

 

Table 2. Comparison of average Nusselt number with those 

published in several references 

 

Ra 
Oztop 

[4] 

Khanafir 

[12] 

Davis 

[17] 

Tiwari 

[14] 

Esmaeil 

[18] 

Barakos 

[19] 

Present 

work 

103 1.120 1.118 1.118 1.087 1.118 1.114 1.117 

104 2.250 2.245 2.243 2.195 2.247 2.245 2.241 

105 4.644 4.522 4.519 4.450 4.543 4.510 4.510 

106 8.875 8.826 8.799 8.803 8.884 8.806 8.829 

 

 
 

Figure 2. Temperature profile at the horizontal mid-plane of 

the enclosure 𝑅𝑎 = 1.89 105, 𝑃𝑟 = 0.71 

 

 
 

Figure 3. Velocity profile at the horizontal mid-plane of the 

enclosure 𝑅𝑎 = 105, ℎ = 0.5, 𝑦𝑝 = 0.5 

 

Another validation as shown in Figure 2, concerning natural 

convection in a square enclosure, differentially heated and 

filled with air. One can observe the obtained results of the 

computed temperatures, regarding the horizontal midline of 

the enclosure, comparison with the results of Oztop et al. [4], 

Khanafer et al. [12] and Krane et al. [20] gives excellent 

agreement. 

The results obtained by simulation are validated with the 

result of Oztop et al. [4] for natural convection in a square 

enclosure filled with three types of nanoparticles showed in 

Figure 3. It is clear that the vertical velocity profile along the 

horizontal midline of the enclosure for Ra=105, h=0.5 and 

yp=0.5 is in good agreement with our numerical simulation. 

As matter of comparison with Oztop et al. [4], a slight 

change in the volume fraction from zero to 0.20 causes a 

significant increase of average Nusselt numbers throughout a 

heated element as showed in Figure 4. Furthermore, it also 

considerable with increasing Rayleigh number. It is clear that 

all results of the present code (the one used for simulation) are 

in good agreement with those proposed by Oztop et al. [4]. 

 

 
 

Figure 4. Average Nusselt numbers versus volume fraction 

 

 

5. RESULTS AND DISCUSSION 

 

The numerical code is used to make a number of simulations 

for various ranges of controlling parameter, such as Rayleigh 

number, 103 ≤ 𝑅𝑎 ≤ 3.5 107 . The enclosure is partially 

heated at one side and partially cooled at two other opposite 

sides. Concerning the volume fraction, the used values are 

10 % and 20 % in addition to the case of pure fluid. 

 

5.1 Bifurcation to oscillatory convection 

 

Figure 5, shows the temporal stream function signals at the 

mid-point of the enclosure (first line) in addition to the 

streamlines, the isotherms and the phase space trajectories at 

the second, third and fourth lines respectively. The first 

column refers to pure fluid (𝑅𝑎 = 8.20 104 ), the second 

column to Cu-water nanofluid with 𝜑 = 0.1 (𝑅𝑎 = 1.91 105) 

and the third column to Cu-water nanofluid with 𝜑 = 0.2 

(𝑅𝑎 = 4.52 105 ). As indicated by this figure, the temporal 

signal shows a sharply decrease and then trend to an 

asymptotic limit of stationary heat transfer mode. We note that 

all physical properties of the system follow this evolution for 

studied cases. 
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0:14.47 (1.75)        0:20 (2.5)           -2:28 (3.75) 

 

 
0:1 (0.1)             0:1 (0.1)               0:1 (0.1) 

 

 
 

Figure 5. Temporal stream function signals 𝜓𝑚𝑖𝑑  (line 1), 

streamlines (line 2), isotherms (line 3) and phase space 

trajectories (𝑇𝑚𝑖𝑑 , 𝜓𝑚𝑖𝑑) (line 4). 

For streamlines, the first number gives the minimum value, 

the second one, the maximum value and the third one is the 

gap between two successive streamlines. 

The isotherms are equally spaced from the hot wall (T=1) 

to cold one (T=0), with a gap of 0.1 

 

According to the streamlines, one can observe a dominate 

monocellular flow turning in the counterclockwise direction 

for all cases, whereas, a small counter rotating cell appears at 

the top corner of the enclosure, which grow up proportional 

with volume fraction. The corresponding isotherms show the 

characteristics of conduction for dominated regime except at 

the central part of the cavity, because they are distributed 

approximately parallel to the active walls. The stationarity of 

the regime can be confirmed through the layout of the phase 

plan trajectory (𝑇𝑚𝑖𝑑 , 𝜓𝑚𝑖𝑑) for the threecases. Line four of 

Figure 5 shows that this is a limit point attractor. 

When increasing Rayleigh number until obtaining an 

oscillatory convection mode, before reaching this situation 

precisely, we expect to find the breaking value of Rayleigh 

number, where there is a complete alteration of stationary 

regime behavior. We highlight that despite of increasing the 

Rayleigh number, the frequency of the cycle deduced by the 

Fourier spectrum remains almost invariant and the time 

required for the establishment mode becomes much longer 

near this value. 

 

 

 

 

 
 

Figure 6. Temporal signals of  𝜓𝑚𝑖𝑑 (first line), Phase space 

trajectories (𝑇𝑚𝑖𝑑 , 𝜓𝑚𝑖𝑑) (second line), Amplitude spectra 

(third line) and the amplitude of 𝜓𝑚𝑖𝑑  versus (𝑅𝑎 − 𝑅𝑎𝑐)
1 2⁄  

beside the bifurcation point (fourth line), respectively for 

Pure fluid (first column; Ra=8.40 104), nanofluid with 

φ=10 % (second column; Ra=1.97 105) and nanofluid with 

φ=20 % (third column Ra=4.60 105) 
 

(a) (b) (c)  

𝑡0 
(𝑎) 0 ∶ 14 (1.75)(𝑏) 0 ∶ 20 (2.50)(𝑐)  − 2 ∶ 28 (3.75) 

 (a) (b) (c)  

𝑡0 + 𝑃/4 
(𝑎) 0 ∶ 14 (1.75)(𝑏) 0 ∶ 20 (2.50)(𝑐) 0 ∶ 28 (3.50) 

 

(a) (b) (c)  

𝑡0 + 𝑃/2 
(𝑎) 0 ∶ 14 (1.75)(𝑏) 0 ∶ 20 (2.50)(𝑐)  − 2 ∶ 30 (4.00) 

 

(a) (b) (c)  

𝑡0 + 3𝑃/4 
(𝑎)  0 ∶ 14 (1.75)(𝑏) 0 ∶ 20 (2.50)(𝑐)  − 2 ∶ 28 (3.75) 

 

(a) (b) (c)  

𝑡0 + 𝑃 
(𝑎) 0 ∶ 14 (1.75)(𝑏) 0 ∶ 20 (2.50)(𝑐)  − 2 ∶ 28 (3.75) 

 

Figure 7. Streamlines over one complete cycle:  

(a) Pure fluid at Ra=8.45 104;  

(b) Cu-water nanofluid with 𝜑 = 0.1 at Ra=2.0 105;  

(c) Cu-water nanofluid with 𝜑 = 0.2 at Ra=4.64 105 
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After several tests, we can determine with a good approach 

the value of Rayleigh number, at which there is a topological 

change of the temporal signals of stream function (first line, 

Figure 6) for several Rayleigh numbers, the signals become 

periodic. In the same way, sketch of phase space trajectories 

(second line, Figure 6) at the same values of Rayleigh numbers 

confirm the existence of a limiting cycle representing the 

phase portrait of stream function versus temperature at the 

mid-point of the cavity (𝑇𝑚𝑖𝑑 , 𝜓𝑚𝑖𝑑). The third line illustrates 

the amplitude spectra with the non-dimensional frequencies 

values. Apparently, there is only one single frequency 

component for each case: 𝑓 = 34.17 , 𝑓 = 52.49  and 𝑓 =
85.44  for pure fluid, Cu-water nanofluid with 𝜑 = 0.1 and 

Cu-water nanofluid with 𝜑 = 0.2 respectively. 

In the fourth line, from Figure 6, we show the amplitude of 

the stream function at the mid-point of the cavity for various 

Rayleigh numbers near the first critical point versus the square 

root differences between all used values of Rayleigh number 

and critical Rayleigh number for all cases studied here. 

Apparently, for the three cases, the evolution is linear, 

consequently, we deduce that there is a supercritical Hopf 

bifurcation [21] located near 𝑅𝑎 = 8.35 104 for pure fluid, 

𝑅𝑎 = 1.95 105 for Cu-water nanofluid with 𝜑 = 0.1 , and 

𝑅𝑎 = 4.56 105 for Cu-water nanofluid with 𝜑 = 0.2 . Note 

that these values were extracted by a linear fitting. 

 

 

 

 
 

Figure 8. Temporal signals of  𝜓𝑚𝑖𝑑 (first column) and 

amplitude spectra (second column):  

First line: Pure fluid; 

Second line: Cu-water nanofluid with 𝜑 = 0.1; 

Third line: Cu-water nanofluid with 𝜑 = 0.2 

 

Figure 7 shows streamlines over one complete cycle for 

pure fluid (a) 𝑅𝑎 = 8.45 104 , Cu-water nanofluid (b) 𝑅𝑎 =
2 105𝜑 = 0.1 and Cu-water nanofluid (c) 𝑅𝑎 = 4.64 105𝜑 =
0.2 respectively at specific moments of the cycles (referring to 

1-5, from Figure 8). One can observe mainly a single 

circulation cell turning in the counterclockwise direction in all 

cases and at the top corner of the enclosure one observes a 

small cell turning in the clockwise direction and growth at a 

specific moment of the cycle. In addition, Figure 8 shows that 

the flow is characterized by the presence of only one 

fundamental frequency with one small harmonic. Through 

these results, it is quite clear that the physical system has a 

periodic behavior. 

 

5.2 Bifurcation to chaos 

 

The bifurcation sequences are  observed numerically until 

the onset of chaos, this is illustrated in Figure 9 (pure fluid), 

Figure 10 (Cu-water nanofluid with 𝜑 = 0.1) and Figure 11 

(Cu-water nanofluids with 𝜑 = 0.2), where: the first column 

shows the time evolution of the temperature at the mid-point 

of the cavity, the second column presents the amplitude 

spectra of stream function, we note that the fast Fourier 

transform (FFT) algorithm is used to evaluate the amplitudes 

in the frequency domain, mostly 213 and 214 points, they were 

checked out from the temporal signals. Eventually, the third 

column shows the phase space trajectory in the plane 

(𝑇𝑚𝑖𝑑 , 𝜓𝑚𝑖𝑑). 
 

5.2.1 Bifurcation for pure fluid 

According to Figure 9, the frequency amplitude spectrum 

for Ra=8.70 104 (first line) shows the non-dimensional 

fundamental peak frequency with order 35.4 and one 

significant harmonic of this peak is obvious. In addition, the 

phase space trajectory is a limit cycle, corresponding to a 

periodic state, related to the temporal signal of temperature at 

the mid-point of the cavity. 

 

 
 

 
 

 
 

Figure 9. Bifurcation sequence to chaos for pure fluid 

 

As Rayleigh number increased further, we observe in the 

second line at Ra=8.25 106 that the amplitude spectrum 

resulting from FFT method includes a second frequency 𝑓2. It 

is noted that the ratio 𝑓1 𝑓2⁄ = 1.354  is irrational, where 

f1=578.61, f2=427.24; we define this situation as 

incommensurability, so the attractor is a T2 torus. As expected, 

this second bifurcation occurs for Rayleigh number ranging 

from 8,062,500 to 8,125,000. 

The quasi periodic mode with two observable 

incommensurable frequencies is still existing for Ra=9.70 106 
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where f1=629.882, f2=463.867 and 𝑓1 𝑓2⁄ ≅ 1.357 and all the 

rest of peaks are: f1-f2, 2(f1-f2), 2f1, f1+f2. We note that the 

spectrum is highly noisy, which is precursor to pseudo-chaotic 

behavior. 

The transition from quasi-periodic to chaotic flow can be 

clearly visualized in third line, where the Rayleigh number is 

107, apparently the temporal signal of temperature has a non-

periodic evolution, in addition the phase space trajectory is 

fully disturbed. We further note that the spectrum amplitude is 

continuous, which is similar to the characteristic exhibited by 

all chaotic regimes. 

 

5.2.2 Bifurcation for Cu-water nanofluid 

In this  section, we will explore the way towards the chaotic 

mode undergo by water containing copper nanoparticules with 

a volume fraction in the range [10-20 %], and see the influence 

of additional nanoparticles on the flow mode and we will try 

to compare  with the base case, i.e., water that is presented in 

the first part. 

 

 
 

 
 

 
 

Figure 10. Bifurcation sequence to chaos for Cu-water 

nanofluid with 𝜑 = 0.1 

 

According to Figure 10, the frequency amplitude spectrum 

for Ra=1.97 105 (first line) shows the non-dimensional 

fundamental peak with order 52.49, since the temporal signal 

of temperature at the mid-point of the cavity have a periodic 

evolution, but no significant harmonic is obvious. In addition 

the phase space trajectory is a limit cycle, which is 

corresponding to the periodic state. 

At Ra=106, we note also that the flow is strictly periodic 

containing one fundamental frequency. Similarly, the 

appearance of a single harmonic, has a frequency of a doubled 

value compared to the first one. As the Rayleigh number is 

increased to 1.109 107, we observe in the second line two 

distinct frequencies having irrational ratio, at which the 

periodic mode submits a second transition leading into a T2 

torus. In this case harmonics are obtained from their linear 

combinations. In this region the flow is fully quasi-periodic as 

expected, since the second bifurcation occurs for Rayleigh 

number included in the interval [10,615,000; 11,090,000]. The 

quasi periodic mode with 2 observable incommensurable 

frequencies is still existing until Ra=1.35 107. 

chaotic state occurs for Rayleigh number 𝑅𝑎 >1.35 107, as 

an indication, Ra=1.40 107in the last line. The amplitude 

spectrum has a continuous nature similar to the characteristic 

exhibited by all chaotic regimes. We note also, that the 

temperature signal is nonperiodic. 

 

 
 

 
 

 
 

Figure 11. Bifurcation sequence to chaos for Cu-water 

nanofluid with 𝜑 = 0.2 

 

From Ra number equal to 4.565 105 the regime is periodic, 

the dimensionless fundamental peak frequency is of the order 

of 84.22. At the first line, from Figure 11, Ra=5.0 106, it shows 

two harmonics in addition to fundamental one. The phase 

portrait shows a closed trajectory, corresponding to a periodic 

regime. 

For Ra=2.60 107, by utilizing FFT method, we found in the 

second line from Figure 11 two distinct incommensurate 

frequencies: f1=700.68 and f2=637.20. In this case all 

harmonics can be expressed by linear combinations of these 

fundamental frequencies set as 𝑚1𝑓1 +𝑚2𝑓2where 𝑚1  and 

𝑚2 being positive integers. Consequently, the regime is quasi-

periodic. 

We observe in third line for Ra=2.80 107 that the 

temperature signal is non-periodic. The transition to chaotic 

flow can be clearly visualized through the phase space maps 

and from amplitude spectrum which has a continuous nature. 

 

 

6. SENSITIVITY TO THE INITIAL CONDITIONS 

 

The sensitivity to the initial conditions of our system is 

highlighted following by a change of the initial temperature of 

the enclosure of the order of 10-6. Figure 12 gives the examples 

for various pertinent numbers of Rayleigh, (a): pure fluid, (b): 

Cu-water nanofluid with 𝜑 = 0.1, and (c): Cu-water nanofluid 

with 𝜑 = 0.2, where it is seen that the signals have the same 

shape until a given time, where the two signals become 

separate, this behavior is a sign of all chaotic systems.   
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Figure 12. Sensitivity to the initial conditions for: 

(a) pure fluid; (b) nanofluid with 𝜑 = 0.1; (c) nanofluid with 

𝜑 = 0.2; 

Solid line, T01=0.5; dashed line, T02=0.5+10-6 

 

The obtained results seem to be confirmed by the estimated 

largest Lyapunov exponent values Ly [19], where is defined by: 

 
[𝜓𝑚𝑖𝑑(𝑇01, 𝑡) − 𝜓𝑚𝑖𝑑(𝑇02, 𝑡)] = 

[𝜓𝑚𝑖𝑑(𝑇01, 0) − 𝜓𝑚𝑖𝑑(𝑇02, 0)]𝑒𝑥𝑝(𝐿𝑦𝑡)           (19) 

 

As it is shown in table 3, all values being positive and were 

proved to increase when Rayleigh number increases for both 

pure fluid and nanofluid. In the same way, calculations show 

that more increasing in Rayleigh number more the separation 

time occurs earlier. 

 

Table 3. The estimated largest Lyapunov exponent values as 

a function of Rayleigh number 

 
 Ra Lyapunov exponent 

𝜑 = 0 

1.15 107 170.3 

1.20 107 177.72 

1.22 107 245.16 

𝜑 = 0.1 

1.40 107 75.47 

1.50 107 124.59 

2.0 107 184 

𝜑 = 0.2 

2.80 107 162.21 

2.85 107 171.07 

3.10 107 244.82 

 

Figures 13 summarize the study, in such way that, the 

transition from a regime of flow to another depends primarily 

on two parameters: Rayleigh number and volume fraction of 

the nanoparticules. Whereas, the addition of nanometric 

particle size to base fluid enables the slow downing of this 

transition in a proportional manner. So that, the attractor alters 

from limit point to a limit cycle via a supercritical Hopf 

bifurcation, and the values of Rayleigh numbers 

corresponding to this first bifurcation are 8.35 104, 1.95 105, 

4.56 105 for the pure fluid, nanofluid with 𝜑 = 0.1  and 

nanofluid with 𝜑 = 0.2, respectively. In the same way, the 

values of Rayleigh numbers agree with the two other 

transitions, i.e., transition from periodic to quasi periodic 

mode and quasi periodic to chaos for the three cases quoted 

previously. 

 

 
 

Figure 13. Bifurcation sequences observed numerically. 

(a): pure fluid, (b): nanofluid with 𝜑 = 0.1, (c): nanofluid 

with 𝜑 = 0.2. S=steady state, P= periodic, QP2=quasi-

periodic with two incommensurate frequencies, C= chaotic 

 

According to Figure 13, we can also note that the quasi 

periodic regime exists in a narrow field of Rayleigh number, 

in such way, the chaotic mode is very close from this region. 

 

 

7. HEAT TRANSFER IMPROVEMENT 

 

 
 

Figure 14. Mean Nusselt number variation along the hot wall 

according to Rayleigh number and various volume fraction 

 

In this section, the effect of volume fraction of copper 

nanoparticles on heat flow by natural convection in the cavity 

is studied, we have plotted various values of the mean Nusselt 

number along the hot wall for various volume fraction using 

different values of Rayleigh number as illustrated on Figure14. 

Since, the strength of natural convection is characterized by 

magnitude of a dimensional Nusselt number that compares a 

convective heat flow with reference to typical conductive heat 

flow. According to Figure 14, we notice that for three cases 

the heat transfer in the cavity is proportional to Rayleigh 

number. Let us indicate that the improvement of heat transfer 

is in relation with the volume fraction of copper nanoparticles, 
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which is sustained by a wide range of authors [4, 12, 14]. The 

improvement of heat transfer when increasing volume fraction 

of nanoparticles is very evident. For example when Ra=106 

and 𝜑 = 0.1, the improvement is 10.39% compared to pure 

fluid, and it becomes 20.42% for 𝜑 = 0.2. 

 

 

8. CONCLUSION 

 

The study proposed in this paper is carried out aiming to 

find out the physical instabilities for Cu-water nanofluid that 

occur in a square inclined cavity of 450, heated partially from 

one side and cooled partially from two other opposite side. 

From the investigation carried out in this paper, we were able 

to visualize the transition from steady state regime for low 

Rayleigh numbers until the onset of chaos when Ra increases. 

The problem was treated using a numerical approach, based 

on the finite difference method and by using our own 

developed code, which is validated with experimental and 

numerical results, some of which are well explained in this 

study. 

The scenario borrowed up to the chaos by the two systems 

(pure fluid and nanofluid) is according to that proposed by 

Curry and York [21], i.e., quasi-periodicity at two 

incommensurable frequencies. The transition from laminar 

natural convection to chaos is affected by the presence of 

nanoparticles, so that the volume fraction causes 

backwardness in the transition to chaotic regime, this is well 

explained from the diagram of Figure 13; but on the other hand 

an improvement in heat transfer inside the cavity was found. 

A later study on unsteady natural convection in 

differentially heated cavities may be extended for other types 

of nanoparticles, taking into account other inclinations and 

various shape factors. 
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NOMENCLATURE 

 

A geometric aspect ratio, 𝐿 𝐻⁄  

Cp specific heat at constant pressure, J.kg-1K-1 

g acceleration due to gravity, m.s-2 

Exp Exponential function 

h nondimensional length of partial heater, 

h’/L 

h’ length of heater, m 

H length of enclosure along y’, m 

k thermal conductivity, W.m-1.K-1 

L length of enclosure along x’, m 

Ly Lyapunov exponent 

Nu Nusselt number 

P Period  

Pr Prandtl number 

t nondimensional time 

T nondimensional temperature 

Th hot wall temperature, K 

Tc cold wall temperature, K 

u, v nondimensional velocity components, 

x, y nondimensional cartesian coordinates 

xp Nondimensional position of the heater 

element along x 

yp Nondimensional position of the heater 

element along y 

 

Greek symbols 

 

 

α thermal diffusivity, m2.s-1 

β coefficient of thermal expansion, K-1 

θ inclination angle, rad 

μ  dynamic viscosity, kg. m-1.s-1 

ρ  density, kg.m-3 

φ  nanoparticle volume fraction  

ψ nondimensional stream function 

ω nondimensional vorticity 

 

Exponent and subscripts 

 

 

‘ for dimensional quantities 

Avg Average 

eff Effective 

f Fluid 

nf Nanofluid 

s Solid 
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